Furstenberg boundary for discrete quantum groups

Roland Vergnioux

joint work with M. Kalantar, P. Kasprzak, A. Skalski

University of Normandy (France)

Oberwolfach, September 16, 2021

EL SQA

Outline

Introduction

- Motivation
- Discrete quantum groups
- Actions
- Orthogonal free quantum groups

Boundary actions

- **F**-boundaries
- Boundaries and unique stationarity
- The Gromov boundary of $\mathbb{F}O_Q$
- An $\mathbb{F}O_Q$ -boundary

3 Faithfullness of boundary actions

- Uniqueness of trace
- Universal boundary and the amenable radical

Motivation

Classical results:

- → notion of **Γ-boundary** in topological dynamics (Furstenberg, 1950s)
- → surprising connection with the structure of reduced group C*-algebra (Kalantar-Kennedy, Breuillard-Kalantar-Kennedy-Ozawa, 2010s)

Theorem (BKKO)

 $\begin{array}{l} C^*_{\mathrm{red}}(\Gamma) \text{ simple} \Leftrightarrow \exists \text{ free } \Gamma\text{-boundary } \Gamma \curvearrowright X. \\ C^*_{\mathrm{red}}(\Gamma) \text{ has a unique trace} \Leftrightarrow \exists \text{ faithful } \Gamma\text{-boundary } \Gamma \curvearrowright X. \end{array}$

In particular simplicity \Rightarrow uniqueness of trace for reduced C*-algebras of discrete groups. The converse is false.

Quantum case?

→ other notions of boundary already studied (Poisson, Martin, Gromov...)

→ type III examples — no trace on $C^*_{red}(\Gamma)$ in "non Kac" cases!

Discrete quantum groups

A discrete quantum group Γ is given by :

- a von Neumann algebra $\ell^{\infty}(\mathbb{F}) = \bigoplus_{\alpha \in I}^{\ell^{\infty}} B(H_{\alpha})$ with dim $H_{\alpha} < \infty$
- a normal *-homomorphism $\Delta : \ell^{\infty}(\mathbb{\Gamma}) \to \ell^{\infty}(\mathbb{\Gamma}) \bar{\otimes} \ell^{\infty}(\mathbb{\Gamma})$ such that $(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$ (coproduct)
- left and right Δ -invariant nsf weights h_L , h_R on $\ell^{\infty}(\mathbb{F})$
- Γ is unimodular if $h_L = h_R$. Denote $\ell^2(\Gamma) = L^2(\ell^{\infty}(\Gamma), h_L)$.

Canonical dense subalgebra : $c_0(\mathbb{T}) \subset \ell^{\infty}(\mathbb{T})$ given by $\bigoplus_{\alpha \in I}^{c_0}$. It is a multiplier Hopf C^* -algebra.

Tensor C^* -category $\operatorname{Corep}(\mathbb{\Gamma}) = \operatorname{Rep}(\ell^{\infty}(\mathbb{\Gamma}))$ with $\pi \otimes \rho := (\pi \otimes \rho)\Delta$. $I = \operatorname{Irr}(\mathbb{\Gamma})$: simple objects up to equivalence. Classical case: $\mathbb{\Gamma} = \Gamma = I$ when dim $H_{\alpha} = 1$ for all α .

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Actions

Actions

A \mathbb{I} -C*-algebra is a C*-algebra A equipped with a *-homomorphism $\alpha : A \to M(c_0(\mathbb{F}) \otimes A)$ such that $(\mathrm{id} \otimes \alpha)\alpha = (\Delta \otimes \mathrm{id})\alpha$ (coaction).

For
$$a \in A$$
, $\nu \in A^*$, $\mu \in c_0(\mathbb{F})^*$ we can then define
 $L_{\mu}(a) = (\mu \otimes \mathrm{id})\alpha(a) \in M(A)$,
 $P_{\nu}(a) = (\mathrm{id} \otimes \nu)\alpha(a) \in \ell^{\infty}(\mathbb{F})$,
 $\mu * \nu = (\mu \otimes \nu)\alpha \in A^*$.

