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These notes were written for a short graduate course given at the University of Caen in September
2010. It turned out that it was necessary to include some introductory material about tensor
products and group algebras. Then we tried to present some nice features of the elementary theory
of Hopf algebras, both in the algebraic and the C∗-algebraic settings. Our main goal was the
existence and unicity of “Haar integrals”, whose proofs are quite different in both settings, and the
presentation of some “real-life” examples where computation skills can be trained.

We apologize in advance for all errors that could remain in this text. Updates and corrections
will be made available at http://www.math.unicaen.fr/~vergnioux/.
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1 Introduction

1.1 Tensor products

1.1.1 We fix a base field k. If E, F are sets, we denote by F (E,F ) the set of functions from E to
F . We simply denote F (E) the space F (E, k). We will often write the composition of functions as
a product, i.e. fg = f ◦ g for f ∈ F (F,G), g ∈ F (E,F ). If V , W are vector spaces we denote by
L(V,W ) the space of linear maps from V to W .

Definition 1.1 Let V , W be two vector spaces. There exists a vector space V⊗W together with a
bilinear map i : V ×W → V⊗W satisfying the following universal property : for every bilinear map
φ : V ×W → X, there exists a unique linear map Φ : V⊗W → X such that Φ ◦ i = φ. Moreover
V⊗W is unique up to an isomorphism exchanging the maps i. For every ζ ∈ V , ξ ∈ W , the vector
i(ζ, ξ) is denoted ζ⊗ξ ∈ V⊗W .

The use of the tensor product V⊗W allows to replace bilinear maps on V ×W by linear maps.
The vectors ζ⊗ξ are called elementary tensors in V⊗W , they form a cone in V⊗W and by definition
they obey the following relations :

(ζ + λζ ′)⊗ξ = (ζ⊗ξ) + λ(ζ ′⊗ξ), ζ⊗(ξ + λξ′) = (ζ⊗ξ) + λ(ζ⊗ξ′).

Moreover elementary tensors span the vector space V⊗W : a general vector ν ∈ V⊗W can be
written as a finite sum ν =

∑
i ν1,i⊗ν2,i. It is sometimes convenient to drop the indices i and write

ν =
∑
ν(1)⊗ν(2). Note that this decomposition into elementary tensors is not unique.

On the other hand one can show that for any bases (ζi)i∈I , (ξj)j∈J of V and W respectively,
the elementary tensors (ζi⊗ξj)(i,j)∈I×J form a basis of V⊗W . In particular dim(V⊗W ) = dimV ×
dimW . If V (or W ) is 1-dimensional, any identification V ' k yields an isomorphism V⊗W ' W
given by λ⊗ξ = λξ. The following results is sometimes usefull: if (ζi)i∈I is a linearly independent
family in V , then (ζi⊗ξi)i∈I is linearly independent in V⊗W for any non-zero vectors ξi ∈ W . In
particular if two non-zero elementary tensors ζ⊗ξ, ζ ′⊗ξ′ are equal then ζ, ζ ′ are colinear as well as
ξ, ξ′, and if ζ⊗ξ = 0 then ζ or ξ is the zero vector.

Example 1.2 When V = k(E), W = k(F ) are spaces of functions with finite support, we will take
as tensor product the space V⊗W = k(E×F ), with the canonical map i given by i(f, g) = ((x, y) 7→
f(x)g(y)). Then, if φ : V ×W → k is a bievaluation map (f, g) 7→ f(x)g(y), its extension Φ as in
the Definition is simply the linear evaluation map h 7→ h(x, y). �

1.1.2 Consider now linear maps φ : V → V ′, ψ : W → W ′. It is easy to check that the map
(ζ, ξ) 7→ φ(ζ)⊗ψ(ξ) is bilinear, and hence it defines a linear map denoted φ⊗ψ : V⊗W → V ′⊗W ′.
Using the notation above, is it given by (φ⊗ψ)(ν) =

∑
φ(ν(1))⊗ψ(ν(2)).

Observing that the element φ⊗ψ of L(V⊗W,V ′⊗W ′) is bilinear in φ, ψ we get moreover a linear
map L(V, V ′)⊗L(W,W ′) → L(V⊗W,V ′⊗W ′). This map is injective, and hence an isomorphism
when all spaces are finite-dimensional. As an interesting particular case, we obtain an inclusion
W⊗V ∗ = L(k,W )⊗L(V, k) ⊂ L(V,W ), given by the formula (ξ⊗φ)(ζ) = ξ〈φ, ζ〉, which is an
insomorphism when V and W are finite-dimensional.

Given any tensor product space V⊗W , a particularly usefull linear map is the flip map Σ :
V⊗W → W⊗V given by Σ(ζ⊗ξ) = ξ⊗ζ. When V = W and char k 6= 2, the tensor product
V⊗V decomposes into the direct sum of the subspace of symetric tensors ν, such that Σ(ν) = ν,
and antisymetric tensors ν, such that Σ(ν) = −ν. Note that these subspaces are not spanned by
elementary tensors.

Exercise 1. Describe the kernel of φ⊗ψ for φ ∈ L(V, V ′), ψ ∈ L(W,W ′). If V ′, W ′ are quotients
of V , W , describe V ′⊗W ′ as a quotient of V⊗W .



R. Vergnioux 3

Exercise 2. Show that the canonical map L(V, V ′)⊗L(W,W ′) → L(V⊗W,V ′⊗W ′) is injective.
Show that the natural inclusion V ∗⊗W ∗ ⊂ (V⊗W )∗ is not surjective when V and W are infinite-
dimensional. Show that the natural inclusion W⊗V ∗ ⊂ L(V,W ) is not surjective when V and W
are infinite-dimensional. What can be said when V or W is finite-dimensional? Give a general
description of the subspace W⊗V ∗ ⊂ L(V,W ).

Exercise 3. Let V be a f.-d. vector space, and choose f ∈ GL(V ). Consider the linear map
g = f⊗ tf−1 ∈ L(V⊗V ∗). Give the expression of g as an element of L(L(V )) via the isomorphism
V⊗V ∗ ' L(V ).

Given three vector spaces V1, V2, V3 one can form the tensor products (V1⊗V2)⊗V3 and V1⊗(V2⊗V3).
They are not equal but canonically isomorphic via (η⊗ζ)⊗ξ 7→ η⊗(ζ⊗ξ), and we denote one of
them by V1⊗V2⊗V3. One proceeds similarly with more than three vector spaces, and we denote
V ⊗k = V⊗ · · ·⊗V .

One can build linear maps between such multiple tensor products using the so-called leg notation.
Take e.g. V1 = V2 = V3 = V . For any Φ ∈ L(V ), we denote e.g. Φ3 = id⊗id⊗Φ ∈ L(V⊗V⊗V ) the
map Φ “acting on the third leg of V⊗V⊗V ”. For Φ ∈ L(V⊗V ), we denote similarly Φ12 = Φ⊗id
the map Φ “acting on the two first legs of V⊗V⊗V ”. More interestingly, Φ13 is the map Φ “acting
on legs 1 and 3 of V⊗V⊗V ”: using the flip map, it is given by Φ13 = (id⊗Σ)(Φ⊗id)(id⊗Σ).

Exercise 4. Compute the following maps on elementary tensors of V⊗V⊗V : Σ13Σ23, Σ13Σ23Σ13.
Show that the map (k k + 1) 7→ Σk,k+1 extends to a well-defined representation of the symetric
group Sn on V ⊗n, for any vector space V .

Exercise 5. Given a group G and representations π : G → GL(V ), ρ : G → GL(W ), show that
the formula π⊗ρ : g 7→ π(g)⊗ρ(g) defines a representation of G on V⊗W . When π = ρ we denote it
by π⊗2. Generalize to V ⊗n and check that any of the representations obtained in this way commute
to the representation of Sn constructed in the previous exercise.

1.1.3 Tensor products are important for us because they allow to describe some algebraic structures
only in terms of linear maps, thus offering a convenient framework to dualize them.

Example 1.3 Let A be an algebra. The multiplication of A is bilinear and hence it defines a linear
map m : A⊗A→ A. The associativity property of the multiplication can be written as the following
equality between maps from A⊗A⊗A to A:

m(m⊗id) = m(id⊗m).

Any element a ∈ A defines a linear map η : k → A, λ 7→ λa. It is easily checked that a = 1A is a
unit element for A iff the following equality between maps from A ' A⊗k ' k⊗A to A holds:

m(η⊗id) = id = m(id⊗η).
�

Exercise 6. Let A be an algebra and denote by m : A⊗A→ A the associated multiplication map.
Give a characterization of the commutativity of A in terms of m. Give a characterization of bilateral
ideals I ⊂ A in terms of m and describe the multiplication map of the quotient algebra.

Exercise 7. Rephrase the definition of Lie algebras in the language of linear maps between tensor
product spaces.
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1.2 From groups to algebras and coalgebras

1.2.1 Let G be a group. To G one can associate two unital algebras:

1. The function algebra F (G) = {ζ : G → k}, equipped with the pointwise algebra operations
coming from the algebra structure of k, ie

ζ + λξ = (g 7→ ζ(g) + λξ(g)), ζξ = (g 7→ ζ(g)ξ(g)).

The algebra F (G) posesses many interesting subalgebras, especially when G is a topological
group.

2. The group algebra k[G]. As a vector space it is freely generated by G, ie k[G] comes with a
distinguished basis which we identify with G. The multiplication is bilinearly induced from
the product in G, ie

(
∑

g∈G λgg)(
∑

h∈G µhh) =
∑

g,h∈G λgµh (gh).

Note that all the sums above are finite by definition.

These algebras can be used to study some properties of G in the language of algebras rather
than groups. For instance, any representation π : G → GL(V ) clearly extends by linearity to a
unital representation of the algebra k[G], and conversely unital representations π : k[G] → L(V )
yield representations of G by restriction. Similarly, unital representations of F (G) correspond to
vector space gradings by G.

However, some features of group theory are lost when passing to algebras. For instance, there
is no general notion of tensor product between representations of a given algebra. Moreover, one
cannot recover the group G from one of the algebras F (G), k[G] alone: F (G) clearly recalls only
the cardinality of G, whereas k[G] ' kn for all abelian groups of order n.

To recover G, one needs in fact both algebras as well as a duality between them. More precisely
we define 〈·, ·〉 : F (G)× k[G]→ k by the formula 〈f, g〉 = f(g) for f ∈ F (G), g ∈ G and extending
by linearity to k[G]. This bracket is non-degenerate: if 〈f, x〉 = 0 for all f (resp. x), then x = 0
(resp. f = 0). Now we have:

Exercise 8. Let G, G′ be two groups with unital algebra isomorphisms φ : F (G′) → F (G),
ψ : k[G] → k[G′] such that 〈φ(f), a〉 = 〈f, ψ(a)〉 for all f ∈ F (G′), a ∈ k[G]. Show that φ
maps characteristic functions to characteristic functions. Then, show that ψ maps elements of G to
elements of G′ — and hence restricts to an isomorphism G ' G′.

In the case of finite abelian groups and k = C, the duality bracket above encodes Pontrjagin
duality. Denote by Ĝ the set of group morphisms f : G → C∗, also called the characters of G. It
becomes a group with respect to pointwise multiplication, called the dual group of G. When G is
a finite abelian group, it is known (from elementary representation theory) that Ĝ forms a basis of
F (G). Restricting the duality bracket to Ĝ × G ⊂ F (G)⊗C[G] we obtain therefore a bicharacter
on Ĝ×G which induces two group isomorphisms

Ĝ→ Hom(G,C∗), f 7→ 〈f, ·〉 and G 7→ Hom(Ĝ,C∗), g 7→ 〈·, g〉.

