Plan du cours

Chapitre 0. Nombres réels et fonctions usuelles

I Nombres réels

a) Notations ensemblistes

Notation $\{\cdot\}$. \mathbb{Z} , \mathbb{N}^* , \mathbb{R}_+^* , intervalles. \cap , \cup , \subset , \in .

b) Algèbre

Symboles \sum et \prod , factorielle. Propriétés.

c) Ordre

max et min. Valeur absolue : définition, distance sur la droite réelle, inégalité triangulaire. Partie entière.

II Fonctions usuelles

a) Notations

Fonction de \mathbb{R} dans \mathbb{R} . Domaine de définition, cas d'une somme, d'un produit. Fonctions composées. Exemples.

b) Exponentielle et variantes

 \exp et ln : valeurs remarquables, règles de calcul, fonctions réciproques.

Puissances entières sur $\mathbb{R} / \mathbb{R}^*$. Puissances réelles sur \mathbb{R}_+^* .

Chapitre 1. Étude locale des fonctions réelles

I Définition des limites

a) Introduction aux quantificateurs

Notations ∃, ∀. Exemples. Fonctions majorées, minorées. Exemples, négation.

b) Définition des limites

Définition d'une limite en $+\infty$: approche intuitive, passage à la définition avec quantificateurs.

II Limites

a) Propriétés

Limite d'une somme, d'un produit, d'un quotient. Limite d'une fonction composée. Passage à la limite dans les inégalités. Théorème des gendarmes.

b) Variantes

Limites en l'infini, limites infinies. Formes indéterminées ou pas. Limites à droite et à gauche. Fonctions localement égales. Partie entière.

III Continuité et dérivation

a) Continuité

Limite en un point du domaine de définition. Continuité en un point. Exemples : continuité, discontinuités de première et seconde espèce.

b) Dérivation

Taux d'accroissement, dérivée. Théorèmes généraux et règles de calcul.

c) Interprétation graphique de la dérivée

Caractérisation de la dérivée par un DL. Interprétation graphique.

Chapitre 2. Développements limités

I Définition et formulaire

a) Définition

Définition d'un développement limité. Unicité des coefficients. Exemple : $\frac{1}{1-x}$.

b) Formulaire

Développements de $\frac{1}{1-x}$, exp, $\ln(1+x)$, cos, sin, $(1+x)^{\alpha}$.

II Règles de calcul

a) Remarques élémentaires

Troncature, parité, cas des polynômes.

b) Opérations usuelles

Somme, produit, composée, quotient. Exemple : tangente.

III Formule de Taylor-Young

a) Dérivées d'ordre supérieur

Définition par récurrence, fonctions de classe C^n , C^{∞} , opérations et fonctions usuelles.

b) Formule de Taylor-Young

Théorème de Taylor-Young, application aux DLs. Exemples : $\frac{1}{1-x}$, exp.

Chapitre 3. Fonctions de plusieurs variables

a) Définition

L'ensemble \mathbb{R}^n . Fonctions réelles de n variables, domaine de définition, graphe. Exemple : $x^2 + y^2$. Fonctions affines, hyperplans.

b) Dérivées partielles

Définition : dérivées des applications partielles. Équation du plan tangent. Exemples, cas n=1, n=2.

c) Recherche d'extrémums

Rappels à une variable. Notion d'extrémum (global). Condition nécessaire : points critiques.

Chapitre 4. Nombres complexes

I Forme algébrique

a) Définition

Définition de C, partie réelle, partie imaginaire. Opérations. Conjugué et module. Inverse.

b) Interprétation graphique

Représentation graphique, affixe. Conjugaison, module, inégalité triangulaire.

c) Le trinôme du second degré

Racines complexes d'un trinôme du second degré. Méthode de calcul des racines carrées d'un nombre complexe. Théorème de D'Alembert-Gauss.

d) Règles de calcul

Parties réelles et imaginaires de sommes. Conjugués de sommes, produits, quotients. Modules de produits et quotients. Liens entre parties réelles et imaginaires, conjugué, module.

II Forme trigonométrique

a) Définition

Nombres complexes de module 1, module, argument. Notation exponentielle, exponentielle complexe. Exemple.

b) Interprétation graphique

Coordonnées polaires.

c) Racines $n^{i\grave{\mathbf{e}}\mathbf{mes}}$

Racines $n^{\text{ièmes}}$ de l'unité. Résolution de l'équation $z^n=a$.

d) Règles de calcul

Produit, quotient, conjugué de formes exponentielles. Formules d'Euler. Application : linéarisation de polynômes trigos.

Chapitre 5. Systèmes linéaires

I Généralités

a) Vocabulaire

Équations linéaires, systèmes linéaires, coefficients, terme constant, terme directeur, équation triviale, système homogène.

b) Solutions

Ensemble des solutions dans \mathbb{R}^n . Systèmes équivalents. Sous-espace vectoriel dans le cas homogène. Cas général : solution particulière + système homogène associé.

II Méthode de Gauss

a) Systèmes échelonnés

Système échelonné, exemples. Résolution d'un tel système. Dimension de l'ensemble des solutions.

b) Réduction de Gauss

Opérations élémentaires. Algorithme de Gauss.

Chapitre 6. Polynômes

I Généralités

a) Définition

Expression linéaire (à coefficients dans $K = \mathbb{R}$ ou \mathbb{C}) en les puissances d'une indéterminée X. Évaluation en un point du corps de base, fonction polynôme.

b) Opérations

Somme, produit. K[X] est un anneau et $X^pX^q=X^{p+q}$. K[X] est commutatif, intègre, mais n'est pas un corps. Polynôme dérivé, cas d'un produit, d'une somme.

c) Degré

Définition, $deg(0) = -\infty$. Degré d'un produit, d'une somme. Polynôme constant. Coefficient dominant, polynôme unitaire ou normalisé.

II Arithmétique

a) Divisibilité

Définition. Propriétés élémentaires : P/Q_1 et $P/Q_2 \Rightarrow P/(Q_1 + Q_2)$, P/Q et $Q/R \Rightarrow P/R$, $P/Q \Rightarrow \deg(P) \leq \deg(Q)$, P/Q et $Q/P \Rightarrow Q = \lambda P$ avec $\lambda \in K^*$. Division euclidienne.

b) Plus grand commun diviseur

Définition. Algorithme d'Euclide et théorème de Bézout. Polynômes premiers entre eux, exemple : X - a et X - b. Théorème de Gauss.

c) Racines

Racines et divisibilité. Ordre, racines multiples, lien avec la dérivée. Nombre maximal de racines.

d) Irréductibilité

Définition. Cas des degrés ≤ 3 . Cas de $\mathbb{R}[X]$ et $\mathbb{C}[X]$. Lemme d'Euclide, théorème de décomposition. Forme de la DFI dans $\mathbb{R}[X]$ et $\mathbb{C}[X]$, lien avec les racines.