A $\mathbb{\Gamma}$ -map $T: A \to B$ is a linear map such that $T \circ L_{\mu} = L_{\mu} \circ T$.

Example: $A = c_0(\mathbb{F}), \ \alpha = \Delta$ "translation action". By invariance, the maps L_{μ} extend to bounded operators on $\ell^2(\mathbb{T})$. → C^* -algebra $C^*_{red}(\Gamma) = \overline{\text{Span}} \{L_{\mu}\}.$ It is a Woronowicz C^* -algebra, with Haar state denoted h.

Orthogonal free quantum groups

Let $N \in \mathbb{N}$, $Q \in GL_N(\mathbb{C})$ s.t. $Q\bar{Q} = \pm I_N$. The discrete quantum group $\mathbb{F} = \mathbb{F}O(Q)$ can be described as follows: $\rightarrow \operatorname{Corep}(\mathbb{F}O(Q))$ is the Temperley-Lieb category with $\delta = \operatorname{Tr}(Q^*Q)$, $\rightarrow I = \mathbb{N}$ with $k \otimes 1 \simeq 1 \otimes k \simeq (k-1) \oplus (k+1)$, $\bar{k} = k$, $\rightarrow H_0 = \mathbb{C}$, $H_1 = \mathbb{C}^N$ and $\operatorname{Hom}(0, 1 \otimes 1) = \mathbb{C}t_1$ with $t_1 = \sum e_i \otimes Qe_i$. We can then construct H_k by induction, $\ell^{\infty}(\mathbb{F}O_Q)$ and compute Δ .

Then
$$C^*_{red}(\mathbb{F}O_Q)$$
 is the reduced version of Wang's algebra:
 $A_o(Q) = C^* \langle 1, u_{ij} \mid uu^* = u^*u = I_n, Q\bar{u}Q^{-1} = u \rangle,$
 $\Delta(u_{ij}) = \sum_k u_{ik} \otimes u_{kj}.$

The terminology comes from the following "classical" quotients of $A_o(I_N)$: $A_o(I_N)/(u_{ij}, i \neq j) \simeq C^*(FO_N), \quad A_o(I_N)/([u_{ij}, u_{kl}]) \simeq C(O_N).$ where $FO_N = (\mathbb{Z}/2\mathbb{Z})^{*N}$ and O_N is the classical orthogonal group.

Outline

Introduction

- Motivation
- Discrete quantum groups
- Actions
- Orthogonal free quantum groups

Boundary actions

- F-boundaries
- Boundaries and unique stationarity
- The Gromov boundary of $\mathbb{F}O_Q$
- An $\mathbb{F}O_Q$ -boundary

Faithfullness of boundary actions

- Uniqueness of trace
- Universal boundary and the amenable radical

⇒ ↓ = ↓ = |= √QQ

F-boundaries

Classical case: $\Gamma \curvearrowright X$ compact. We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

The action $\Gamma \curvearrowright X$ is:

- minimal if $\forall x, y \in X \exists g_n \in \Gamma$ s.t. $\lim g_n \cdot x = y$, in other words: $\forall x \in X \quad \overline{\Gamma \cdot x} = X$;
- proximal if $\forall x, y \in X \exists g_n \in \Gamma \text{ s.t. } \lim g_n \cdot x = \lim g_n \cdot y$;
- strongly proximal if Γ → Prob(X) proximal, or equivalently: ∀ν ∈ Prob(X) Γ·ν ∩ X ≠ Ø.
- X is a Γ -boundary if it is minimal and strongly proximal.

Classical examples:

- G connected simple Lie group, H < G maximal amenable, X = G/H
- Γ non elementary hyperbolic, $X = \partial_G \Gamma$ Gromov boundary

F-boundaries

Classical case: $\Gamma \curvearrowright X$ compact. We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

X is a Γ -boundary if it is minimal and strongly proximal.

