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Classical facts Reduced group C∗-algebras

Reduced group C∗-algebras
Let Γ be a (discrete) group. Regular representation:

λ : Γ→ B(`2Γ), λ(g)(ξ) = (h 7→ ξ(g−1h)).

Reduced C∗-algebra: C∗red(Γ) = Span λ(Γ) ⊂ B(`2(Γ)).
Canonical trace: τ(x) = (ξ0 | xξ0) with ξ0(h) = δh,e , τ(λ(g)) = δg,e .
Satisifies τ(1) = 1, τ(x∗x) ≥ 0, τ(xy) = τ(yx) for x, y ∈ C∗red(Γ).

C∗-simplicity: C∗red(Γ) has no non-trivial closed two-sided ideal.
Unique Trace Property: τ is the unique trace on C∗red(Γ).
Examples: free group Fn [Powers 1975], PSLn(Z) for n ≥ 2.

Amenability: existence of ε : C∗red(Γ)→ C such that ε(λ(g)) = 1 ∀g.
Then ε is a trace and Ker(ε) is a non-trivial ideal. More generally the
existence of a non trivial amenable normal subgroup N C Γ is an
obstruction to C∗-simplicity and the Unique Trace Property.
Amenable radical Ramen C Γ: largest amenable normal subgroup.
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Classical facts C∗-simplicity and Uniqueness of trace

C∗-simplicity and Uniqueness of trace
C∗-simplicity: C∗red(Γ) has no non-trivial closed two-sided ideal.
Unique Trace Property: τ is the unique trace on C∗red(Γ).
Amenable radical Ramen C Γ: largest amenable normal subgroup.

C∗-simple, UTP⇒ Ramen = {1}
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In fact: C∗-simple⇒ UTP⇔ Ramen = {1}

Tool: Furstenberg, 1950s, topological dynamics

notion of Γ-boundary Γy X compact

universal Γ-boundary Γy ∂F Γ

Theorem (Kalantar, Kennedy, Breuillard, Ozawa, 2014)

Γ is C∗-simple ⇔ there exists a Γ-boundary with free action
⇔ the action of Γ on ∂F Γ is free.

Γ has the UTP ⇔ there exists a Γ-boundary with faithful action
⇔ the action of Γ on ∂F Γ is faithful.

Moreover Ker(Γy ∂F Γ) = Ramen.
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Classical facts Boundary actions

Boundary actions
Continuous action Γy X on X compact.
We have X ⊂ Prob(X) via Dirac measures and Γy Prob(X).

The action Γy X is:
minimal if ∀x, y ∈ X ∃gn ∈ Γ s.t. lim gn · x = y,
in other words: ∀x ∈ X Γ · x = X ;
proximal if ∀x, y ∈ X ∃gn ∈ Γ s.t. lim gn · x = lim gn · y ;
strongly proximal if Γy Prob(X) proximal,
or equivalently: ∀ν ∈ Prob(X) Γ · ν ∩ X , ∅.

X is a Γ-boundary if it is minimal and strongly proximal,
or equivalently: ∀ν ∈ Prob(X) X ⊂ Γ · ν.

Classical examples:
G connected simple Lie group, H < G maximal amenable, X = G/H
Γ non elementary hyperbolic, X = ∂GΓ Gromov boundary

i) ∀ν ∈ Prob(X) X ⊂ Γ · ν (X is a Γ-boundary)
ii) ∀ν ∈ Prob(X) Prob(X) =
iii) ∀ν ∈ Prob(X), f ∈ C(X)sa ‖f‖ = supµ
iv) ∀ν ∈ Prob(X) Pν is isometric
v) all unital positive Γ-maps T : C(X)→ `∞(Γ) are isometric
vi) all unital positive Γ-maps T : C(X)→ B are isometric
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vi) all unital positive Γ-maps T : C(X)→ B are isometric
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Quantum case: no sets X , Γ anymore but
noncommutative “function” algebras C(X), `∞(�)
state spaces Prob(X) = S(C(X)), Prob(�) = S∗(`∞(�))
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The quantum case Discrete quantum groups

Discrete quantum groups

A discrete quantum group � is given by :

a von Neumann algebra `∞(�) =
⊕`∞

α∈I B(Hα) with dim Hα < ∞

a normal ∗-homomorphism ∆ : `∞(�)→ `∞(�)⊗̄`∞(�) such that
(∆ ⊗ id)∆ = (id ⊗∆)∆ (coproduct)

left and right ∆-invariant nsf weights hL , hR on `∞(�)

Denote `2(�) = L2(`∞(�), hL ) the GNS space for hL .