In particular the bidual of G is canonically isomorphic to G. When G is not abelian, the set Ĝ of
characters is to small and this result does not hold anymore.

1.2.2 The following definition gives the right notion to answer the following questions: how does
the group structure of G reflect on its function algebra? how can we make tensor products of algebra
representations? how can a finite group be reconstructed from a single algebra?
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Definition 1.4 Let A be a vector space. A coproduct, or comultiplication, on A is a linear map
∆ : A → A⊗A such that (∆⊗id)∆ = (id⊗∆)∆ (coassociativity). A counit for (A,∆) is a linear
form ε : A → k such that (ε⊗id)∆ = id = (id⊗ε)∆. The triple (A,∆, ε) is then called a (counital)
coalgebra.

The first example, as anounced above, is for A = F (G) with G finite. We can indeed use the
product of G to define a coproduct on A in a very natural way: we take A⊗A = F (G×G) and we
put ∆G(f)(g, h) = f(gh). An easy calculation shows that coassociativity reduces to associativity of
the group product: for all g, h, k ∈ G,

((∆G⊗id)∆G(f))(g, h, k) = ∆G(f)(gh, k)
= f((gh)k) = f(g(hk))
= ∆G(f)(g, hk) = ((id⊗∆G)∆G(f))(g, h, k).

Exercise 9. With G and ∆G as above, check that G is abelian iff Σ ◦∆G = ∆G. We say that ∆G

is symetric, or cocommutative. For a given a ∈ G, define ε : F (G)→ k by ε(f) = f(a). Show that
a is the unit element of G iff ε is a counit for ∆G. We put then ε = εG.

Note that the definition of ∆G does not work when G is infinite: indeed there is no reason why
for any function f : G → k one could find finitely many pairs of functions gi, hi : G → k such that
f(xy) =

∑
gi(x)hi(y) for all x, y ∈ G — even for the characteristic function of e ∈ G this is not

possible.
There is however a nice subalgebra of F (G) on which the coproduct ∆G makes sense even in

the infinite case: this is the so-called algebra of representative functions on G defined by

R(G) = {f : G→ k | dim spanG · f <∞},

where G · f is the orbit of f under the action of G given by (y · f)(x) = f(xy). Take indeed a
finite basis hi of this orbit, and denote by gi(x) the coefficients of x · f in this basis, then we have
∆(f) =

∑
gi⊗hi. However it can be that R(G) is not “rich” enough to remember G, e.g. there are

examples with G infinite but R(G) = k.

1.2.3 The coproduct ∆G on F (G), and also a “dual” coproduct ∆̂G on k[G], can also be introduced
as a consequence of the “generalized Pontrjagin” duality between F (G) and k[G]. For a finite group
G, the braket 〈·, ·〉 induces indeed linear isomorphisms k[G]→ F (G)∗, a 7→ 〈·, a〉 and F (G)→ k[G]∗,
f 7→ 〈f, ·〉, and also at the level of double tensor products, e.g. F (G)⊗F (G) → k[G]∗⊗k[G]∗ '
(k[G]⊗k[G])∗.

One can then transport the algebra structure maps from one side to another by dualizing: the
multiplication map m : A⊗A → A yields a coproduct ∆ = tm : A∗ → A∗⊗A∗, and the unit map
η : k → A yields a counit ε = tη : A∗ → k. It is clear that the identities of Example 1.3 correspond
to the ones of Definition 1.4. More generally, it is clear that the dual of a f.-d. algebra (resp.
coalgebra) is naturally a coalgebra (resp. an algebra).

Let us compute the coproduct ∆̂G obtained in this way on k[G]. For e, f ∈ F (G) and g ∈ G
we have by definition

〈e⊗f, ∆̂G(g)〉 = 〈m(e⊗f), g〉 = (ef)(g) = e(g)f(g) = 〈e⊗f, g⊗g〉,

hence ∆̂G(g) = g⊗g. By linearity, this determines ∆̂G on k[G]. Note that ∆̂G is cocommutative.
Note also that this formula clearly defines a coproduct on k[G] even if G is infinite.

Exercise 10. Check that the coproduct and counit on F (G) induced by duality from the multi-
plication and unit of k[G] coincide with ∆G and εG as above. Show that the counit on k[G] is given
by ε̂G(g) = 1 for all g ∈ G ⊂ k[G].
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Now, it is clear that the algebra F (G) together with ∆G and εG completely remembers the pair
of algebras (F (G), k[G]) in duality, and hence the group G itself by Exercise 8. Concretely, any
algebra isomorphism ψ : F (G′) → F (G) such that ∆G ◦ ψ = (ψ⊗ψ) ◦ ∆G′ and εG ◦ ψ = εG′ is
associated to a group isomorphism φ : G→ G′ by the formula ψ(f) = f ◦ φ.

This means that we can use (F (G),∆G, εG) as a replacement for the finite group G. Moreover
we have a candidate for the dual object to it, namely (k[G], ∆̂G, ε̂G). Of course, in the non abelian
case this is not a function algebra associated to any group, because it is not commutative: we need
to enlarge the category we are working in, and this will be the purpose of the next section. Note that
one can also adopt the following symetric point of view: think of (k[G], ∆̂G, ε̂G) as a replacement of
G, and of (F (G),∆G, εG) as its dual.

1.2.4 Finally, let us underline how a coproduct ∆ allows to take tensors products of representations
π, ρ of an algebra A. One cannot put anymore (π⊗ρ)(a) = π(a)⊗ρ(a) since this formula is not
linearly consistent. But we can use ∆(a) as a replacement for a⊗a: when A = k[G] and ∆ = ∆̂G

this will be consistent with the usual notion for group representations since ∆̂G(g) = g⊗g. Hence
we define, abusing notation, π⊗ρ = (π⊗ρ) ◦ ∆.

Since we want to stay in the category of representations of A, it remains to ensure that (π⊗ρ) ◦ ∆
is a homomorphism. First note that the vector space A⊗B of two (unital) algebras is very naturally
endowed with the following (unital) algebra structure:

(a⊗b)(c⊗d) = (ac)⊗(bd), 1A⊗B = 1A⊗1B.

so that the tensor product f⊗g of two homomorphisms remains a homomorphism. Hence the
natural requirement is that the coproduct ∆ be a unital homomorphism itself. This leads to the
notion of (unital) bialgebra, where some compatibility conditions are required between an algebra
and a coalgebra structure on the same vector space.

Exercise 11. Check that the coproducts ∆G, ∆̂G associated to a finite group G — as well as εG
and ε̂G — are unital homomorphisms.
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2 Hopf algebras

2.1 On the definition

In this section we introduce and discuss the formal definition of a Hopf algebra. As explained in
the previous section, we are interested in vector spaces equipped with compatible structures of an
algebra and a coalgebra. To allow for a full reconstruction theorem in the classical case, we also
need a structure map, called the antipode, playing the role of the inversion in groups.

Recall that if A is an algebra, then the tensor product A⊗A is also an algebra with multiplication
(a⊗b)(c⊗d) = (ac)⊗(bd). If A is unital, then so is A⊗A with unit 1A⊗1A. This can be written

mA⊗A = (m⊗m)(id⊗Σ⊗id), ηA⊗A = ηA⊗ηA,

where k⊗k is identified with k via complex multiplication. Similarly, if A is a coalgebra, there is a
canonical coalgebra structure on A⊗A given by

∆A⊗A = (id⊗Σ⊗id)(∆A⊗∆A), εA⊗A = εA⊗εA.

Definition 2.1 A Hopf algebra is a collection (A,m, η,∆, ε, S) where:

1. (A,m, η) is a unital algebra and (A,∆, ε) is a counital coalgebra,

2. ∆, ε are algebra homomorphisms,

3. S : A→ A is a linear map such that m(S⊗id)∆ = m(id⊗S)∆ = ηε.

Let us recall the definition of a (co)algebra: m : A⊗A→ A, η : k → A, ∆ : A⊗A→ A and ε : A→ k
are linear maps such that

m(m⊗id) = m(id⊗m), m(η⊗id) = m(id⊗η) = id,
(∆⊗id)∆ = (id⊗∆)∆, (ε⊗id)∆ = (id⊗ε)∆ = id.

As a first, trivial example, the algebra k is a Hopf algebra with structure maps given by ∆(1) =
1⊗1, m(1⊗1) = 1, ε = η = S = id. To check this, do not forget to identify k⊗k with k where
appropriate!

Note that condition 2 seems to break the symmetry of the Definition. However it turns out
that it is equivalent for ∆, ε to be unital algebra morphisms, or for m, η to be counital coalgebra
morphisms. Let us state first the evident definitions: f : A→ B is said to be a coalgebra morphism
if (f⊗f)∆A = ∆Bf , and to be counital if εBf = εA.

Now it suffices to write down definitions to solve the following:
Exercise 12. Let A be equipped with the structure of an algebra (A,m, η) and of a coalgebra
(A,∆, ε). Show that ∆, ε are unital algebra morphisms iff m, η are counital coalgebra morphisms.

Let us now discuss condition 3 of the Definition: it turns out that antipodes of Hopf algebras
are unique, so that only the existence of S is really required in this Definition. To see this, we first
define a convolution product between linear endomorphisms of A by putting f ∗ g = m(f⊗g)∆.
Then:
Exercise 13. Show that the convolution product above turns the space L(A) of linear endomor-
phisms of A into an algebra with unit ηε. Deduce that if A is both an algebra and a coalgebra, then
there exists at most one linear map S : A→ A satisfying the formulae of condition 3 above.

One could also wonder why no compatibility condition is required between the antipode and the
algebra or coalgebra structure. In fact such conditions are automatic:
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Proposition 2.2 Let A be a Hopf algebra with antipode S. Then S is a unital anti-algebra morphism
and a counital anti-coalgebra morphism, i.e. Sm = m(S⊗S)Σ and ∆S = Σ(S⊗S)∆.

Proof. We endow the space L(A,A⊗A) with an algebra structure as above, given by the product
f ∗ g = m2(f⊗g)∆ and the unit element η2ε, where η2 = η⊗η and m2 = (m⊗m)(id⊗Σ⊗id) are
the algebra structure maps of A⊗A. The following computation, where we use the fact that ∆ is
multiplicative, shows that ∆S is the inverse of ∆ in this algebra:

m2(∆⊗∆S)∆ = ∆m(id⊗S)∆ = ∆ηε = η2ε.

On the other hand, Σ(S⊗S)∆ is also the inverse of ∆ in this algebra. Indeed, let us use the
notation ∆3 = (∆⊗∆)∆ = (id⊗∆⊗id)(id⊗∆)∆ and m̃ = m(id⊗S). We have

m2(∆⊗Σ(S⊗S)∆)∆ = (m⊗m)Σ(234)(id⊗id⊗S⊗S)∆3

= (m̃⊗m̃)Σ(234)∆
3

= (m̃⊗m̃)(id⊗id⊗∆)(id⊗Σ)(id⊗∆)∆
= (m̃⊗η)(id⊗ε⊗id)(id⊗∆)∆
= (m̃∆)⊗η = (η⊗η)ε = η2ε.

Hence ∆S = Σ(S⊗S)∆: the antipode is an anti-coalgebra morphism.
Finally, composing the axioms for the antipode by the counit on the left, and using the multi-

plicativity of the counit, we have

ε = εηε = εm(S⊗id)∆ = (ε⊗ε)(S⊗id)∆ = εS,

hence S is counital.
If A is finite-dimensional, applying the beginning of the proof to A∗ yields the second part.

