TP 2 : MÉTHODES DE POINT FIXE

On importera le module math en tapant from math import * en début de TP et on utilisera |x| < prec pour tester x = 0, avec prec = 10^{-15} (précision machine).

Toute fonction mathématique sera définie comme une procédure Python.

Si X est une partie d'un EVN et $f: X \to X$ est une application, la suite récurrente partant de $x_0 \in X$ associée à f est définie par la relation $x_{n+1} = f(x_n)$, pour tout $n \in \mathbb{N}$. Si f est continue sur X et la suite $(x_n)_n$ converge vers un point $l \in X$, par passage à la limite l est un point fixe de f: on a f(l) = l. Inversement on peut montrer que sous certaines hypothèses favorables les suites récurrentes associée à f convergent automatiquement.

Exercice 1. On veut calculer l'unique racine réelle de la fonction $f(x) = x^3 - x^2 + 8x - 8$ en appliquant la méthode du point fixe avec les 3 fonctions suivantes :

$$g_1(x) = -x^3 + x^2 - 7x + 8$$
, $g_2(x) = \frac{x^3 - 8}{x - 8}$, $g_3(x) = \frac{2x^3 - x^2 + 8}{3x^2 - 2x + 8}$.

- a. Justifier que f admet $\ell=1$ pour seule racine réelle et vérifier que f(x)=0 équivaut à $g_i(x)=x$ pour $i=1,\ldots,3$.
- b. Pour chaque fonction g_i , calculer les 6 premières itérations de la suite récurrente associée en prenant $x_0 = 0.5$ comme condition initiale. Commenter.

Exercice 2.

- a. Écrire une procédure PointFixe(g,x0,p,N) qui calcule par intérations avec condition initiale x_0 le couple (x_n,n) où n est le plus petit nombre d'itérations tel que $|g(x_n)-x_n| < p$. La procédure retournera False si n dépasse N.
- b. On veut calculer le point fixe de la fonction cosinus.
 - (i) Vérifier que $\cos(]0,1[) \subset]0,1[$. Justifier que la fonction $g(x)=\cos(x)$ a un unique point fixe dans]0,1[. On admet que la suite récurrente associée à g converge pour tout $x_0 \in]0,1[$.
 - (ii) Appliquer l'algorithme PointFixe à la fonction g avec $x_0 = 0.5$, $p = 10^{-10}$ et N = 100.
 - (iii) Regarder comment varie le nombre d'itérations pour d'autres choix de la condition initiale $x_0 \in \mathbb{R}$ et de la précision p.

La méthode de Newton pour recherche une annulation d'une fonction dérivable $f:[a,b] \to \mathbb{R}$ consiste à choisir un point de départ $x_0 \in [a,b]$ puis à construire par récurrence une suite $(x_n)_n$ de la manière suivante. Étant donné x_n , on trace la tangente au graphe de f au point d'abscisse x_n , et on prend comme valeur x_{n+1} l'abscisse du point d'intersection de cette tangente avec l'axe des abscisses. Sous certaines hypothèses favorables on peut montrer que la suite $(x_n)_n$ converge vers un point l tel que f(l) = 0.

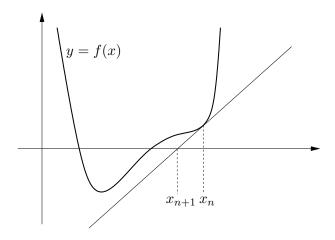


FIGURE 1 – Méthode de Newton

Exercice 3.

- a. Écrire une procédure Newton(f,g,x0,p,N) basée sur la méthode de Newton avec condition initiale x_0 qui retourne le couple (x_n,n) où n est le plus petit nombre d'itérations tel que $|f(x_n)| < p$. On retournera False si n dépasse N. On utilise l'argument g pour fournir la fonction g = f' à la procédure.
- b. Utiliser votre procédure Newton pour calculer $\sqrt{3}$ avec précision 10^{-10} en partant de $x_0 = 0, 1, 2, 3, 20$. Comparer le nombre d'itérations requises avec la méthode dichotomique (TP 1). Combien d'itérations faut-il en partant d'une approximation x_0 de $\sqrt{3}$ à 0.1 près?
- c. Procéder de même pour calculer $\ln(2)$. Qu'observe-t-on pour $x_0 = 20$? Comment adapter la stratégie?
- d. À l'aide de la librairie $\mathtt{mathplotlib}$ et de votre procédure \mathtt{Newton} , tracer le graphe de la fonction racine carrée sur [0,4]. On pourra calculer par exemple 100 valeurs de la fonction. Comparer avec le TP 1.

Exercice 4.

- a. Montrer que la méthode de Newton pour rechercher une racine de f est un cas particulier de méthode de point fixe. Pour quelle fonction g?
- b. Commenter à nouveau l'exercice 1.
- c. Écrire la relation de récurrence correspondant au calcul de $\sqrt{3}$ dans l'exercice 2. Connaissez-vous cette suite récurrente?

La méthode de la sécante est une variante de la méthode de Newton où on remplace la tangente au graphe de f en x_n par la droite qui coupe le graphe de f aux points d'abscisses x_n et x_{n-1} . Il faut donc initialiser la construction avec deux points x_0 , x_1 .

Exercice 5.

- a. Modifier la procédure Newton en une procédure Sécante (f,x0,x1,p,N) basée sur la méthode de la sécante.
- b. Tester la procédure Sécante(f,x0,x1,p,N) sur les exemples précédents et comparer avec Newton. On pourra prendre par exemple $x_1 = x_0 + 0.1$.
- c. Quel est l'avantage de la méthode de la sécante? Proposer une variante de Newton qui n'utilise pas l'argument g.