� is unimodular if hL = hR .

The coproduct induces a tensor product π ⊗ ρ := (π ⊗ ρ)∆ for
representations π, ρ of `∞(�) I tensor C∗-category Corep(�).

Classical case: � = Γ = I, `∞(�) = `∞(Γ), ∆(f) = ((r , s) 7→ f(rs)),
hL (f) = hR(f) =

∑
r∈Γ f(r).
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The quantum case Actions of quantum groups

Actions of quantum groups

Canonical dense subalgebra : c0(�) ⊂ `∞(�) given by
⊕c0

α∈I.
A �-C∗-algebra is a C∗-algebra A equipped with a ∗-homomorphism
α : A → M(c0(�) ⊗ A) such that (id ⊗ α)α = (∆ ⊗ id)α (coaction).

For a ∈ A , ν ∈ A∗, µ ∈ c0(�)∗ we can then define
Lµ(a) = (µ ⊗ id)α(a) ∈ M(A),
Pν(a) = (id ⊗ ν)α(a) ∈ `∞(�),
µ ∗ ν = (µ ⊗ ν)α ∈ A∗.

A �-map T : A → B is a linear map such that T ◦ Lµ = Lµ ◦ T .

Classical case: Γy X , A = C0(X), α(f) = ((r , x) 7→ f(r · x)).

Example: A = c0(�), α = ∆ “translation action”.
By invariance, the maps Lµ extend to bounded operators on `2(�).
I C∗-algebra C∗red(�) = Span {Lµ} with state h = (ξ0 | · ξ0).

Note: h is a trace⇔ � unimodular.
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The quantum case Quantum Furstenberg boundary

Quantum Furstenberg boundary

In the noncommutative framework it is better to work with
completely positive (resp. isometric) maps T : A → B, i.e. such that
T ⊗ id : Mn(A)→ Mn(B) is positive (resp. isometric) for all n.

Definition (KKSV, after Kalantar-Kennedy and Hamana)
A unital �-C∗-algebra A is a �-boundary if every UCP �-map T : A → B is
automatically UCI.

This has good categorical properties : C ↪→ A is an “essential extension”
in the category of unital �-C∗-algebras with UCP �-maps as morphisms
and UCI �-maps as embeddings.

Theorem (KKSV, after Hamana)
There exists a universal �-boundary C(∂F�). For any �-boundary A there
exists a unique �-equivariant ∗-homomorphism T : A → C(∂F�).
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The quantum case The amenable radical

The amenable radical

Let α : A → M(c0(�) ⊗ A) be a coaction.

Definition
The cokernel Nα ⊂ `

∞(�) of α is the weak closure of
{Pν(a), a ∈ A , ν ∈ A∗}. We say that α is faithful if Nα = `∞(�).

The subspace M = Nα is a Baaj–Vaes subalgebra: ∆(M) ⊂ M⊗̄M.

In the classical case this implies M = `∞(Γ)Λ with Λ C Γ, and for M = Nα

we have Λ = Kerα. In the quantum case a Baaj-Vaes subalgebra M is not
necessarily associated to a subgroup � < � — it rather corresponds to a
subgroup of the dual...
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The subspace M = Nα is a Baaj–Vaes subalgebra: ∆(M) ⊂ M⊗̄M.
A �-invariant subalgebra M ⊂ `∞(�) is called relatively amenable if there
exists a UCP �-map T : `∞(�)→ M.

Theorem (KKSV)
The cokernel NF of Γy ∂F� is the unique minimal relatively amenable
Baaj-Vaes subalgebra of `∞(�).

Hence there exists a faithful �-boundary iff `∞(�) has no proper relatively
amenable Baaj-Vaes subalgebra.
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An example Orthogonal free quantum groups

Orthogonal free quantum groups

Let N ∈ N, Q ∈ GLN(C) s.t. QQ̄ = ±IN.
One defines a “Woronowicz C∗-algebra” by generators and relations:

Ao(Q) = C∗〈1, uij | uu∗ = u∗u = In,QūQ−1 = u〉,
∆ : Ao(Q)→ Ao(Q) ⊗ Ao(Q), uij 7→

∑
k uik ⊗ ukj .

Here ū = (u∗ij)ij . This algebra has a unique bi-invariant state h I reduced
algebra πh(Ao(Q)) = C∗red(FO(Q)).