Otherwise one has to check that the computations above still make sense when dualized formally. �

Finally, one could wonder why there is no dual object to S in the definition, since all other
structure maps obviously come by pairs. In fact it is easily seen that the axiom of the antipode is
“self-dual”, so that we have the following result, which is a major motivation for the definition.

Proposition 2.3 Let (A,m, η,∆, ε, S) be a finite-dimensional Hopf algebra. Then (A∗, t∆, tε, tm, tη, tS)
is also a Hopf algebra.

Proof. Straightforward. �

In the infinite-dimensional case the result above does not hold, mainly because the canonical
injection A∗⊗A∗ → (A⊗A)∗ is not an isomorphism anymore, so that tm is not a well-defined
coproduct anymore.

However there is a natural subalgebra of A∗, equal to A∗ in the finite-dimensional case, which
becomes a Hopf algebra in general: it is the so-called finite dual A◦ of A, which consists of linear
forms φ on A that factor through a finite-dimensional algebra, i.e. for which there exists a finite-
codimensional ideal I ⊂ A such that φ(I) = 0.

Note however that A◦ may be trivial even if A is not; in fact A◦ separates the points of A iff A
is residually finite-dimensional (or proper), i.e. it has “enough” finite-dimensional representations
as an algebra. For a more precise discussion of the duality for infinite-dimensional Hopf algebra we
refer to [5, Chapter 9].

We discuss finally the construction of opposite and coopposite bialgebras. If A is an algebra,
we denote by Aop the opposite algebra, i.e. the same vector space with multiplication given by
m = mA ◦ Σ, so that x ·op y = yx for x, y ∈ A. It is clear that multiplicativity of ∆, ε is the same
on A or Aop. However if A is a Hopf algebra then its antipode is not necessarily an antipode for
Aop — in fact Aop need not even be a Hopf algebra.
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Proposition 2.4 Let A be a Hopf algebra with antipode S. Then Aop is a Hopf algebra iff S : A→
A is bijective, and its antipode is then S−1. It is then called the opposite Hopf algebra to A.

Proof. We compose the axioms for the antipode T of Aop by S on the left and use Proposition 2.2:

SmΣ(T⊗id)∆ = m(ST⊗S)∆
= Sηε = ηε.

If Aop is a Hopf algebra, this shows that ST is the convolution inverse of S, hence the identity.
Composing similarly by S on the right we see that S is bijective with composition inverse T .
Conversely if S is composition invertible, we put T = S−1 and the computation above shows that
T is an antipode for Aop. �

Denote by ∆op = Σ∆ the opposite coproduct on A, and by Acop the algebra A equipped with
∆op. Again, the only axiom that is not automatic for Acop to be a Hopf algebra is the existence of
the antipode. Moreover it is easy to check that Aop,cop is a Hopf algebra with the same antipode as
A. Hence the result above holds also for Acop.

Notice also the following corollary of the previous Proposition: when A is commutative, i.e.
A = Aop, by unicity of the antipode we must have S2 = id. Similarly S2 = id if A is cocommutative.
Note that this is a very natural property of S, which is supposed to play the role of the inverse in
groups — however it does not always hold.

We will see later that in the finite-dimensional case, S is automatically bijective. Let us also
quote the following deeper results in the finite-dimensional case over k: S has automatically finite
order in GL(A), and if moreover A is semisimple and k = C we have automatically S2 = id. The
question whether S2 = id for f.-d. semisimple Hopf algebra over an arbitrary field is known as
Kaplansky’s conjecture.

Exercise 14. Take k = C and recall that an involutive algebra A is an algebra A endowed with
an antilinear, antimultiplicative involution (a 7→ a∗). If A, B are involutive algebras, so is A⊗B
with respect to (a⊗b)∗ = a∗⊗b∗. Let A be an involutive algebra and a Hopf algebra such that
∆(a∗) = ∆(a)∗ for all a ∈ A. Using the uniqueness of the antipode, show that S ◦ ∗ ◦ S ◦ ∗ = id.
Similarly, show that ε(a∗) = ε(a) for all a ∈ A.

2.2 Classical and non-classical examples

2.2.1 In this section we present some important examples of finite-dimensional and infinite-dimensional
Hopf algebras.

Examples 2.5 We recall now briefly the examples arising from a finite group G as in the previous
sections. First we have the function algebra A = F (G). Identifying A⊗A with F (G × G) as
explained in Section 1.1, the structure maps are given as follows:

m(f⊗g) = (x 7→ f(x)g(x)), η(λ) = (x 7→ λ),
∆(f) = ((x, y) 7→ f(xy)), ε(f) = f(e),

S(f) = (x 7→ f(x−1)).

Here e denotes the unit element of G. Then we have the group algebra A = k[G], equipped with
the following structure maps given on the relevant canonical bases:

m(g⊗h) = gh, η(λ) = λe,

∆(g) = g⊗g, ε(g) = 1,

S(g) = g−1.
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These examples are dual to each other, i.e. we have F (G)∗ =' k[G] and k[G]∗ ' F (G). Hence
finite-dimensional Hopf algebra form a category, containing finite groups as a subcategory, and
equipped with a duality induced by duality of vector spaces, which extends Pontrjagin duality for
finite abelian groups.

As explained in Section 1.2, for infinite groups the construction of k[G] works unchanged, but
one has to replace F (G) with the space of representative functions R(G), which is nothing but the
finite dual k[G]◦ of k[G]. �

Exercise 15. Check that the axiom of the antipode is satisfied in the examples above.

An important question regarding the previous “classical example” is whether we can recognize
them easily inside the general category of f.-d. Hopf algebras. Take k = C for simplicity, and
recall then that function algebras F (E) on finite sets are characterized by their commutativity and
semisimplicity — this is a consequence of Artin-Wedderburn’s Theorem.

Hence one would like to recognize the Hopf algebras F (G), for G a finite group, exactly as the
commutative semisimple Hopf algebras. This fact is proved at Proposition 2.7, and thus we can
consider general Hopf algebras as “quantum groups” in the meaning of noncommutative geometry.

Note that the dual Hopf algebra C[G] to F (G) is also semisimple — this is Maschke’s Theorem
in the zero characteristic case — so finite groups are the commutative objects in the category
of semisimple and “cosemisimple” complex Hopf algebras, whose self-duality induces Pontrjagin’s
duality of finite abelian groups.

Lemma 2.6 Let A be a Hopf algebra, and G(A) = {x ∈ A | x 6= 0, ∆(x) = x⊗x} the set of group-
like elements in A. Then G(A) is a linearly independent family in A, and the algebra structure of
A restricts to a group structure on G(A).

Proof. First we notice that ε(x) = 1 for all x ∈ G(A): indeed the identity (ε⊗id)∆ = id yields
ε(x)x = x, and x is non-zero by definition.

Now let H ⊂ G(A) be a maximal linearly independent subset. For any x ∈ G(A) we can write
x =

∑
y∈H λyy. Then we have∑

y∈H
λy(y⊗y) = ∆(x) = x⊗x =

∑
y,z∈H

λyλz(y⊗z).

Since H is linearly independent, so is (y⊗z)y,z∈H . Hence the identity above implies that at most
one λy does not vanish: we have x = λy with λ ∈ k∗ and y ∈ H. Applying ε we see that λ = 1,
hence x = y ∈ H. This shows that G(A) = H, hence G(A) is linearly independent.

Since S is anti-comultiplicative, for any x ∈ G(A) the element S(x) is zero or group-like. Con-
sidering the identity m(S⊗id)∆ = ηε we see that S(x)x = 1, hence S(x) is non-zero and x has an
inverse in G(A). In particular for x, y ∈ G(A) the product xy does not vanish, hence the identity
∆(xy) = ∆(x)∆(y) = xy⊗xy shows that xy ∈ G(A). �

Proposition 2.7 Let A be a finite-dimensional, semisimple commutative Hopf algebra over C. Then
there exists a finite group G such that A ' F (G) as a Hopf algebra.

Proof. The proof essentially relies on Artin-Wedderburn’s Theorem: a semisimple complex algebra
A is isomorphic to a finite sum of matrix algebras. Since A is moreover commutative, we must have
a unital algebra isomorphism A ' F (G), with G a finite set.

Define C[G] =
⊕

g∈G Cg and a duality bracket 〈f, g〉 = f(g) on F (G) × C[G]. We obtain a
counital coalgebra isomorphism A∗ ' C[G] with respect to ∆(g) = g⊗g, ε(g) = 1: we have already
done this computation at paragraph 1.2.3.

Now, we transport the algebra structure of A∗ onto C[G]. Since G ⊂ C[G] is a generating family
of group-like elements of the Hopf algebra C[G], it is the set of group-like elements of C[G]. Hence
the multiplication of C[G] turns G into a group such that C[G] is the group algebra of G.

Finally, this shows that A ' F (G) where F (G) is equipped with its usual Hopf algebra structure,
dual to the one of C[G]. �
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In fact the result above still holds over on arbitrary field, up to an extension of scalars. Let
us quote two more results that hold only over fields of zero characteristic: f.-d. semisimple Hopf
algebras over C are automatically cosemisimple; f.-d. commutative Hopf algebras over C are of the
form F (G) without semisimplicity assumption.

2.2.2 We present now some noncommutative, noncocommutative examples which, beside their
independent interest, provide counter-examples to some properties of the antipode considered in
Section 2.1:

Examples 2.8 If char k 6= 2, the smallest noncommutative, noncocommutative Hopf algebra has
dimension 4 and is unique (hence self-dual). The underlying algebra is defined by generators and
relations as follows:

H4 = 〈1, g, x | g2 = 1, x2 = 0, xg = −gx〉alg.

The coalgebra structure is given by

∆(g) = g⊗g, ε(g) = 1, S(g) = g−1 = g,

∆(x) = x⊗1 + g⊗x, ε(x) = 0, S(x) = −gx.

It is an easy exercise to check that these formulae indeed define a 4-dimensional Hopf algebra, and
that its antipode has order 4.

Let us give now an infinite-dimensional example. Choose q 6= 0 in k and consider the “quantum
plane” algebra Oq(k2) = 〈1, x, y | xy = qyx〉. It becomes a (unital, counital) bialgebra if we put
∆(x) = x⊗x, ∆(y) = y⊗1 + x⊗y, ε(x) = 1, ε(y) = 0. This bialgebra is not a Hopf algebra since we
should have xS(x) = S(x)x = 1 and x is not invertible in Oq(k2), but we can consider

A = 〈1, x, x−1, y | xy = qyx, xx−1 = x−1x = 1〉,

which becomes a Hopf algebra with S(x) = x−1, S(y) = −x−1y. In this case the antipode is
invertible with infinite order. �

Exercise 16. Check the facts stated in the Examples above. Give the expression of a nondegenerate
bilinear form on H4⊗H4 implementing the self-duality of H4. Is it unique?

Finally, we present the important example of quantum sl(2), which can be generalized to “de-
form” any semisimple complex Lie algebra, yielding the well-known “quantum groups” à la Drinfel’d
and Jimbo.

Example 2.9 Let q be a complex number such that q 6= 0, q4 6= 1. We denote by Uq(sl(2)) the
unital algebra generated by generators E, F , K, K−1 and relations KK−1 = K−1K = 1 and

KE = q2EK, KF = q−2FK, EF − FE =
K2 −K−2

q2 − q−2
.

It admits a Hopf algebra structure given by

∆(E) = E⊗K−1 +K⊗E, S(E) = −q−2E, ε(E) = 0,

∆(F ) = F⊗K−1 +K⊗F, S(F ) = −q−2F, ε(F ) = 0,

∆(K) = K⊗K, S(K) = K−1, ε(K) = 1.