Equivalently:

i)
$$\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$$

ii)
$$\forall \nu \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\operatorname{Prob}(\Gamma) * \nu}$$

- iii) $\forall \nu \in \operatorname{Prob}(X) \quad P_{\nu} \text{ is an isometry}$
- iv) all UCP Γ -maps $T : C(X) \rightarrow B$ are complete isometries

UCP: unital completely positive, "complete": remains true for $T \otimes id$, automatic if A = C(X) is commutative but not in general.

Quantum case:

- take $\mathbb{T} \curvearrowright A$ unital, replace $\operatorname{Prob}(X)/\operatorname{Prob}(\Gamma)$ with $S(A)/S(c_0(\mathbb{T}))$
- i) has no meaning, only ii) \leftarrow iii) \leftarrow iv)

Boundaries and unique stationarity

Definition

A unital \mathbb{T} - C^* -algebra A is a \mathbb{T} -boundary if every UCP \mathbb{T} -map $T : A \to B$ is automatically UCI.

This has good categorical properties : $\mathbb{C} \hookrightarrow A$ is an "essential extension" in the category of unital \mathbb{F} - C^* -algebras with UCP \mathbb{F} -maps as morphisms and UCI \mathbb{F} -maps as embeddings.

Choose
$$\mu \in S(c_0(\mathbb{F}))$$
. A state $\nu \in S(A)$ is μ -stationary if $\mu * \nu = \nu$.

Proposition (Kalantar)

Assume that A admits a unique μ -stationary state ν and that P_{ν} is completely isometric. Then A is a \mathbb{F} -boundary.

Boundaries and unique stationarity

Choose $\mu \in S(c_0(\mathbb{F}))$. A state $\nu \in S(A)$ is μ -stationary if $\mu * \nu = \nu$.

Proposition (Kalantar)

Assume that A admits a unique μ -stationary state ν and that P_{ν} is completely isometric. Then A is a \mathbb{F} -boundary.

Proof. ν is stationary iff $P_{\nu}(A) \subset H^{\infty}_{\mu}(\mathbb{\Gamma}) := \{f \in \ell^{\infty}(\mathbb{\Gamma}) \mid L_{\mu}(f) = f\}$. Then P_{ν} is the unique UCP $\mathbb{\Gamma}$ -map $A \to H^{\infty}_{\mu}(\mathbb{\Gamma})$. Moreover we know that $H^{\infty}_{\mu}(\mathbb{\Gamma})$ is $\mathbb{\Gamma}$ -injective. Thus it suffices to apply:

Exercise. Let $X \hookrightarrow Y$ be an embedding, Z an injective object. Assume that there exists a unique morphism $Y \to Z$, which is moreover an embedding. Then $X \hookrightarrow Y$ is essential.

The Gromov boundary of $\mathbb{F}O_Q$

Classical case: free group $\Gamma = \Gamma = F_N$. Word length: |g|, spheres: $S_n = \{g \in F_N; |g| = n\}$. "Gromov" boundary $\partial_G F_N$: set of infinite reduced words. Compactification $\beta_G F_N = F_N \sqcup \partial_G F_N$ with topology of projective limit: $\partial_G F_N = \varprojlim(S_k, \rho_k)$ where $\rho_k : S_{k+1} \to S_k$ "forgets last letter".

The Gromov boundary of $\mathbb{F}O_Q$

Classical case: free group $\Gamma = \Gamma = F_N$. Word length: |g|, spheres: $S_n = \{g \in F_N; |g| = n\}$. "Gromov" boundary $\partial_G F_N$: set of infinite reduced words. Compactification $\beta_G F_N = F_N \sqcup \partial_G F_N$ with topology of projective limit: $\partial_G F_N = \varprojlim(S_k, \rho_k)$ where $\rho_k : S_{k+1} \to S_k$ "forgets last letter".

