CONTRÔLE CONTINU N°1

Exercice 1. On note $\Omega = \{z \in \mathbb{C} \mid \text{Re}(z) > 0, \text{Im}(z) > 0\}$. En utilisant les équations de Cauchy-Riemann, trouver une fonction holomorphe $f: \Omega \to \mathbb{C}$, sous la forme f = u + iv avec $u, v: \Omega \to \mathbb{R}$, telle que

$$u(x+iy) = x + \frac{x}{(x^2+y^2)}$$
 pour tous $x, y \in \mathbb{R}_+^*$.

On donnera de préférence une expression de f(z) en fonction de la variable z, sans utiliser partie réelle, partie imaginaire, ni module.

Exercice 2. On pose $\Omega = \mathbb{C} \setminus [-i, i]$ et $f(z) = 1/(1+z^2)$ pour $z \neq \pm i$.

- a. Développer f en éléments simples dans $\mathbb{C}.$
- b. Montrer que $\int_{\gamma} f(z) dz = 0$ pour tout circuit γ dans Ω .
- c. Montrer que f admet une unique primitive F dans Ω telle que $F(1) = \pi/4$.
- d. On a bien sûr $F(x) = \arctan(x)$ pour tout $x \in \mathbb{R}_+^*$. Et pour $x \in \mathbb{R}_-^*$?
- e. f admet-elle une primitive sur $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$? sur $\mathbb{C} \setminus \{\pm i\}$? Justifier.

Exercice 3. Pour R > 0 on considère le lacet γ_R formé par le « bord » du secteur angulaire $\{re^{i\theta} \mid 0 \le r \le R, 0 \le \theta \le \frac{\pi}{4}\}$, parcouru une fois dans le sens direct. On note δ_R l'arc de cercle $\{Re^{i\theta} \mid 0 \le \theta \le \frac{\pi}{4}\}$, parcouru une fois dans le sens direct. Ainsi γ_R est la concaténation de deux segments dans le plan complexe et de δ_R .

- a. Pour quoi la fonction $f: z \mapsto \exp(iz^2)$ admet-elle une primitive sur $\mathbb C$? Combien vaut $\int_{\gamma_R} \exp(iz^2) dz$?
- b. À l'aide de la question précédente, montrer que $\int_{\delta_R} e^{iz^2} dz = e^{i\pi/4} \int_0^R e^{-t^2} dt \int_0^R e^{it^2} dt$.
- c. Montrer que $\left| \int_{\delta_R} \exp(iz^2) dz \right| \leq \frac{\pi}{4R} (1 e^{-R^2})$.

 On pourra utiliser l'inégalité $\sin(t) \geq \frac{2}{\pi}t$ valable sur $\left[0, \frac{\pi}{2}\right]$.
- d. À l'aide des questions précédentes, montrer que $\int_0^{+\infty} e^{it^2} dt$ converge et calculer sa valeur. On rappelle que $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.
- e. En déduire les valeurs des intégrales de Fresnel $\int_0^{+\infty} \cos(t^2) dt$ et $\int_0^{+\infty} \sin(t^2) dt$.