One can show that this defines indeed an infinite-dimensional, noncommutative and noncocommu-
tative Hopf algebra.
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The motivation for these definitions is as follows: heuristically, one should think that K = etH

and q = et, and consider the relations up to the first non-vanishing order as t→ 0. This yields

(1 + tH)E = (1 + 2t)E(1 + tH) +O(t2) =⇒ [H,E] = 2E +O(t)

(1 + tH)F = (1− 2t)F (1 + tH) +O(t2) =⇒ [H,F ] = −2F +O(t)

[E,F ] =
(1 + 2tH)− (1− 2tH) +O(t2)

(1 + 2t)− (1− 2t) +O(t2)
=⇒ [E,F ] = H +O(t),

and one can recognize the relations satisfied by the following matrices of sl(2) = {M ∈ M2(k) |
TrM = 0}:

E =
(

0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

These relations [H,E] = 2E, [H,F ] = −2F , [E,F ] = H in fact generate sl(2) as a Lie algebra, and
its universal envelopping algebra U(sl(2)) as a unital algebra. So Uq(sl(2)) can be thought of as a
deformation of U(sl(2)).

To check that the formulae above define algebra morphisms ∆, ε, it suffices to check that the
images of E, F , K satisfy the defining relations of Uq(sl(2)). This is quite evident for ε, let us do
the check for the coproduct ∆:

∆(K)∆(E) = (K⊗K)(E⊗K−1 +K⊗E) = KE⊗1 +K2⊗KE
= q2EK⊗1 + q2K2⊗EK = q2(E⊗K−1 +K⊗E)(K⊗K)

= q2∆(E)∆(K),

similarly ∆(K)∆(F ) = q2∆(F )∆(K), and, noting that EK⊗K−1F = KE⊗FK−1 by the defining
relations:

[∆(E),∆(F )] = EF⊗K−2 + EK⊗K−1F +KF⊗EK−1 +K2⊗EF
− FE⊗K−2 +KE⊗FK−1 + FK⊗K−1E +K2⊗FE
= [E,F ]⊗K−2 +K2⊗[E,F ]

= (q − q−2)−1((K2 −K−2)⊗K−2 +K2⊗(K2 −K−2))

= (q − q−2)−1(∆(K)2 −∆(K)−2).

The same kind of computations show that S : A → A is well-defined, although some care must
be taken since S is only antimultiplicative. Finally, it suffices to check that the axioms for Hopf
algebras are satisfied on the generators E, F , K, whith again some extra care for the axiom of the
antipode. For instance one compares

(∆⊗id)∆(E) = ∆(E)⊗K−1 + ∆(K)⊗E = E⊗K−1⊗K−1 +K⊗E⊗K−1 +K⊗K⊗E and

(id⊗∆)∆(E) = E⊗∆(K−1) +K⊗∆(E) = E⊗K−1⊗K−1 +K⊗E⊗K−1 +K⊗K⊗E.
�

2.3 Modules and comodules

2.3.1 In this section we introduce modules and comodules over a Hopf algebra and present some
related constructions. In the following definition we recall the notion of module over an algebra in
the language of tensor product spaces, and we dualize it to obtain the notion of comodule over a
coalgebra:

Definition 2.10 Let (A,m, η) be a (unital) algebra. A (left, non-degenerate) A-module is a k-
vector space M equipped with a linear map α : A⊗M → M such that α(id⊗α) = α(m⊗id) and
α(η⊗id) = id.

Let (A,∆, ε) be a (counital) coalgebra. A (left, non-degenerate) A-comodule is a k-vector space
equipped with a linear map δ : M → A⊗M such that (id⊗δ)δ = (∆⊗id)δ and (ε⊗id)δ = id.
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Of course, one can also consider right modules and comodules: the latter correspond e.g. to
linear maps δ : M →M⊗A such that (δ⊗id)δ = (id⊗∆)δ and (id⊗ε)δ = id.

When all spaces are finite-dimensional, it is clear that if M is a left A-module (resp. comodule),
then M∗ is naturally endowed with the structure of a left A∗-comodule (resp. module). One
can also dualize modules and comodules without changing the Hopf algebra: if M is a left A-
module (resp. comodule), then M∗ carries a natural right A-module (resp. comodule) structure
given by (φ · a)(x) = φ(a · x) for a ∈ A, φ ∈ M∗, x ∈ M , resp. δM∗(φ)(x) = (id⊗φ)δM (x) via
M∗⊗A ' L(M,A). Finally, one can turn a right A-module (resp. comodule) into a left one by using
the antipode, see Exercise 21.

Since f.-d. representations of a finite group G correspond to unital representations of k[G], i.e.
to k[G]-modules, we deduce that they also correspond to f.-d. comodules over the function algebra
F (G). Here is how the correspondence works concretely. If ((g, x) 7→ g·x) is a representation of G on
M , then the following formula turns M into a F (G)-comodule: δ(x) = (g 7→ g ·x). Here we identify
F (G)⊗M with F (G,M) thank to the bilinear map F (G)×M 3 (f, x) 7→ (g 7→ f(g)x) ∈ F (G,M).

Examples 2.11 Any vector space M carries the left trivial module structure given by α = ε⊗id,
the left trivial comodule structure given by δ = η⊗id, and similarly on the right. Besides, the vector
space A carries the left and right “regular” module and comodule structures given by α = m and
δ = ∆. �

Modules M over an algebra A can also be considered as representations of A: this equiva-
lence is induced by the isomorphism L(A⊗M,M) ' L(A,L(M)), which holds even in the infinite-
dimensional case. In the finite-dimensional case, we have an analogue for comodules.

More precisely, we identify L(M)⊗A with L(M,M⊗A) via

L(M)⊗A→ L(M,M⊗A), φ⊗a 7→ (x 7→ φ(x)⊗a),

and similarly A⊗L(M) with L(M,A⊗M). Now if δ ∈ L(M,M⊗A) is a right comodule structure
map, denote by u ∈ L(M)⊗A the corresponding element on the left-hand side of the isomorphism,
so that we have δ(x) = u(x⊗1).

The axioms for δ have their counterparts for u. We have

(δ⊗id)δ(x) = (δ⊗id)(u(x⊗1)) = u12u13(x⊗1⊗1)
(id⊗∆)δ(x) = (id⊗∆)(u)(x⊗1⊗1)

so that the first axiom corresponds to the identity (id⊗∆)(u) = u12u13. Similarly, the second
one corresponds to (id⊗ε)(u) = id. Such an element u ∈ L(M)⊗A is called a non-degenerate
corepresentation.

When M is infinite-dimensional, non-degenerate corepresentations in L(M)⊗A still induce co-
module structures on M , but not all comodule structures on M arise in this way. For instance the
regular comodule M = A comes from a corepresentation iff A is finite-dimensional: if this is the
case, there exists a f.-d. subspace B ⊂ A such that ∆(A) = u(A⊗1) ⊂ A⊗B, and applying ε⊗id we
obtain A ⊂ B.

Using the axiom of the antipode, we can see that a non-degenerate corepresentation is invertible
in the algebra L(M)⊗A, with inverse ũ = (id⊗S)(u):

ũu = (id⊗m)(ũ12u13) = (id⊗m)(id⊗S⊗id)(id⊗∆)(u)
= (id⊗ηε)(u) = id⊗1.

Exercise 17. Reproduce the steps above for a left comodule. What is the difference? Hint: use
the co-opposite Hopf algebra, if possible.

Exercise 18. Let G be a finite group, and u ∈ L(M)⊗F (G) such that (id⊗∆)(u) = u12u13

and (id⊗ε)(u) = id. Identifying L(M)⊗F (G) with F (G,L(M)), show that u corresponds to a
representation of G.
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Many constructions from the theory of group representations can be generalized to modules and
comodules over a Hopf algebras. Our goal is not to go through the whole theory, let us just discuss
rapidly tensor products, since it was one of our motivations.

Let A be a Hopf algebra, and M , N two left A-modules. Then the tensor product vector space
M⊗N carries a natural structure of A-module given by αM⊗N = (αM⊗αN )(id⊗Σ⊗id)(∆A⊗id).
In other words, we put a · (x⊗y) = ∆(a)(x⊗y). Dualizing, we obtain a formula for the comodule
structure on a tensor product of two left A-comodules M , N , which can be expressed by the formula
δ(x⊗y) = δ(x)12δ(y)13.

In the case when A = k[G] (for modules), or F (G) (for comodules), we recover the usual tensor
product of group representations. However, in general the flip map Σ is not an intertwiner between
the modules M⊗N and N⊗M , and there are even cases (as in exercise 20 if G is not abelian) when
M⊗N and N⊗M are not isomorphic as A-modules.

Exercise 19. Check that the formulae above define indeed a module (resp. comodule) structure
on M⊗N . If a group G acts by algebra morphisms on two algebras M , N , check that the tensor
product action on M⊗N is still by algebra morphisms. Assume now that M , N are A-comodules
and algebras, such that δM , δN are algebra morphisms. Is δM⊗N and algebra morphism?

Exercise 20. We consider the case A = F (G). Show that the formula δ(λ) = g⊗λ turns k into
an A-comodule denoted kg. Show that kg⊗kh ' kgh. More generally, show that an A-comodule
structure on a vector space M corresponds to a G-grading of M .

We will be particularly interested by fixed or cofixed vectors:

Definition 2.12 Let A be a Hopf algebra and M be a left A-module (resp. comodule). The subspace
of fixed (resp. cofixed) vectors of M is

MA = {x ∈M | α(id⊗x) = xε}, resp.

M coA = {x ∈M | δ(x) = 1⊗x}.

In the first formula we identify x with the map (k →M,λ 7→ λx).

In particular, if G is finite and M is the k[G]-module, or the F (G)-comodule, associated with a
representation G→ L(M), then the space of (co)fixed vectors of M equals {x ∈M | ∀g ∈ G g ·x =
x}. If on the other hand M is the k[G]-comodule (or the F (G)-module) associated with a G-grading
on M , then Mk[G] is the neutral component Me of M .

Exercise 21. Let M be a f.-d. module over a f.-d. Hopf algebra A, and denote α̃ : A→ L(M) the
usual structure map, given by α(a⊗x) = α̃(a)(x).

We endow the vector space dual M∗ with the A-module structure given by (a ·φ)(x) = φ(S(a)x)
for a ∈ A, φ ∈ M∗, x ∈ M . Using α̃ and Sweedler’s notation, write a formula for the resulting
action of an element a ∈ A on an element f ∈ L(M) 'M⊗M∗.

Show that element I ∈ M⊗M∗ corresponding to id ∈ L(M) is a fixed vector. What is the
obstruction for the same result to hold for the element Σ(I) ∈ M∗⊗M? How can one modify the
module structure on M∗ so that Σ(I) is fixed?

2.3.2 Given a Hopf algebra A, it is natural to consider vector spaces M that are at the same time
modules and comodules over A. There are two natural compatibility conditions that can be imposed
to these structures on M , namely that the comodule structure map is a module morphism, or that
the module structure map is a comodule morphism. As for the definition of Hopf algebras, both
conditions are in fact the same and we put:
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Definition 2.13 Let A be a Hopf algebra with multiplication m and comultiplication ∆. A (left,
left, nondegenerate) A-Hopf module is a vector space M equipped with an A-module structure α :
A⊗M →M and an A-comodule structure δ : M → A⊗M such that

(1) δα = (m⊗α)(id⊗Σ⊗id)(∆⊗δ).

