Partiel no 6

lundi 14 mai 2007

Chaque candidat doit en début d'épreuve porter son nom dans le coin de la copie qu'il cachera par collage <u>après</u> la signature de la feuille d'émargement. Il devra en outre porter son numéro de place sur chacune de ses copies ou intercalaires.

durée : 2 heures Aucun document, aucune calculatrice ne sont autorisés.

Exercice 1. Soit a un nombre réel fixé, et M la matrice suivante :

$$M = \begin{pmatrix} 4a+5 & 4a-4 & 2-2a \\ 4a-4 & 4a+5 & 2-2a \\ 2-2a & 2-2a & a+8 \end{pmatrix}.$$

On munit \mathbb{R}^3 du produit scalaire usuel.

On considère l'endomorphisme de $f: \mathbb{R}^3 \to \mathbb{R}^3$ dont la matrice dans la base canonique est $N = \frac{1}{9}M$.

- 1. On se place dans le cas a = 0.
 - a. Montrer que f est une projection.
 - b. Sans calcul, dire pourquoi f est une projection orthogonale.
 - c. Déterminer une base de $\operatorname{Ker} f$.
 - d. Déterminer une équation de $(\operatorname{Ker} f)^{\perp}$, puis de $\operatorname{Im} f$.
 - e. Donner, sans calcul mais en justifiant, le polynôme caractéristique de f.

On revient au cas général.

- 2. Montrer sans calcul que f est diagonalisable.
- 3. Calculer le coefficient de M^2 situé à l'intersection de la première ligne et de la première colonne.
- 4. À l'aide de la question précédente, donner une condition nécessaire sur a pour que f soit :
 - une projection,
 - une symétrie.
- 5. Déterminer les valeurs de a pour lesquelles f est :
 - une projection orthogonale différente de l'identité,
 - une symétrie orthogonale différente de l'identité,

Exercice 2. On considère l'application $f: \mathbb{R}^3 \to \mathbb{R}$ définie comme suit :

$$f(x,y) = \frac{xy^3}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, $f(0,0) = 0$.

- 1. Calculer les dérivées partielles de f par rapport à x et y sur $\mathbb{R}^2 \setminus \{(0,0)\}$.
- 2. Montrer que f admet des dérivées partielles par rapport à x et y en (0,0), et les calculer.
- 3. Montrer que les dérivées partielles secondes $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ et $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ existent, et les calculer.
- 4. L'application f est-elle de classe \mathbb{C}^2 sur \mathbb{R}^2 ?

Exercice 3. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie comme suit :

$$f(x,y) = (x + e^y, x - y).$$

- 1. Montrer que l'application $h: \mathbb{R} \to \mathbb{R}, \ t \mapsto t + e^t$ est bijective. On tracera pour cela le tableau de variations de h, en y faisant figurer les limites en $\pm \infty$.
- 2. Montrer que $f: \mathbb{R}^2 \to \mathbb{R}^2$ est bijective.

On note g l'application réciproque de f.

- 3. Montrer que f est de classe C^1 et calculer sa matrice jacobienne en tout point $(x,y) \in \mathbb{R}^2$.
- 4. Montrer que q est de classe C^1 .