FONCTIONS MÉROMORPHES ET RÉSIDUS

Exercice 1. Les fonctions ci-dessous admettent une singularité isolée en 0. Déterminer la nature de ces singularités.

$$f(z) = \frac{\cos(z)}{z}$$
, $g(z) = \frac{e^z - 1}{z}$, $h(z) = \frac{z^2 + 1}{z(z - 1)}$, $k(z) = z^3 \sin\left(\frac{1}{z}\right)$.

Exercice 2. Déterminer les pôles des fonctions suivantes, les parties principales et les résidus correspondant :

$$f(z) = \frac{z^3}{1+z^4}, \quad g(z) = \frac{2z+3}{(z-1)^3 e^z}, \quad h(z) = \frac{z-1}{(z^2+1)^2 z}, \quad k(z) = \frac{z+1}{e^z+e^{-z}-2}.$$

Pour f avec pôle en a et h holomorphe au voisinage de a, a-t-on $\operatorname{Res}_{hf}(a) = h(a) \operatorname{Res}_{h}(a)$? On distinguera selon l'ordre du pôle a.

Exercice 3. Calculer les intégrales suivantes (où a > 0) à l'aide du théorème des résidus :

$$I = \int_{-\infty}^{\infty} \frac{\mathrm{d}x}{x^4 + x^2 + 1}, \quad J(a) = \int_{0}^{\infty} \frac{\mathrm{d}x}{(x^2 + a^2)^3}, \quad K(a) = \int_{0}^{\infty} \frac{\cos(ax)\mathrm{d}x}{(1 + x^2)^2}.$$

Exercice 4. Calculer les intégrales suivantes :

$$I(a) = \int_0^{2\pi} \frac{\mathrm{d}t}{a + \cos(t)} \ (a > 1), \quad J(a) = \int_0^{2\pi} \frac{\mathrm{d}t}{a^2 - 2a\cos(t) + 1} \ (a \in \mathbb{R}, \ a \neq \pm 1).$$

On pourra noter que $\cos(t) = \frac{1}{2}(z+z^{-1})$ si $z=e^{it}$.

Exercice 5. Calculer l'intégrale suivante à l'aide du théorème des résidus. On pourra intégrer la fonction $e^{iz}/\operatorname{ch}(z)$ le long du rectangle de sommets -R, R, $R+i\pi$, $-R+i\pi$ puis faire tendre R vers $+\infty$.

$$I = \int_{-\infty}^{+\infty} \frac{\cos(x)}{\cosh(x)} dx.$$

Exercice 6. Pour tout entier positif N on note γ_N le carré de sommets $(N + \frac{1}{2})(\pm 1 \pm i)$, parcouru une fois dans le sens positif. On considère la fonction cotangente définie sur $\mathbb{C} \setminus \pi\mathbb{Z}$ comme suit :

$$\cot(z) = \frac{\cos(z)}{\sin(z)} = i \frac{e^{iz} + e^{-iz}}{e^{iz} - e^{-iz}}.$$

On fixe de plus une fonction f méromorphe sur \mathbb{C} , avec pôles non entiers et en nombre fini, et telle que $f(z) = O(|z|^{-2})$.

- a. (i) Étudier les singularités de $\pi \cot(\pi z)$ et déterminer les résidus correspondant.
 - (ii) Montrer qu'il existe une constante A_1 telle qu'on ait $|\cot(\pi z)| \leq A_1$ pour tout $z \in \pm (N + \frac{1}{2}) + i\mathbb{R}$.
 - (iii) Montrer qu'il existe une constante A_2 telle qu'on ait $|\cot(\pi z)| \le A_2$ pour tout $z \in \mathbb{R} \pm i(N + \frac{1}{2})$.
- b. (i) Montrer que $\int_{\gamma_N} \pi \cot(\pi z) f(z) dz$ tend vers 0 quand $N \to \infty$.
 - (ii) On note R(a) les résidus de $\pi \cot(\pi z) f(z)$ aux pôles $a \in A$ de f. À l'aide du théorème des résidus, montrer que

$$\sum_{n=-\infty}^{\infty} f(n) = -\sum_{a \in A} R(a).$$

c. Application. Montrer qu'on a, pour $a \neq 0$ resp. $a \notin \mathbb{Z}$:

$$\sum_{n=-\infty}^{\infty} \frac{1}{n^2 + a^2} = \frac{\pi}{a} \frac{e^{2\pi a} + 1}{e^{2\pi a} - 1}, \quad \sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^2} = \frac{\pi^2}{\sin(\pi a)^2}.$$

Exercice 7.