By the very definition of Hopf algebras, the vector space A equipped with the module and
comodule structures of Examples 2.11 is a A-Hopf module. Moreover, if N is a vector space equipped
with the trivial module and comodule strctures, it is clear that A⊗N equipped with the tensor
product structures is also an A-Hopf module. It turns out that this example is universal:

Theorem 2.14 Let A be a Hopf algebra, and M an A-Hopf module. Then M is isomorphic as a
Hopf module to A⊗M coA, where M coA is equipped with the trivial module and comodule structures.

Proof. We still denote α the restriction α : A⊗M coA →M , and we introduce a map β : M → A⊗M
by the formula

β = (id⊗α)(id⊗S⊗id)(id⊗δ)δ = (id⊗α)(id⊗S⊗id)(∆⊗id)δ.

We start by showing that β ranges in A⊗M coA: it suffices to check that β2 = α(S⊗id)δ ranges in
M coA, i.e. that δ ◦ β2 = η⊗β2. We use (1) and computation rules in Hopf algebras:

δ ◦ α(S⊗id)δ = (m⊗α)Σ23(∆⊗δ)(S⊗id)δ
= (m⊗α)Σ23(S⊗S⊗id⊗id)Σ12(∆⊗δ)δ
= (m⊗α)(S⊗id⊗S⊗id)Σ23Σ12(∆⊗id⊗id)(∆⊗id)δ
= (m⊗α)(S⊗id⊗S⊗id)Σ23Σ12(id⊗∆⊗id)(∆⊗id)δ
= (m⊗α)(S⊗id⊗S⊗id)(∆⊗id⊗id)Σ12(∆⊗id)δ
= (ηε⊗α)(id⊗S⊗id)Σ12(∆⊗id)δ
= (η⊗α)(S⊗id)(id⊗ε⊗id)(∆⊗id)δ = η⊗(α(S⊗id)δ).

Next we show that α and β are inverse to each other. First we have, using again (1) and the fact
that δ = η⊗id when restricted to M coA:

β ◦ α = (id⊗α)(id⊗S⊗id)(∆⊗id)δα
= (id⊗α)(id⊗S⊗id)(∆⊗id)(m⊗α)Σ23(∆⊗δ)
= (id⊗α)(id⊗S⊗id)(∆⊗id)(m⊗α)Σ23(∆⊗η⊗id)
= (id⊗α)(id⊗S⊗id)(∆⊗id)(id⊗α)(∆⊗id)
= (id⊗α)(id⊗id⊗α)(id⊗S⊗id⊗id)(∆⊗id⊗id)(∆⊗id)
= (id⊗α)(id⊗m⊗id)(id⊗S⊗id⊗id)(id⊗∆⊗id)(∆⊗id)
= (id⊗α)(id⊗ηε⊗id)(∆⊗id) = id⊗id.

Secondly the computation rules in Hopf algebra and the axioms for modules and comodules give
directly

α ◦ β = α(id⊗α)(id⊗S⊗id)(∆⊗id)δ
= α(m⊗id)(id⊗S⊗id)(∆⊗id)δ
= α(ηε⊗id)δ = id.

Finally, α is a comodule morphism because M is a Hopf module, and a module morphism if we
endow M coA with the trivial module structure, by definition of module structure maps. �



R. Vergnioux 16

2.4 Invariant forms on finite-dimensional Hopf algebras

In this section we study invariant forms on f.-d. Hopf algebras, and discuss some consequences. We
start with the relevant definition:

Definition 2.15 Let A be a Hopf algebra. A linear form φ ∈ A∗ is called left-invariant if we have
(id⊗φ)∆ = ηφ, right-invariant if (φ⊗id)∆ = ηφ.

Since A∗ separates the points of A, right invariance of φ means that φψ = ψ(1)φ for all ψ ∈ A∗,
where we use the product on A∗ induced by the coproduct of A: in other words, φ is invariant for
the natural right A∗-module structure on A∗.

When A is finite-dimensional, this right A∗-module structure is also associated to a left A-
comodule structure on A∗: the corresponding structure map δ : A∗ → A⊗A∗ is given by the formula
〈δ(φ), ψ⊗a〉 = 〈φψ, a〉 = (φ⊗ψ)∆(a). Note that this left A-comodule structure on A∗ is also the one
naturally associated with the right A-comodule structure on A given by the coproduct.

In the “classical case” of a function algebra A = F (G) with G a finite group, linear forms on A
can be written as integrals, φ(f) =

∑
λgf(g) =

∫
fdφ, and the identity (id⊗φ)∆ = ηφ corresponds

to the usual left invariance for integrals: for all g ∈ G,

(id⊗φ)∆(f)(g) =
∫
f(gh)dφ(h) and ηφ(f)(g) =

∫
f(h)dφ(h).

Taking for f the characteristic functions of points, one finds easily that left or right invariant forms
correspond exactly to multiples of the counting measure in this case, i.e. φ(f) = λ

∑
f(g).

Exercise 22. Let G be a finite group and consider the Hopf algebra A = kG. Identifying forms
φ ∈ A∗ with functions on G by restriction, show that left or right invariant forms on A exactly
correspond to multiples of the characteristic function of the unit e ∈ G.

2.4.1 Let A be a finite-dimensional Hopf algebra. Our main objective in this section will be to
prove that (A∗)coA is one-dimensional, i.e. non-zero right invariant forms on A exist and are unique
up to a scalar multiple. The idea is to apply Theorem 2.14 to A∗ with the comodule structure above.
Since A∗ and A have the same dimension, the result will follow immediately.

Hence the point is to find a left A-module structure on A∗, which together with the comodule
structure above turns it into a left A-Hopf module. Recall that this comodule structure arises
from the natural right A-comodule structure on A, which can be completed to a right Hopf module
structure by multiplication on the right. However, the natural left module and comodule structures
on the dual M∗ of a right Hopf module are not compatible in general.

In fact in our case the correct left A-module structure on A∗ is the one induced from the natural
left A-module structure on A using the antipode. In other words, we put α(a⊗φ) = a · φ = (b 7→
φ(S(a)b)). Since we have not proved any general “dualization” result, we first need to do some
sanity checks, and we then prove that we have indeed obtained a Hopf module.

Exercise 23. Let A be a Hopf algebra. Let M be a right A-comodule and a left A-module. Check
that the formula

αM∗(a⊗φ) = a · φ = (x 7→ φ(S(a) · x)) = (x 7→ φ(αM (S(a)⊗x)))

turns M∗ into a left A-module. Assuming that M and A are finite dimensional, check that the
formula

〈δM∗(φ), ψ⊗x〉 = (φ⊗ψ)δM (x)

turns M∗ into a left A-comodule. The formulae above are meant to be valid for any a ∈ A, x ∈M ,
φ ∈M∗, ψ ∈ A∗.
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Lemma 2.16 Let A be a finite-dimensional algebra, and endow A∗ with the left module and comod-
ule structures as above. Then A∗ is a Hopf module.

Proof. We have to prove that δ(a · φ) = ∆(a) · δ(φ) for all a ∈ A, φ ∈ A∗, where we use the left
A⊗A-module structure on A⊗A∗ arising from the multiplication of A and our A-module structure
on A∗. We can evaluate this identity against an elementary tensor ψ⊗b ∈ A∗⊗A. First we have

〈δ(a · φ), ψ⊗b〉 = ((a · φ)⊗ψ)∆(b) = (φ⊗ψ)((S(a)⊗1)∆(b)).

On the other hand we compute, using Sweedler’s notation ∆(a) =
∑
a(1)⊗a(2):

〈∆(a) · δ(φ), ψ⊗b〉 = 〈δ(φ), (ψ⊗b) ·∆(a)〉
=
∑

(φ⊗ψ)((1⊗a(1))∆(S(a(2))b)).

Here we used the right A⊗A-module structure on A∗⊗A given by φ·a = (b 7→ φ(ab)) and b·a = S(a)b.
Now it is an easy computation in Hopf algebras to check that

∑
(1⊗a(1))∆(S(a(2))b) = (S(a)⊗1)∆(b)

— one can note that it suffices to take b = 1. �

Theorem 2.17 Let A be a finite-dimensional Hopf algebra. Then there exist non-zero right invari-
ant forms on A, and they are unique up to a scalar.

Proof. By the Lemma, we can apply Theorem 2.14 and we obtain A∗ ' A⊗(A∗)coA, hence
dim(A∗)coA = 1. �

One can use the same arguments “on the right” — defining in particular a right Hopf structure
on A∗ — to prove existence and uniqueness of non-zero left invariant forms on A. Or we can apply
the previous Theorem to Acop, if we know that it is a Hopf algebra, i.e. the antipode of A is
invertible. In fact the antipode of a f.-d. Hopf algebra is always invertible, and this result is itself a
consequence of the previous Theorem:

Corollary 2.18 Let A be finite-dimensional Hopf algebra with antipode S. Then S is bijective. In
particular Acop is a Hopf algebra, with antipode S−1.

Proof. We recall from the proof of Theorem 2.14 that the isomorphism A⊗(A∗)coA ' A∗ used
in the proof of Theorem 2.17 is given by (a⊗φ 7→ a · φ). Now we take a non-zero φ ∈ (A∗)coA,
and an element a ∈ A such that S(a) = 0. Recall that our module structure on A∗ is given by
(a · φ)(b) = φ(S(a)b), hence a · φ = 0, so a⊗φ = 0 and finally a = 0. This proves that S is injective,
hence bijective. �

Let us discuss shortly the relation between left and right invariant forms, for a f.-d. Hopf algebra
A. First we note that composition by the antipode turns left invariant forms into right invariant
ones, and vice-versa: indeed if φ is left invariant, ψ = φS satisfies (ψ⊗id)∆ = (S−1⊗φ)∆S =
S−1ηφS = ηψ.

Then we endow A∗ with the multiplication induced from the comultiplication of A, and we notice
that if φ ∈ A∗ is left invariant, then so is φψ for any ψ ∈ A∗. From the “unicity” of left invariant
forms we obtain a unique non-zero element d ∈ A such that φψ = ψ(d)φ for all left invariant φ ∈ A∗
and all ψ ∈ A∗. This element is called the modular element, or the distinguished group-like element,
of A, and A is called unimodular if d = 1.

Exercise 24. Let A be a f.-d. Hopf algebra, and let d ∈ A be the modular element of A. Show
that d is a group-like element of A, i.e. ∆(d) = d⊗d. Deduce that ε(d) = 1 and d is invertible in A
with inverse d−1 = S(d). Show that ψφ = ψ(d−1)φ for all right invariant φ ∈ A∗ and all ψ ∈ A∗.
Show that A is unimodular iff the spaces of left and right invariant forms coincide.
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Proposition 2.19 If there exists a unital left or right invariant form on A, then A is unimodular.

Proof. Let φ be a left invariant unital form on A, and d the modular element of A. For any form
ψ ∈ A∗ we have, by definition of d and of the product in A∗:

ψ(d) = ψ(d)φ(1) = (φψ)(1) = φ(1)ψ(1) = ψ(1)

hence d = 1. �

2.4.2 We discuss now the relation between invariant forms and semisimplicity. We say that a
Hopf algebra A is cosemisimple if any left A-comodule is a direct sum of simple comodules, i.e. of
comodules without non trivial subcomodules. Equivalently, for any left A-comodule M and any
N ⊂ M such that δ(N) ⊂ A⊗N , there exists P ⊂ M such that δ(P ) ⊂ A⊗P and M = N ⊕ P .
We will show below that for a f.-d. Hopf algebra A, cosemisimplicity of A is charaterized by the
existence of a unital left invariant form φ ∈ A∗.

