Analyse Fonctionnelle Partiel du 21 février 2022

Durée : 2 heures. Aucun document ni calculatrice n'est autorisé. Les 3 exercices sont indépendants. La notation tiendra compte de la qualité et de la **précision** de la rédaction.

Exercice 1.

Pour tout $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$ on pose $f_n(x) = \left(1 + \frac{x}{n}\right)^n$.

- 1. Montrer que la suite de fonctions $(f_n)_n$ converge simplement vers une fonction qu'on calculera.
- 2. On pose $g_n(x) = \ln(f_{n+1}(x)) \ln(f_n(x))$ pour $x \in]-n, +\infty[$. Étudier les variations, puis le signe de g_n .
- 3. Montrer que la suite de fonctions $(f_n)_n$ converge uniformément sur tout compact de \mathbb{R} .

Exercice 2.

Soit E un espace vectoriel normé et $T \in \mathcal{L}(E)$ une application linéaire continue.

Pour tout nombre complexe λ on note $E_{\lambda}(T) = \{x \in E \mid T(x) = \lambda x\}.$

On note $B = \{x \in E \mid ||x|| \le 1\}$ la boule unité fermée de E et $\lambda B = \{\lambda x \mid x \in B\} = \{x \in E \mid ||x|| \le |\lambda|\}$.

On suppose que l'adhérence de T(B) dans E est compacte et on fixe $\lambda \in \mathbb{C} \setminus \{0\}$.

- 1. Montrer que $\lambda B \cap E_{\lambda}(T) \subset T(B)$.
- 2. En utilisant les propriétés élémentaires des compacts, montrer que $B \cap E_{\lambda}(T)$ est compact.
- 3. Montrer que le sous-espace propre $E_{\lambda}(T)$ est de dimension finie.
- 4. Ce résultat est-il encore vrai pour $\lambda = 0$?

Exercice 3.

On considère l'espace $H = L^2([0,1],\mathbb{R})$ muni de la norme $\|\cdot\|_2$. On note $\mathcal{L}(H)$ l'espace des applications linéaires continues de H dans H, muni de la norme d'opérateur $\|\cdot\|$.

Pour toute fonction $K \in C([0,1]^2, \mathbb{R})$, on considère l'opérateur à noyau associé $T: H \to H$, donné par la formule suivante :

$$T(f)(s) = \int_0^1 K(s,t)f(t)dt. \tag{*}$$

On note $\operatorname{Pol} \subset C([0,1]^2,\mathbb{R})$ le sous-espace des fonctions polynomiales.

- 1. (a) Montrer que pour $f \in H$ et $s \in [0,1]$ on a $|T(f)(s)| \leq ||K||_{\infty} ||f||_{2}$.
 - (b) Montrer que l'application linéaire T est bien à valeurs dans H, continue, et que $||T|| \le |K|_{\infty}$.
- 2. On considère le cas où le noyau K est polynomial : $K(s,t) = \sum_{k=0}^{N} \sum_{l=0}^{N} a_{k,l} s^k t^l$.
 - (a) Montrer que T(f) est alors un polynôme, dont on calculera les coefficients en fonction des coefficients $a_{k,l}$ et des *moments* de f donnés par la formule $m_l(f) = \int_0^1 t^l f(t) dt$.
 - (b) Montrer que dans ce cas T est une application linéaire de rang fini, i.e. dim $\operatorname{Im} T < +\infty$.
- 3. Montrer que toute fonction continue $K \in C([0,1]^2, \mathbb{R})$ est limite uniforme de polynômes $P \in \text{Pol.}$ On appliquera le théorème de Stone-Weierstraß après avoir soigneusement vérifié ses hypothèses.
- 4. Montrer que tout opérateur à noyau T associé à un noyau K continu sur $[0,1]^2$ est limite dans $\mathcal{L}(H)$ d'applications linéaires de rang fini.

Les questions ci-dessous sont indépendantes des questions 1 à 4.

- 5. Soit $S \in \mathcal{L}(H)$ une application linéaire continue telle que $\| |Id S| \| \leq \frac{1}{2}$.
 - (a) Montrer qu'on a $||S(f)||_2 \ge \frac{1}{2}||f||_2$ pour toute $f \in H$. En déduire que S est injective.
 - (b) L'application identité Id est-elle limite d'applications linéaires de rang fini dans $\mathcal{L}(H)$?