At the level of function algebras: $\ell^{\infty}(F_N) = \bigoplus_{k}^{\ell^{\infty}} C(S_k)$ and $C(\beta_G F_N) = \overline{\bigcup_m C(\beta_G F_N)_m} \subset \ell^{\infty}(F_N)$ with $C(\beta_G F_N)_m = \{(f_k)_k \in \bigoplus_{k}^{\ell^{\infty}} C(S_k) \mid \forall k \ge m \ f_{k+1} = f_k \circ \rho_k\}$

Quantum case: $\Gamma = \mathbb{F}O_Q$, $N \ge 3$. Recall $\ell^{\infty}(\Gamma) = \bigoplus_{k\ge 0}^{\ell^{\infty}} B(H_k)$ and we have canonical isometries $V_k : H_{k+1} \to H_k \otimes \overline{H_1}$ from the Temperley-Lieb category. Replace: $C(S_k) \leftrightarrow B(H_k)$, $f_k \circ \rho_k \leftrightarrow V_k^*(f_k \otimes \mathrm{id})V_k$.

The Gromov boundary of $\mathbb{F}O_Q$

Classical case: free group $\mathbb{F} = \Gamma = F_N$. At the level of function algebras: $\ell^{\infty}(F_N) = \bigoplus_k^{\ell^{\infty}} C(S_k)$ and $C(\beta_G F_N) = \overline{\bigcup_m C(\beta_G F_N)_m} \subset \ell^{\infty}(F_N)$ with $C(\beta_G F_N)_m = \{(f_k)_k \in \bigoplus_k^{\ell^{\infty}} C(S_k) \mid \forall k \ge m \ f_{k+1} = f_k \circ \rho_k\}$

Quantum case: $\Gamma = \mathbb{F}O_Q$, $N \ge 3$. Recall $\ell^{\infty}(\Gamma) = \bigoplus_{k \ge 0}^{\ell^{\infty}} B(H_k)$ and we have canonical isometries $V_k : H_{k+1} \to H_k \otimes H_1$ from the Temperley-Lieb category. Replace: $C(S_k) \leftrightarrow B(H_k)$, $f_k \circ \rho_k \leftrightarrow V_k^*(f_k \otimes id)V_k$.

Theorem (Vaes-Vergnioux '05)

 $C(\beta_{\mathsf{G}}\mathbb{F}O_{\mathsf{Q}})$ is a sub- $\mathbb{F}O_{\mathsf{Q}}$ - C^* -algebra of $\ell^{\infty}(\mathbb{F}O_{\mathsf{Q}})$.

We also denote $C(\partial_G \mathbb{F} O_Q) = C(\beta_G \mathbb{F} O_Q)/c_0(\mathbb{F} O_Q)$, which is still a unital $\mathbb{F} O_Q$ - C^* -algebra.

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○

An $\mathbb{F}O_Q$ -boundary

We have "quantum traces" $\operatorname{qtr}_k : B(H_k) \to \mathbb{C}$. They satisfy $\operatorname{qtr}_{k+1}(V_k^*(f_k \otimes \operatorname{id})V_k) = \operatorname{qtr}_k(f_k)$ \rightarrow we get a state $\omega = \varinjlim \operatorname{qtr}_k$ on $C(\partial_G \mathbb{F}O_Q)$. One checks that ω is μ -stationary for $\mu = \operatorname{qtr}_1 \in B(H_1)^* \subset c_0(\mathbb{F}O_Q)^*$.

Denote $C_r(\partial_G \mathbb{F} O_Q)$ the image of the GNS representation of ω .

Theorem (Vaes-Vergnioux '05)

Assume $N \geq 3$. Then P_{ω} extends to a normal *-isomorphism $P_{\omega} : C_r(\partial \mathbb{F}O_Q)'' \to H^{\infty}_{\mu}(\mathbb{F}O_Q).$

Theorem (KKSV '20)

For $N \ge 3$, ω is the unique μ -stationary state on $C(\partial_G \mathbb{F} O_Q)$. Hence $C_r(\partial_G \mathbb{F} O_Q)$ is an $\mathbb{F} O_Q$ -boundary.

For N = 2, $\mathbb{F}O_Q$ is amenable, the only $\mathbb{F}O_Q$ -boundary is \mathbb{C} .