Note that in the finite-dimensional case it is easy to see that cosemisimplicity of A is equivalent
to semisimplicity of A∗ — to a subcomodule N ⊂M one can e.g. associate a submodule N◦ ⊂M∗.
In particular when G is a finite group, F (G) is cosemisimple iff k[G] is semisimple. On the other
hand, the invariant integral φ(f) =

∑
g∈G f(g) satisfies φ(1) = #G, hence it can be made unital iff

#G is not a multiple of char k. Hence in this case Theorem 2.20 below shows that k[G] is semisimple
iff char k does not divide #G: this is known as Maschke’s Theorem.

First we outline how invariant forms are used for the next Theorem: namely obtaining invariant
elements in comodules by averaging. Let indeed A be a Hopf algebra with right invariant form
φ ∈ A∗, and M be a left A-comodule. Then for any x ∈ M the following computations shows that
x̃ = (φ⊗id)δ(x) is invariant:

δ(x̃) = (φ⊗id⊗id)(id⊗δ)δ(x)
= (φ⊗id⊗id)(∆⊗id)δ(x) = (ηφ⊗id)δ(x) = 1⊗x̃.

Of course x̃ can well be the zero element of M even if x 6= 0 — especially if M does not have
non-zero invariant vectors! In some situations one can prove the non-vanishing of x̃ provided the
right invariant form φ is unital.

In the proof of the next Theorem we will use this averaging argument for the left comodule
structure on L(M) induced from the structure of M . More precisely, recall that in the identification
A⊗L(M) ' L(M,A⊗M), the comodule map δ : M → A⊗M corresponds to a corepresentation
u ∈ A⊗L(M) such that δ(x) = u(1⊗x) for x ∈M . Moreover if A is finite-dimensional we know that
S is bijective, and hence we can consider u−1 = (S−1⊗id)(u) which is indeed the inverse of u, see
Exercise 17.

Then for any f ∈ L(M) we define the element δ(f) ∈ A⊗L(M) by putting δ(f) = u(1⊗f)u−1.
This is clearly a unital linear map — even an algebra morphism — and we have

(id⊗δ)δ(f) = u23u13(1⊗1⊗f)u−1
13 u

−1
23

= (∆⊗id)(u)(1⊗1⊗f)(∆⊗id)(u)−1

= (∆⊗id)(u(1⊗f)u−1) = (∆⊗id)δ(f),

hence we have defined a left A-comodule structure on L(M), which clearly satisfies δ(f)δ(x) =
δ(f(x)) for all f ∈ L(M), x ∈M .

Theorem 2.20 Let A be a finite-dimensional Hopf algebra. Then A is cosemisimple iff it admits
a unital right invariant form.
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Proof. First assume that A admits a unital right invariant form φ ∈ A∗. Let M be a f.-d. left
A-comodule, and N ⊂ M a subcomodule. Let p ∈ L(M) be any projection onto N . We consider
the element p̃ averaged as above with respect to φ and the left comodule structure on L(M).

For any y ∈ N we have δ(y) ∈ A⊗N hence u(1⊗p) = (1⊗p)u(1⊗p). As a result we have

p̃ = (φ⊗id)[(1⊗p)u(1⊗p)u−1] = pp̃.

This proves that Im p̃ ⊂ N . Now we prove that p̃ is a projection onto N , using the fact that φ is
unital. Applying (S−1⊗id) to the identity above we obtain u−1(1⊗p) = (1⊗p)u−1(1⊗p), hence we
can write

p̃p = (φ⊗id)[u(1⊗p)u−1(1⊗p)] = (φ⊗id)[uu−1(1⊗p)] = φ(1)p = p,

so that p̃ restricts to the identity on N .
Thus we have a found an invariant projection p̃ ∈ L(M) such that Im p = N . Putting P =

Ker p we have M = N ⊕ P , and P is a subcomodule because p is invariant: for x ∈ P , we have
(id⊗p)δ(x) = δ(p)δ(x) = δ(px) = 0 hence δ(P ) ⊂ A⊗P .

For the reverse implication we use the left comodule A itself, with structure map given by the
comultiplication ∆. Since ∆ is unital, k1A is a subcomodule of A and hence there is a subcomodule
P ⊂ A such that k1A⊕P = A. Now we can define a unital linear form ψ ∈ A∗ by putting ψ(1) = 1
and ψ(P ) = {0}. We claim that ψ is left invariant: indeed (id⊗ψ)∆(1) = 1⊗ψ(1) = ηψ(1) on
the one hand, and (id⊗ψ)∆(P ) ⊂ A⊗ψ(P ) = {0} = ηψ(P ). Then φ = ψS is right invariant and
unital. �

Remark 2.21 Using the expressions u−1 = (S−1⊗id)(u) and φ = ψS where ψ is a left invariant
form, one can compute the following formula for p̃:

p̃(x) = (ψ⊗id)(m⊗id)(id⊗S⊗id)(id⊗δ)(id⊗p)δ(x).

It is possible to check by hand, using this formula, that p̃ is a projection onto N , and that it is an
endomorphism of the comodule M . The advantage is that the proof of Theorem 2.20 becomes in
this way independant from Therem 2.17 — we don’t use u−1 and the inverse of S anymore — and
works even for infinite-dimensional Hopf algebras (and comodules). �

Example 2.22 Consider the case of H4, with char k 6= 2. It is easy to check that the forms φ, ψ
below are respectively left and right invariant:

φ(1) = φ(g) = φ(x) = 0, φ(gx) = 1,
ψ(1) = ψ(g) = ψ(gx) = 0, ψ(x) = 1.

As a result H4 is not unimodular and does not admit unital invariant forms. Hence H4 is not
cosemisimple, and by selfduality, not semisimple — this can also be checked directly. �
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3 Compact quantum groups

In this section we will switch from the algebraic setting of the previous section to a topological
setting. The most easy topological groups are compact groups, whose representation theory e.g. is
almost as simple as the one of finite groups. One can “map” compact groups G to the category of
(infinite-dimensional) Hopf algebras via the algebras of representative functions R(G). But there is
no easy way to recognize such algebras inside the category, and the whole category of Hopf algebras
is certainly too big to be a quantum analogue of the category of compact groups.

Moreover one of our motivation in the case of infinite groups is to consider questions of functional
analytical nature. To this respect, the correct way to “replace” a compact space X with an algebra
is to consider the algebra C(X) of continuous functions on X endowed with a natural norm that
allows to reconstruct X and its topology. This leads to the notion of C∗-algebra. It turns out that
this framework allows to give an axiomatic definition of “compact quantum groups” where classical
quantum groups correspond to commutative algebras, and which present many features analogous
to the classical ones.

Of course, a theory of compact quantum groups cannot be self-dual, since duals of abelian
compact groups are (possibly infinite) discrete groups. On the other hand, it turns out that “duals”
of all discrete groups Γ will be included in the category of compact quantum groups, via some
normed versions C∗(Γ) of the group algebras C[Γ]. Hence the theory of compact quantum groups
can be dualy considered as a theory of discrete quantum groups. Discrete groups form a much wilder
world than compact groups and the analytical properties of the algebras C∗(Γ) are in particular
very interesting.

3.1 About C∗-algebras

From now on the base field will be k = C, the field of complex numbers. C∗-algebras are the
topological algebras that will fit our purposes. Let us start with the definition, starting with some
natural compatibilities between multiplications, involutions and norms.

Recall that a C-algebra A is called involutive if it is equipped with an involutive, antilinear,
antimultiplicative map (a 7→ a∗). In other words, we have (a∗)∗ = a, (λa)∗ = λ̄a∗, (ab)∗ = b∗a∗ for
all a, b ∈ A, λ ∈ C.

An normed algebra is an algebra A equipped with a norm ‖ · ‖ such that ‖ab‖ ≤ ‖a‖‖b‖ for
all a, b ∈ A. A normed involutive algebra is a normed algebra and an involutive algebra such that
‖a∗‖ = ‖a‖ for all a ∈ A.

To obtain the notion of a C∗-algebra we add a simple but essential compatibility condition
between the algebraic and the analytical structures.

Definition 3.1 A C∗-algebra is a normed involutive algebra which is complete as a normed vector
space, and such that ‖a∗a‖ = ‖a‖2 for all a ∈ A.

Examples 3.2 Let X be a locally compact space. Then the algebra A = C0(X) of continuous
functions vanishing at infinity is a C∗-algebra with respect to pointwise involution and the supremum
norm ‖f‖ = supx∈X |f(x)|. It is commutative, and unital iff X is compact.

Let H be a Hilbert space. The space B(H) of bounded linear maps from H to itself is
equipped with the involution given by adjoint operators, and with the operator norm ‖T‖ =
sup{‖Tx‖H | ‖x‖H ≤ 1}. Then any norm closed ∗-subalgebra of B(H) is a C∗-algebra with re-
spect to the operator norm. �

We give now two of the culminating results of the general theory, which may give some indication
on the kind of objects we are considering since they show that the examples above are universal.

Theorem 3.3 (Gelfand-Naimark) Let A be a commutative C∗-algebra. Then there exists a locally
compact space X and a ∗-isomorphism A ' C0(X).
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The proof of this theorem relies on the study of the notion of spectrum for C∗-algebras and their
elements. Note also the following important feature of the theory, which shows that algebraic and
analytical properties of C∗-algebras are tightly related: ∗-algebra morphisms between C∗-algebras
are automatically contracting, hence continuous, and we call them C∗-morphisms. Moreover, injec-
tive ∗-algebra morphisms are automatically isometric, and in particular the ∗-isomorphism in the
Theorem above is also an isomorphism of normed algebras.

Theorem 3.4 Let A by any C∗-algebra. Then there exists a Hilbert space H, a norm closed ∗-
subalgebra B ⊂ B(H) and a C∗-isomorphism A ' B.

The proof of this theorem relies notably on the study of the notion of positivity in C∗-algebras.
An element a in a C∗-algebra A is called positive if it can be written a = b∗b. One can show that
such elements form a salient convex cone A+ ⊂ A, hence they define an ordering of A.

A linear form φ ∈ A∗ is called positive if it maps positive elements to positive numbers — and
then we have φ(a∗) = φ(a). One can show that positive linear forms are automatically continuous,
with ‖φ‖ = φ(1) if A is unital. A state on A is a positive linear form φ on A such that ‖φ‖ = 1.
One corollary of the previous theorem is that the states of A separate the points of A.

When A = C0(X) it is clear that positive elements of A are exactly functions in C0(X) which
take only non-negative values, and positive linear forms correspond to positive Radon measures on
X. When A = B(H) for some Hilbert space H, one recovers the notion of positive operators.

As in the algebraic setting, we will need to make tensor products of C∗-algebras. This construc-
tion is not as easy as in the algebraic setting: the algebraic tensor product A⊗B of two C∗-algebras
must be completed so as to yield a C∗-algebra, and there are many ways to do this in general.

Here we will only need the minimal, or spatial tensor product of C∗-algebra, which is easy to
describe. First we note that there is an easy notion for the tensor product of two Hilbert spaces H,
K: indeed the formula (ζ⊗ξ|ζ ′⊗ξ′) = (ζ|ζ ′) × (ξ|ξ′) defines a hermitian product on the algebraic
tensor product of H and K, and we denote by H⊗K its completion with respect to the associated
norm.

Given two elements a ∈ B(H), b ∈ B(K) we have then a well-defined linear map a⊗b ∈ L(H⊗K)
which can easily be shown to be bounded. As a result if A ⊂ B(H), B ⊂ B(K) are sub-C∗-algebras,
we obtain a natural ∗-subalgebra of B(H⊗K) spanned by elements a⊗b, and which identifies with
the algebraic tensor product of A and B. The minimal, or spatial tensor product of A and B, which
we will simply denote A⊗B, is defined to by the norm closure of this ∗-subalgebra. In the case
A = C0(X), B = C0(Y ) one can show that A⊗B = C0(X × Y ) where elementary tensors are given
by (f⊗g)(x, y) = f(x)g(y).

