Furstenberg boundary for discrete quantum groups

Roland Vergnioux

joint work with M. Kalantar, P. Kasprzak, A. Skalski

University of Normandy (France)

Delft, October 12, 2021

R. Vergnioux (Univ. Normandy)

Quantum Furstenberg boundary

Delft. 10/12/2021 1/16

Outline

1

Classical facts

- Reduced group C*-algebras
- C*-simplicity and Uniqueness of trace
- Boundary actions

The quantum case

- Discrete quantum groups
- Actions of quantum groups
- Quantum Furstenberg boundary
- The amenable radical

An example

- Orthogonal free quantum groups
- The Gromov boundary of $\mathbb{F}O(Q)$
- Unique sationarity
- Faithful boundary actions
 - Uniqueness of trace

Reduced group C*-algebras

Reduced group C*-algebras

Let Γ be a (discrete) group. Regular representation:

$$\lambda: \Gamma \to B(\ell^2 \Gamma), \lambda(g)(\xi) = (h \mapsto \xi(g^{-1}h)).$$

Reduced C^* -algebra: $C^*_{red}(\Gamma) = \overline{\text{Span}} \lambda(\Gamma) \subset B(\ell^2(\Gamma)).$ Canonical trace: $\tau(x) = (\xi_0 | x\xi_0)$ with $\xi_0(h) = \delta_{h,e}, \tau(\lambda(g)) = \delta_{g,e}.$ Satisifies $\tau(1) = 1, \tau(x^*x) \ge 0, \tau(xy) = \tau(yx)$ for $x, y \in C^*_{red}(\Gamma).$

伺 ト イヨ ト イヨ ト ニヨ

Reduced group C*-algebras

Reduced group C*-algebras

Let Γ be a (discrete) group. Regular representation:

$$\lambda: \Gamma \to B(\ell^2 \Gamma), \, \lambda(g)(\xi) = (h \mapsto \xi(g^{-1}h)).$$

Reduced C^* -algebra: $C^*_{red}(\Gamma) = \overline{\text{Span}} \lambda(\Gamma) \subset B(\ell^2(\Gamma)).$ Canonical trace: $\tau(x) = (\xi_0 | x\xi_0)$ with $\xi_0(h) = \delta_{h,e}, \tau(\lambda(g)) = \delta_{g,e}.$ Satisifies $\tau(1) = 1, \tau(x^*x) \ge 0, \tau(xy) = \tau(yx)$ for $x, y \in C^*_{red}(\Gamma).$

*C**-simplicity: $C_{\text{red}}^*(\Gamma)$ has no non-trivial closed two-sided ideal. Unique Trace Property: τ is the unique trace on $C_{\text{red}}^*(\Gamma)$. Examples: free group F_n [Powers 1975], $PSL_n(\mathbb{Z})$ for $n \ge 2$.

(4 同) 4 回) 4 回) … 回

Reduced group C*-algebras

Let Γ be a (discrete) group. Regular representation:

$$\lambda: \Gamma \to B(\ell^2 \Gamma), \, \lambda(g)(\xi) = (h \mapsto \xi(g^{-1}h)).$$

Reduced C^* -algebra: $C^*_{red}(\Gamma) = \overline{\text{Span }} \lambda(\Gamma) \subset B(\ell^2(\Gamma)).$ Canonical trace: $\tau(x) = (\xi_0 | x\xi_0)$ with $\xi_0(h) = \delta_{h,e}, \tau(\lambda(g)) = \delta_{g,e}.$ Satisifies $\tau(1) = 1, \tau(x^*x) \ge 0, \tau(xy) = \tau(yx)$ for $x, y \in C^*_{red}(\Gamma).$

*C**-simplicity: $C_{\text{red}}^*(\Gamma)$ has no non-trivial closed two-sided ideal. Unique Trace Property: τ is the unique trace on $C_{\text{red}}^*(\Gamma)$. Examples: free group F_n [Powers 1975], $PSL_n(\mathbb{Z})$ for $n \ge 2$.

Amenability: existence of $\varepsilon : C^*_{red}(\Gamma) \to \mathbb{C}$ such that $\varepsilon(\lambda(g)) = 1 \, \forall g$. Then ϵ is a trace and $\text{Ker}(\epsilon)$ is a non-trivial ideal. More generally the existence of a non trivial amenable normal subgroup $N \triangleleft \Gamma$ is an obstruction to C^* -simplicity and the Unique Trace Property. **Amenable radical** $R_{amen} \triangleleft \Gamma$: largest amenable normal subgroup.

R. Vergnioux (Univ. Normandy)

A B + A B +

C^{*}-simplicity: *C*^{*}_{red}(Γ) has no non-trivial closed two-sided ideal. Unique Trace Property: *τ* is the unique trace on *C*^{*}_{red}(Γ). Amenable radical *R*_{amen} ⊲ Γ: largest amenable normal subgroup.