One can then construct Corep(FO(Q)) and the dual algebra...
We have `∞(FO(Q)) =

⊕`∞

k∈N B(Hk ), with H0 = C, H1 = CN and
Hk ⊗ H1 ' H1 ⊗ Hk ' Hk−1 ⊕ Hk+1 (k ≥ 1)

in the tensor category of representations of `∞(FO(Q)).

The terminology comes from the following “classical” quotients of Ao(IN):
Ao(IN)/(uij , i , j) ' C∗((Z/2Z)∗N), Ao(IN)/([uij , ukl]) ' C(ON).
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An example The Gromov boundary of FO(Q)

The Gromov boundary of FO(Q)
Classical case: free group � = Γ = FN.
Word length: |g|, spheres: SK = {g ∈ FN; |g| = k }.
Gromov boundary ∂GFN: set of infinite reduced words.
It can be described as a projective limit: ∂GFN = lim

←−−
(Sk , ρk )

where ρk : Sk+1 → Sk “forgets last letter”.

Quantum case: � = FO(Q), N ≥ 3.
We have `∞(�) =

⊕`∞

k≥0 B(Hk ) and isometries Vk : Hk+1 → Hk ⊗ H1.
Define connecting maps rk : B(Hk )→ B(Hk+1), rk (f) = V∗k (f ⊗ 1)Vk and

C(∂GFO(Q)) = lim
−−→

(B(Hk ), rk ).

By construction we have C(∂GFO(Q)) ⊂ `∞(FO(Q))/c0(FO(Q)).

Theorem (Vaes-Vergnioux 2007)
C(∂GFO(Q)) is a sub-FO(Q)-C∗-algebra of `∞(FO(Q))/c0(FO(Q)).

R. Vergnioux (Univ. Normandy) Quantum Furstenberg boundary Delft, 10/12/2021 13 / 16



An example The Gromov boundary of FO(Q)

The Gromov boundary of FO(Q)

Quantum case: � = FO(Q), N ≥ 3.
We have `∞(�) =

⊕`∞

k≥0 B(Hk ) and isometries Vk : Hk+1 → Hk ⊗ H1.
Define connecting maps rk : B(Hk )→ B(Hk+1), rk (f) = V∗k (f ⊗ 1)Vk and

C(∂GFO(Q)) = lim
−−→

(B(Hk ), rk ).

By construction we have C(∂GFO(Q)) ⊂ `∞(FO(Q))/c0(FO(Q)).

Theorem (Vaes-Vergnioux 2007)
C(∂GFO(Q)) is a sub-FO(Q)-C∗-algebra of `∞(FO(Q))/c0(FO(Q)).

We have “quantum traces” qtrk : B(Hk )→ C with qtrk+1 ◦ rk = qtrk .
We get a state ω = lim

−−→
qtrk on C(∂GFO(Q)) and the corresponding

reduced algebra Cred(∂GFO(Q)) = πω(C(∂GFO(Q))).

R. Vergnioux (Univ. Normandy) Quantum Furstenberg boundary Delft, 10/12/2021 13 / 16



An example Unique sationarity

Unique stationarity
Choose µ ∈ S(c0(�)). A state ν ∈ S(A) is µ-stationary if µ ∗ ν = ν.

Proposition (Kalantar)
Assume that A admits a unique µ-stationary state ν and that Pν is
completely isometric. Then A is a �-boundary.

One checks that ω is µ-stationary for µ = qtr1 ∈ B(H1)∗ ⊂ c0(FO(Q))∗.

Theorem (Vaes-Vergnioux)
Assume N ≥ 3. Then Pω extends to a normal ∗-isomorphism between
Cred(∂FO(Q))′′ and the space of harmonic functions H∞µ (FO(Q)).

Theorem (KKSV)
For N ≥ 3, ω is the unique µ-stationary state on C(∂GFO(Q)).
Hence Cred(∂GFO(Q)) is an FO(Q)-boundary.
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Faithful boundary actions Uniqueness of trace

Uniqueness of trace

Theorem (KKSV)
Assume that � acts faithfully on some �-boundary A. Then:

if � is unimodular, h is the unique trace on C∗red(�) ;

else C∗red(�) does not admit any KMS state wrt the scaling group.

Theorem (KKSV)
For N ≥ 3, FO(Q) acts faithfully on ∂GFO(Q).

Note: uniqueness of trace was already proved in [Vaes–Vergnioux]. In the
non-unimodular case, the absence of τ-KMS state is new.

Questions. In the unimodular case, does uniqueness of trace imply the
existence of a faithful boundary action?
What about free actions and C∗-simplicity?
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