If φ : A→ A′, ψ : B → B′ are C∗-morphisms, one can also show that the map φ⊗ψ defined on
the algebraic tensor product extends to a C∗-morphism φ⊗ψ : A⊗B → A′⊗B′. One can replace φ
or ψ with a positive linear form, and the map obtained is again continuous.

3.2 Woronowicz C∗-algebras

Motivated by the algebraic Hopf structure on F (G) and by Gelfand-Naimark’s theorem, we define
the “space of continuous functions” on a compact quantum group as follows. Note that the coproduct
takes its values in the completed tensor product A⊗A: in general ∆(a) is not a finite sum of
elementary tensors, only a limit of such sums.

Definition 3.5 A Woronowicz C∗-algebra is a pair (A,∆) where A is a unital C∗-algebra, and
∆ : A→ A⊗A is a C∗-morphism such that

1. (∆⊗id)∆ = (id⊗∆)∆,

2. ∆(A)(1⊗A) and ∆(A)(A⊗1) span dense subspaces of A⊗A.
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This Definition might seem surprising since it does not include the existence of a counit, nor of
an antipode, which are replaced by a somewhat obscure topological condition. Let us consider the
commutative case:

Example 3.6 Let X be a compact space equipped with a continuous associative product X×X →
X, and put A = C(X). For each f ∈ A we put ∆(f) = ((x, y) 7→ f(xy)), and this defines a
C∗-morphism ∆ : A→ A⊗A satisfying the coassociativity condition of the definition.

On the other hand, since A is commutative ∆(A)(A⊗1) is clearly a ∗-subalgebra of C(X⊗X),
hence by Stone-Weiestrass Theorem it is dense iff it separates the points. Let us check that this is
equivalent to the left cancellativity of the product.

Assume first that the functions ((x, y) 7→ f(xy)g(x)) separate the points of X⊗X. If x, y, z ∈ X
are such that xy = xz, then we have f(xy)g(x) = f(xz)g(x) for all f , g ∈ C(X) hence (x, y) = (x, z)
and in particular y = z. Conversely, assume that f(xy)g(x) = f(x′y′)g(x′) for all f , g: then x = x′

by taking f = 1, and xy = x′y′ = xy′. Hence y = y′ by left cancellativity, and (x, y) = (x′, y′).
This shows that the Definition above includes bicancellative compact monoids as a special case.

Now the following Lemma explains why we consider Woronowicz C∗-algebras as “algebras of func-
tions” on compact quantum groups: �

Lemma 3.7 Let X be a compact monoid. If X is bicancellative, then X is a group.

Proof. Assume we have found two elements x, e ∈ X such that xe = x. Multiplying on the right
by any y ∈ X and cancelling x we obtain ey = y. Proceeding similarly on the left we obtain ze = z
for all z ∈ X, hence e is a (necessarily unique) unit element in X. Similarly one proves that if x has
a right inverse in X then it is invertible.

If X is finite, for any x ∈ X there must exist q > p ≥ 1 such that xq = xp, hence e = xq−p is a
unit element in X, and xq−p−1 is an inverse of x if x 6= e.

In the general case, we fix x ∈ X and we denote Y the closed set of limit points of the sequence
(xn). Let y = limxmα , z = limxnα be two elements of Y , by taking a subnet of (nα) if necessary one
can assume that pα = nα−mα →∞, and by compactness and taking again subnets one can assume
that xpα → t. We have then yt = z: this proves that Y ⊂ yY . The reverse inclusion is obvious, and
in particular we can find e ∈ Y such that ye = y, it is then a unit element for X. Finally, we have
xY = Y , so we can find x−1 ∈ Y such that xx−1 = e. �

Theorem 3.8 Let A be a commutative Woronowicz C∗-algebra. Then there exists a compact group
G such that A ' C(G) and ∆ is the usual coproduct on C(G).

Proof. By Gelfand-Naimark’s Theorem, we know that A ' C(X) for some compact space X. More
precisely X is the set of multiplicative and involutive forms x : A → C, endowed with the trace of
the weak-∗ topology, and the image of a ∈ A in C(X) is (x 7→ x(a)).

Now for x, y ∈ X we denote xy = (x⊗y)∆. It is easy to check that this product on X is
continuous and associative. Finally the considerations at Example 3.6 show that X is bicancellative,
and Lemma 3.7 shows that X is a group. �

Example 3.9 Let Γ be group. We endow the group algebra C[Γ] with the involution defined as
the antilinear extension of the inversion map.

Consider the regular representation λ : C[Γ] → B(`2Γ) where the elements of Γ act by left
translations, (λ(g)ξ)(h) = ξ(g−1h). The reduced C∗-algebra of Γ is the completion C∗red(Γ) of C[Γ]
with respect to the norm ‖a‖red = ‖λ(a)‖. Since λ is faithful, this is indeed a norm and not a
semi-norm, and it satisfies the C∗-condition because λ is a ∗-morphism and operator noms satisfy
it.

The maximal C∗-algebra of Γ is the completion C∗(Γ) of C[Γ] with respect to the norm ‖a‖ =
sup ‖π(a)‖, where the supremum is taken over all ∗-representations π : C[Γ] → B(H) with H a
Hilbert space. This is again a C∗-norm wich dominates the reduced one, so that there is a canonical
quotient map C∗(Γ)→ C∗red(Γ).
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The coproduct ∆ : g → g⊗g of C[Γ] extends by continuity to a C∗-morphism ∆ : C∗(Γ) →
C∗(Γ)⊗C∗(Γ). Indeed, for a ∈ C[Γ] the norm of ∆(a) in C∗(Γ)⊗C∗(Γ) is by definition ‖(π⊗π)∆(a)‖
where π : C∗(Γ) → B(H) is a faithful representation. Now (π⊗π)∆ defines a ∗-representation of
C[Γ], so this norm is not bigger than the one of a in C∗(Γ).

The map ∆ is clearly coassociative: it is enough to check it on the dense subspace C[Γ]. More-
over we can write g⊗h = ∆(g)(1⊗g−1h) = ∆(h)(h−1g⊗1) hence the dense subspace C[Γ]⊗C[Γ] is
contained in ∆(C∗(Γ)) (1⊗C∗(Γ)) and ∆(C∗(Γ))(C∗(Γ)⊗1). As a result, C∗(Γ) is a Woronowicz
C∗-algebra.

The same arguments will show that C∗red(Γ) is a Woronowicz C∗-algebra, provided we can check
that the coproduct ∆ of C[Γ] is continuous with respect to the norm of C∗red(Γ). In other words,
we have to show that ‖(λ⊗λ)∆(a)‖ ≤ ‖λ(a)‖ for all a ∈ C[Γ]. This is true due to the following
exercise: �

Exercise 25. Denote by λ : Γ→ B(H) = B(`2Γ) the regular representation of Γ, and let π : Γ→
B(K) be any unitary representation. Find a unitary W ∈ B(H⊗K) such that W (λ(g)⊗π(g))W ∗ =
(λ(g)⊗id) for all g ∈ Γ.

Note that the Woronowicz C∗-algebras of the preceeding example are cocommutative. This
example is “almost” universal, as shown by the following Theorem — that can only be proved after
the properties of corepresentations of Woronowicz C∗-algebras have been established.

Theorem 3.10 Let A be a cocommutative Woronowicz C∗-algebra. Then there exists a group Γ and
a faithful unitary representation π : Γ→ B(H) weakly containing π⊗π such that A is isomorphic to
the norm closure of π(C[Γ]) in B(H) and ∆ restricts to the coproduct of C[Γ].

3.3 Examples: the matrix case

3.3.1 Definition 3.5 is very compact and allows for a rapid proof of the existence of the Haar state,
as we will see in Section 3.4. However the construction of examples, and in particular the verification
of the density condition, is not straightforward. In this section we define “compact quantum groups
embedded in a unitary group of matrices”, show that they are particular cases of compact quantum
groups, and use them to build examples.

Definition 3.11 Let A be a C∗-algebra and u ∈ Mn(A) ' Mn(C)⊗A a matrix with coefficients in
A. Denote by A the unital ∗-subalgebra of A generated by the coefficients of u. We say that (A, u) is
a matrix Woronowicz C∗-algebra if A is dense in A, u is invertible in Mn(A) as well as ū = (u∗ij),
and there exist a unital C∗-morphism ∆ : A→ A⊗A such that (id⊗∆)(u) = u12u13.

We want to show that matrix Woronowicz C∗-algebras are C∗-Woronowicz algebras. For this
we will use the language of corepresentations. In fact we can use the algebraic definition for finite-
dimensional comodules: we consider f.-d. vector spacesM endowed with a linear map δ : M →M⊗A
such that

(2) (δ⊗id)δ = (id⊗∆)δ

Since M is finite-dimensional, it suffices to consider here the algebraic tensor product M⊗A —
which is already complete for any “cross norm” on it. We do not impose counitality of δ anymore
since we do not have a counit at hand.

Recall that the comodule structure can also be encoded in a corepresentation v ∈ L(M)⊗A
— again this tensor product does not need to be completed. If v ∈ B(N)⊗A is another f.-d.
corepresentation, we can build the direct sum u ⊕ v = u + v ∈ L(M ⊕ N)⊗A, the tensor product
u⊗v = u13u23 ∈ L(M⊗N)⊗A and, given an antilinear automorphism j of B(M), the conjugate uj =
(j⊗∗)(u). Finally, we define the space of coefficients of v to be Av = {(φ⊗id)(v) | φ ∈ L(M)∗} ⊂ A.
It is straightforward to check that

Au⊕v = Au +Av, Au⊗v = Span AuAv, Auj = A∗u.
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Proposition 3.12 If (A, u) is a matrix Woronwicz C∗-algebra with coproduct ∆, then (A,∆) is
Woronowicz C∗-algebra.

Proof. Let us first note that if v is a corepresentation of (A,∆) onM which is invertible in L(M)⊗A,
then Av⊗1 ⊂ ∆(A)(1⊗A): indeed we have v⊗1 = (id⊗∆)(v)v−1

13 ∈ L(M)⊗(∆(A)(1⊗A)). Similarly
we have 1⊗Av ⊂ (A⊗1)∆(A).

Now we remark that the fundamental corepresentation u is by definition invertible, as well
as ū. Let us form multiple tensor products between u, ū and take direct sums. Observing that
these operations preserve invertibility, we see that all elements of the subalgebra generated by
Au + A∗u are coefficients of invertible corepresentations. This algebra is nothing but A , hence we
have A⊗1 ⊂ ∆(A)(1⊗A) by our first remark. Multiplying on the right by 1⊗A, this shows that
∆(A)(1⊗A) contains a dense subspace.

Similarly we see that (A⊗1)∆(A) is dense in A⊗A, and applying ∗⊗∗ we obtain the density of
∆(A)(A⊗1). �

3.3.2 Now we are ready to present some examples.

Example 3.13 Let F ∈ Mn(C) be an invertible matrix. Consider the unital C∗-algebra Au(F )
generated by n2 elements uij subject to the relations that make u = (uij) and ũ = FūF−1 unitary
matrices. We claim that (Au(F ), u) is a matrix Woronowicz C∗-algebra.

Indeed u12u13 ∈Mn(A⊗A) is unitary as a product of unitaries, as well as the following element:

(F⊗1⊗1)u12u13(F−1⊗1⊗1) = ũ12ũ13.