Outline

Introduction

- Motivation
- Discrete quantum groups
- Actions
- Orthogonal free quantum groups

Boundary actions

- C-boundaries
- Boundaries and unique stationarity
- The Gromov boundary of $\mathbb{F}O_Q$
- An $\mathbb{F}O_Q$ -boundary

3 Faithfullness of boundary actions

- Uniqueness of trace
- Universal boundary and the amenable radical

Uniqueness of trace

Definition

The cokernel $N_{\alpha} \subset \ell^{\infty}(\mathbb{F})$ of α is the weak closure of $\{P_{\nu}(a), a \in A, \nu \in A^*\}$. We say that α is faithful if $N_{\alpha} = \ell^{\infty}(\mathbb{F})$.

We have $\Delta(N_{\alpha}) \subset N_{\alpha} \bar{\otimes} N_{\alpha}$: "Baaj-Vaes" subalgebra. In the classical case this implies $N_{\alpha} = \ell^{\infty}(\Gamma)^{\Lambda}$ with $\Lambda \lhd \Gamma$, and we have $\Lambda = \operatorname{Ker} \alpha$ in this case.

Recall : h is a trace $\Leftrightarrow \mathbb{F}$ unimodular.

Theorem (KKSV '20)

Assume that \mathbb{F} acts faithfully on some \mathbb{F} -boundary A. Then:

- if $\mathbb F$ is unimodular, h is the unique trace on $C^*_{\mathrm{red}}(\mathbb F)$;
- else $C^*_{\mathrm{red}}(\mathbb{F})$ does not admit any KMS state wrt the scaling group.

Question: in the unimodular case, does uniqueness of trace imply the existence of a faithful boundary action?

R. Vergnioux (Univ. Normandy)

Quantum Furstenberg boundary

Uniqueness of trace

Recall : h is a trace $\Leftrightarrow \mathbb{F}$ unimodular.

Theorem (KKSV '20)

Assume that \mathbb{F} acts faithfully on some \mathbb{F} -boundary A. Then:

- if $\mathbb F$ is unimodular, h is the unique trace on $C^*_{\mathrm{red}}(\mathbb F)$;
- else $C^*_{red}(\mathbb{F})$ does not admit any KMS state wrt the scaling group.

Question: in the unimodular case, does uniqueness of trace imply the existence of a faithful boundary action?

Theorem (KKSV '20)

For $N \geq 3$, $\mathbb{F}O_Q$ acts faithfully on $\partial_G \mathbb{F}O_Q$.

Note: in this case, uniqueness of trace was already proved in [VV '05]. In the non-unimodular case, the absence of $\tau\text{-KMS}$ state is new.

R. Vergnioux (Univ. Normandy)

Quantum Furstenberg boundary

Universal boundary and the amenable radical

Recall that an injective envelope is an injective and essential extension.

Theorem (Hamana, KKSV '20)

 \mathbb{C} admits an injective envelope $C(\partial_F \mathbb{T}) := I_{\mathbb{T}}(\mathbb{C})$, which is unique up to unique isomorphism. We call it the Furstenberg boundary of \mathbb{T} .

Then any \mathbb{F} -boundary embeds in a unique way in $C(\partial_F \mathbb{F})$. There exists a faithful \mathbb{F} -boundary **iff** $\mathbb{F} \curvearrowright \partial_F \mathbb{F}$ is faithful. In the classical case the kernel of this action is the maximal amenable normal subgroup of Γ (amenable radical).

Universal boundary and the amenable radical

Theorem (Hamana, KKSV '20)

 \mathbb{C} admits an injective envelope $C(\partial_F \mathbb{T}) := I_{\mathbb{T}}(\mathbb{C})$, which is unique up to unique isomorphism. We call it the Furstenberg boundary of \mathbb{T} .

There exists a faithful \mathbb{F} -boundary **iff** $\mathbb{F} \curvearrowright \partial_F \mathbb{F}$ is faithful. In the classical case the kernel of this action is the maximal amenable normal subgroup of Γ (amenable radical).