- a. Soit γ_1 , γ_2 des circuits dans \mathbb{C} . Alors $\gamma_1\gamma_2:t\mapsto \gamma_1(t)\gamma_2(t)$ est encore un circuit, ainsi que $\gamma_1+\gamma_2$. Pour $z\notin \gamma_1^*\cup\gamma_2^*$, trouver une formule reliant $\mathrm{Ind}_{\gamma_1\gamma_2}(z)$, $\mathrm{Ind}_{\gamma_1}(z)$ et $\mathrm{Ind}_{\gamma_2}(z)$.
- b. Soit γ un circuit dans \mathbb{C} tel que $0 \notin \gamma^*$. Soit δ un autre circuit défini sur le même intervalle I et tel que $|\gamma(t) - \delta(t)| < |\gamma(t)|$ pour tout $t \in I$.
 - (i) Montrer qu'on peut écrire $\delta = \gamma(1+\alpha)$ avec α un circuit tel que $|\alpha(t)| < 1$ pour tout $t \in I$.
 - (ii) En déduire que $\operatorname{Ind}_{\gamma}(0) = \operatorname{Ind}_{\delta}(0)$.
- c. Soit $\Omega \subset \mathbb{C}$ un ouvert étoilé et $f, g: \Omega \to \mathbb{C}$ méromorphe. Soit γ un circuit dans Ω tel que ${}^c\gamma^*$ n'ait qu'une seule composante connexe bornée A, sur laquelle $\operatorname{Ind}_{\gamma}$ vaut 1. On suppose que γ^* ne contient aucun zéro ni pôle de f ni de g.
 - (i) Interpéter l'indice de 0 par rapport au circuit $f \circ \gamma$ à l'aide des zéros et pôles de f.
 - (ii) On suppose que |f(z) g(z)| < |f(z)| pour tout $z \in \gamma^*$. Montrer que f et g ont le même nombre de zéros et de pôles dans A, comptés avec signes et multiplicités (Théorème de Rouché).
- d. (i) Montrer que toutes les racines complexes du polynôme $P(z)=z^5+7z+12$ se trouvent dans la couronne $C=B(0,2)\setminus \overline{B(0,1)}=\{z\mid 1<|z|<2\}$. On appliquera le théorème de Rouché avec $g_1(z)=z^5$ d'une part, et $g_2(z)=7z+12$ d'autre part.
 - (ii) Soit $P(z) = a_0 + a_1 z + \cdots + a_n z^n$ un polynôme, avec $a_n \neq 0$. En appliquant le théorème de Rouché à f(z) = P(z) et $g(z) = a_n z^n$, redémontrer le théorème de D'Alembert-Gauss : P admet n racines dans \mathbb{C} , comptées avec multiplicité.

Exercice 8. Soit $\Omega \subset \mathbb{C}$ un ouvert étoilé, $S \subset \Omega$ un ensemble fini, f méromorphe sur Ω avec S comme ensemble de pôles. Montrer que f admet des primitives sur $\Omega \setminus S$ si et seulement si $\mathrm{Res}_f(a) = 0$ pour tout $a \in S$.

Exercice 9. Soit P un polynôme de degré $n \ge 2$ à racines simples et a_1, \ldots, a_n ses racines complexes.

- a. Calculer $\operatorname{Res}_{1/P}(a_k)$ pour tout k.
- b. Montrer que $\sum_{k=1}^{n} 1/P'(a_k) = 0$. On pourra utiliser le théorème des résidus.
- c. Montrer par élimination des pôles qu'on a, pour tout $z \in \mathbb{C}, z \neq a_1, \ldots, a_n$:

$$\frac{1}{P(z)} = \sum_{k=1}^{n} \frac{1}{P'(a_k)(z - a_k)}$$

Exercice 10. On note γ_r le demi-cercle de centre 0 et rayon r dans le demi-plan $\{z \in \mathbb{C} \mid \text{Im}(z) \geq 0\}$, parcouru une fois dans le sens direct. On considère la fonction $f: \mathbb{C}^* \to \mathbb{C}, z \mapsto e^{iz}/z$.

- a. Écrire $\int_{\gamma_r} f(z) dz$ comme une intégrale sur l'intervalle $[0,\pi]$ et déterminer ses limites quand $r \to 0$ et $r \to +\infty$, à l'aide du théorème de convergence dominée.
- b. Montrer que $\int_{-R}^{-\epsilon} f(x) dx + \int_{\epsilon}^{R} f(x) dx = \int_{\gamma_{\epsilon}} f(z) dz \int_{\gamma_{R}} f(z) dz$ pour tous $0 < \epsilon < R$. On précisera le théorème utilisé, et l'ouvert sur lequel on l'applique.
- c. Déduire de ce qui précède la valeur de l'intégrale de Dirichlet $\int_0^{+\infty} \frac{\sin(x)}{x} dx$.