Hence there exists ∆ : A → A⊗A mapping u to u12u13, and the remaining conditions of Defini-
tion 3.11 are clear.

Similarly, one defines the unital C∗-algebra Ao(F ) generated by n2 generators uij subject to the
relations that make u = (uij) unitary and FūF−1 equal to u. The same arguments as above show
that (Ao(F ), u) is a matrix Woronowicz C∗-algebra.

It turns out that these examples are “universal” in the following sense. If a Woronowicz C∗-
algebra A admits a finite-dimensional corepresentation v whose coefficients generate A, then there
exists an invertible matrix F and a surjective ∗-morphism φ : Au(F )→ A such that (φ⊗φ)∆ = ∆φ.
As a matter of fact, one can show, using the Haar state, that any corepresentation v ∈ L(M)⊗A
can be made unitary by a suitable choice of hermitian structure on M . Note that there does not
exist in general such a structure making v and vj simultaneously unitary. Similarly, A is a quotient
of some Ao(F ) if v is equivalent to vj for some j. �

Exercise 26. Recall that a projection p in a C∗-algebra is an element p such that p2 = p = p∗. A
partition of the unit in a C∗-algebra is a finite family of projections pi such that

∑
pi = 1. Show

that we have then pipj = 0 for i 6= j.
Consider the unital C∗-algebra As(n) generated by n2 projections uij forming a unitary matrix.

Write the relations between uij ’s corresponding to unitarity of u = (uij). Show that (As(n), u) is a
matrix Woronowicz C∗-algebra.

The corresponding compact quantum group is called the quantum permutation group. Show
that δ : Cn → Cn⊗As(n), ei 7→

∑
ej⊗uji is a coaction, i.e. a ∗-algebra morphism such that

(δ⊗id)δ = (id⊗∆)δ.

Example 3.14 Before introducing the compact quantum group SUq(2), we start with some motiva-
tion and we remark that for φ ∈ L(C2) we have (φ⊗φ)ξ1 = (detφ)ξ1, where ξ1 = (e1⊗e2)−(e2⊗e1) ∈
C2. Now we fix q ∈ [−1, 1] \ {0} and put ξq = (e1⊗e2)− q(e2⊗e1).

We consider the C∗-algebra A = Cq(SU(2)) generated by the entries of a matrix u ∈ M2(A)
with the relations corresponding to unitarity of u and the identity u13u23(ξq⊗1) = (ξq⊗1). For a
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unitary matrix, this identity is equivalent to u23(ξq⊗1) = u∗13(ξq⊗1), which is again equivalent to
having the matrix u of the form

u =
(
α −qγ∗
γ α∗

)
.

The relations corresponding to unitarity of u can then be made explicit, and one sees that A can
also be presented as the C∗-algebra generated by two elements α, γ subject to the relations

α∗α+ γ∗γ = 1, αα∗ + q2γγ∗ = 1,
γγ∗ = γ∗γ, αγ = qγα, αγ∗ = qγ∗α.

Finally, one proves that (A, u) is a matrix Woronowicz C∗-algebra. Indeed u12u13 is clearly unitary,
and it is easy to check that it satisfies the twisted unimodularity condition:

u13u14u23u24(ξq⊗1⊗1) = u13u23(ξq⊗1⊗1) = (ξq⊗1⊗1).

Besides, u is invertible because it is unitary, and using the relations above one checks that the
following matrix is the inverse of ū:

ū−1 =
(

α q2γ
−q−1γ∗ α∗

)
.

�

3.4 The Haar measure

3.4.1 Let A be a Woronowicz C∗-algebra. A state h ∈ A∗ is called left-invariant if (id⊗h)∆ = 1h,
right-invariant if (h⊗id)∆ = 1h. In this section we prove the existence of a unique left-invariant
state and of a unique right-invariant state on A, which coincide. We call this invariant state the Haar
state of A. The proof is of analytical nature, hence quite different from the one of Theorem 2.17.
When A = C(G) is commutative, we recover the Haar measure on G as a Radon measure.

Let us introduce some notation. As in the algebraic setting, the coproduct of A induces an
associative product on the set A∗+ of positive linear forms on A, as follows: φψ = (φ⊗ψ)∆. We
will moreover denote, for φ ∈ A∗+, a ∈ A: a ∗ φ = (φ⊗id)∆(a) and φ ∗ a = (id⊗φ)δ(a), so that
ψ(φ∗a) = (ψφ)(a). In this way left-invariance (resp. right-invariance) of h means that h∗a = h(a)1
(resp. a ∗ h = h(a)1) for all a ∈ A, and also that φh = φ(1)h (resp. hφ = φ(1)h) for all φ ∈ A∗+.

In the proof of the following Lemma we will use the Cauchy-Schwartz inequality for positive
forms on C∗-algebras. If φ is such a form, we can define a positive hermitian form on A by putting
(a|b)φ = φ(a∗b). The associated semi-norm is given by ‖a‖2φ = φ(a∗a), and Cauchy-Schwartz
inequality reads |φ(a∗b)|2 ≤ φ(a∗a)φ(b∗b). In particular if φ(a∗a) = 0, then φ(a∗b) = 0 for all b ∈ A.

Lemma 3.15 Let A be a Woronowicz C∗-algebra. Let h be a state of A, and φ, ψ ∈ A∗+.

1. We have φh = φ(1)h iff (h⊗φ)((∆(ah)− ah⊗1)∗(∆(ah)− ah⊗1)) = 0 for all a ∈ A, where we
denote ah = h ∗ a.

2. If φh = φ(1)h and ψ ≤ φ, then ψh = ψ(1)h.

Proof. 1. For the implication ⇒, we develop the quantity considered and compute. We have e.g.

(h⊗φ)(∆(ah)∗(ah⊗1)) = (h⊗φ⊗h)(id⊗∆)(∆(a)∗(ah⊗1))
= φ(1)(h⊗h)(∆(a)∗(ah⊗1)) = φ(1)h(a∗hah).

We find the same value for the three other terms without their signs, and the sum vanishes.
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For the implication ⇐ we have to prove that (φ⊗h)∆(x) = φ(1)h(x) for all x ∈ A. Since
∆(A)(A⊗1) is dense in A⊗A, (h⊗id)(∆(A)(A⊗1)) is dense in A hence it suffices to prove that
(h⊗φ⊗h)(∆2(a)(b⊗1⊗1)) = φ(1)(h⊗h)(∆(a)(b⊗1)) for all a, b ∈ A.

Now the hypothesis implies by Cauchy-Schwartz’ inequality (h⊗φ) ((∆(ah)− ah⊗1)∗(b⊗1)) = 0
for all a, b ∈ A. Using the definition of ah we get exactly the previous identity for a∗ and b.

2. Put b = ∆(ah) − ah⊗1. The element b∗b is positive, hence if 0 ≤ ψ ≤ φ we have 0 ≤
(h⊗ψ)(b∗b) ≤ (h⊗φ)(b∗b). Thus the implication follows from the first point. �

Exercise 27. Rewrite the statement and proof of the Lemma in the case when A = C(G) with G
a compact group, using integrals on G.

The proof of the next Theorem relies on Banach-Alaoglu’s Theorem that the unit ball in the dual
space of a normed vector space is compact with respect to the weak-∗ topology. Recall that a net
φα in the space of continuous forms on A converges to ψ in the weak-∗ topology iff φα(a) → ψ(a)
for all a ∈ A. In particular it is clear that the subset of states is closed in this unit ball, hence also
weak-∗ compact.

Theorem 3.16 Let A be a Woronowicz C∗-algebra. Then there exists a unique left (resp. right)
invariant state on A, and it is also right invariant.

Proof. Let φ be a non-zero positive state on A. For any n, the form φn = 1
n

∑n
k=1 φ

k is positive
with norm φn(1) = 1. Hence the sequence {φn} admits a limit point hφ with respect to the weak-∗
topology, which is a state on A. We have φφn − φn = 1

n(φn+1 − φ) hence φhφ = hφ.
Now for any positive form φ onA, the preceeding paragraph shows thatKφ = {h state on A | φh =

φ(1)h} is non-empty, and it is clearly weak-∗ closed. For any positive φ, ψ we have φ, ψ ≤ φ + ψ
hence Kφ+ψ ⊂ Kφ ∩Kψ by Lemma 3.15. By weak-∗ compactness of the state space, we can find a
state h belonging to all Kφ, i.e. h is left invariant.

Now we can proceed exactly in the same way on the right and we obtain a right invariant state
h′. For any such state h′ we have h = h′(1)h = h′h = h(1)h′ = h′. This shows the existence and
unicity of h. �

3.4.2 Complements. In general the Haar state h on a Woronowicz C∗-algebra A is not a trace,
i.e. we do not have h(ab) = h(ba) for a, b ∈ A. However, there is a way to describe this lack of
commutation inside h in terms of a “modular group” σt. This one-parameter group will be defined
only on a dense ∗-subalgebra A ⊂ A, which is interesting on its own: in fact A turns out to
be a “real” Hopf algebra inside A, thus yielding a strong connection between the topological and
algebraic theories. Notice that the Hopf algebras A appearing in this way are always semisimple
and cosemisimple.

We introduce A ⊂ A as the ∗-subalgebra formed by coefficients of all invertible finite-dimensional
corepresentations. In the case of a matrix Woronowicz C∗-algebra, we have seen that A is dense in
A. In the general case, this is still true, but to prove it one has to use the regular corepresentation
of A, and we did not discuss infinite-dimensional corepresentations in the analytical setting.

It turns out that this dense ∗-subalgebra has a very rich structure: in fact it is a Hopf algebra
as in Section 2. As a matter of fact it is clear that ∆ restricts to an (algebraic) coproduct on A
since we have (id⊗∆)(v) = v12v13 for any invertible f.-d. corepresentation v, and v ∈ L(M)⊗A is a
finite sum of elementary tensors.

Then one wants to define a counit ε : A → C and an antipode S : A → A by prescribing for
all v’s the following identities:

(id⊗ε)(v) = idM and (id⊗S)(v) = v−1.
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If this can be done, then it is easy to see that ε, S are indeed a counit and antipode, by considering
e.g. the following kind of computation already encoutered in Section 2.3:

(id⊗ηε)(v) = id⊗1 = v(id⊗S)(v) = (id⊗m)(id⊗id⊗S)(v12v13)
= (id⊗m)(id⊗id⊗S)(id⊗∆)(v).

However to prove that the “definitions” of ε and S above make sense, one needs to develop the
general theory of corepresentations of Woronowicz C∗-algebras.

Now this construction and the examples of Section 3.3 yield new examples of Hopf algebras. In
the case when A = C(G), the algebra of continuous functions on a compact group G, the dense
sub-∗-algebra A coincides with the algebra of representative functions R(G). In the case when
A = Cq(SU(2)), one can show that A is isomorphic as a Hopf algebra to (the type 1 part of) the
finite dual Uq(sl(2))◦.

Then Woronowicz constructs a family of a complex one-parameter group (z 7→ fz) of unital
multiplicative linear forms fz ∈ A ∗ such that (z 7→ fz(a)) is holomorphic for all a ∈ A and

1. fz(S(a)) = f−z(a), fz(a∗) = f−z̄(a)

2. S2(a) = f−1 ∗ a ∗ f1

3. h(ab) = h(b(f1 ∗ a ∗ f1))

for all a, b ∈ A , where we use the convolution notation introduced earlier in this section. The last
relation concerning h can also be written h(ab) = h(b σ−i(a)) if we put σz(a) = fiz ∗ a ∗ fiz, and
we notice that (t 7→ σit) is a real one-parameter group of ∗-automorphisms of A . This shows in
particular that h is a so-called “KMS state” of A.
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