A \mathbb{F} -invariant subalgebra $M \subset \ell^{\infty}(\mathbb{F})$ is called *relatively amenable* if there exists a UCP \mathbb{F} -map $T : \ell^{\infty}(\mathbb{F}) \to M$.

Theorem (KKSV '20)

The cokernel N_F of $\mathbb{T} \curvearrowright \partial_F \mathbb{T}$ is the unique minimal relatively amenable Baaj-Vaes subalgebra of $\ell^{\infty}(\mathbb{T})$.

Hence there exists a faithful \mathbb{F} -boundary **iff** $\ell^{\infty}(\mathbb{F})$ has no proper relatively amenable Baaj-Vaes subalgebra.

R. Vergnioux (Univ. Normandy)

Quantum Furstenberg boundary

Proof of unique stationarity for F_N

 $S_n \subset F_N$: reduced words of length *n*. μ_n : uniform proba measure on S_n . Gromov boundary: $\partial_G F_N \simeq S_\infty$. Put $X_g = \{g \cdots \text{ reduced}\} \subset S_\infty$.

Proposition

Let ω be a proba measure on S_{∞} such that $\mu_1 * \omega = \omega$. Then for any $g \in F_N$ we have $\omega(X_g) = (\#S_{|g|})^{-1}$.

It is sufficient to prove $\omega(X_g) \leq (\#S_k)^{-1}$ for |g| = k. Observe that the assumption implies $\mu_n * \omega = \omega$ for all n.

Let me show that $(\mu_n * \omega)(X_g) \leq (\#S_k)^{-1} + o(\frac{1}{n})$. We have $(\mu_n * \omega)(X_g) = (\#S_n)^{-1} \sum_{|h|=n} \omega(hX_g)$.

Proof of unique stationarity for F_N

Let me show that $(\mu_n * \omega)(X_g) \leq (\#S_k)^{-1} + o(\frac{1}{n})$. We have $(\mu_n * \omega)(X_g) = (\#S_n)^{-1} \sum_{|h|=n} \omega(hX_g)$.

Case 1: the last letter of g is not simplified in the product hg, i.e. |hg| = k + n - 2I with $0 \le I \le k - 1$. Then $hX_g = X_{hg}$ and when I is fixed these subsets are pairwise disjoint. Hence for fixed I:

$$\sum \{\omega(hX_g); |h| = n, |hg| = k + n - 2I\} \leq 1.$$

Altogether
$$(\mu_n * \omega)(X_g) \le (\#S_n)^{-1} \sum_{l=0}^{k-1} 1 + \text{case } 2$$

= $(\#S_n)^{-1}k + \text{case } 2$.

Proof of unique stationarity for F_N

Let me show that $(\mu_n * \omega)(X_g) \leq (\#S_k)^{-1} + o(\frac{1}{n})$. We have $(\mu_n * \omega)(X_g) = (\#S_n)^{-1} \sum_{|h|=n} \omega(hX_g)$.

Case 1: the last letter of g is not simplified in the product hg, i.e. |hg| = k + n - 2l with $0 \le l \le k - 1$. Then $hX_g = X_{hg}$ and when l is fixed these subsets are pairwise disjoint. Hence for fixed l:

$$\sum \{\omega(hX_g); |h| = n, |hg| = k + n - 2l\} \leq 1.$$

Case 2: use the trivial estimate $\omega(hX_g) \leq 1$. In this case the last k letters of h are fixed, equal to g^{-1} , so we have $(2N-1)^{n-k}$ such elements h.

Altogether
$$(\mu_n * \omega)(X_g) \le (\#S_n)^{-1} \sum_{l=0}^{k-1} 1 + (\#S_n)^{-1} (2N-1)^{n-k}$$

= $(\#S_n)^{-1}k + (\#S_k)^{-1} \to_{n\infty} (\#S_k)^{-1}$.

Indeed $\#S_n = 2N(2N-1)^{n-1}$.

A = N A = N = I = 000

15/16

A real-world application

Remark

Thank you for your attention!