 C^* -simple, UTP \Rightarrow $R_{amen} = \{1\}$

C^{*}-simplicity: *C*^{*}_{red}(Γ) has no non-trivial closed two-sided ideal. Unique Trace Property: *τ* is the unique trace on *C*^{*}_{red}(Γ). Amenable radical *R*_{amen} ⊲ Γ: largest amenable normal subgroup.

In fact: C^* -simple \Rightarrow UTP \Leftrightarrow $R_{amen} = \{1\}$

C^{*}-simplicity: $C_{red}^*(\Gamma)$ has no non-trivial closed two-sided ideal. Unique Trace Property: τ is the unique trace on $C_{red}^*(\Gamma)$. Amenable radical $R_{amen} \triangleleft \Gamma$: largest amenable normal subgroup.

In fact: C^* -simple \Rightarrow UTP \Leftrightarrow $R_{amen} = \{1\}$

Tool: Furstenberg, 1950s, topological dynamics

- notion of Γ -boundary $\Gamma \frown X$ compact
- universal Γ -boundary $\Gamma \frown \partial_F \Gamma$

C^{*}-simplicity: $C_{red}^*(\Gamma)$ has no non-trivial closed two-sided ideal. Unique Trace Property: τ is the unique trace on $C_{red}^*(\Gamma)$. Amenable radical $R_{amen} \triangleleft \Gamma$: largest amenable normal subgroup.

In fact: C^* -simple \Rightarrow UTP \Leftrightarrow $R_{amen} = \{1\}$

Tool: Furstenberg, 1950s, topological dynamics

- notion of Γ -boundary $\Gamma \frown X$ compact
- universal Γ -boundary $\Gamma \frown \partial_F \Gamma$

Theorem (Kalantar, Kennedy, Breuillard, Ozawa, 2014)

 $\label{eq:constraint} \begin{array}{l} \Gamma \text{ is } C^* \text{-simple } \Leftrightarrow \text{ there exists a } \Gamma \text{-boundary with free action} \\ \Leftrightarrow \text{ the action of } \Gamma \text{ on } \partial_F \Gamma \text{ is free.} \end{array}$

 Γ has the UTP \Leftrightarrow there exists a Γ -boundary with faithful action \Leftrightarrow the action of Γ on $\partial_F \Gamma$ is faithful.

Moreover $\operatorname{Ker}(\Gamma \curvearrowright \partial_F \Gamma) = R_{amen}$.

< (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1)

Boundary actions

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

The action $\Gamma \frown X$ is:

- minimal if $\forall x, y \in X \exists g_n \in \Gamma$ s.t. $\lim g_n \cdot x = y$, in other words: $\forall x \in X \quad \overline{\Gamma \cdot x} = X$;
- proximal if $\forall x, y \in X \exists g_n \in \Gamma$ s.t. $\lim g_n \cdot x = \lim g_n \cdot y$;
- strongly proximal if Γ ~ Prob(X) proximal, or equivalently: ∀ν ∈ Prob(X) Γ · ν ∩ X ≠ Ø.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \ X \subset \overline{\Gamma \cdot \nu}$.

Classical examples:

- G connected simple Lie group, H < G maximal amenable, X = G/H
- Γ non elementary hyperbolic, $X = \partial_G \Gamma$ Gromov boundary

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

- i) $\forall v \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot v}$ (X is a Γ -boundary)
- ii) $\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\operatorname{Conv}} \ \Gamma \cdot v$

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

- i) $\forall v \in \operatorname{Prob}(X)$ $X \subset \overline{\Gamma \cdot v}$ (X is a Γ -boundary)
- ii) $\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}}$

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

i) $\forall v \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot v}$ (X is a Γ -boundary)

- ii) $\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}}$
- iii) $\forall v \in \operatorname{Prob}(X), f \in C(X)_{sa}$ $||f|| = \sup_{\mu} |\langle \mu * v, f \rangle|$

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

i) $\forall v \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot v}$ (X is a Γ -boundary)

- ii) $\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}}$
- iii) $\forall v \in \operatorname{Prob}(X), f \in C(X)_{sa} ||f|| = \sup_{\mu} |\langle \mu, v * f \rangle|$

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

i) $\forall v \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot v}$ (X is a Γ -boundary)

- ii) $\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}}$
- iii) $\forall v \in \operatorname{Prob}(X), f \in C(X)_{sa} ||f|| = \sup_{\mu} |\langle \mu, v * f \rangle|$
- iv) $\forall v \in \operatorname{Prob}(X)$ P_v is isometric on $C(X)_{sa}$

伺 ト イヨ ト イヨ ト

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma), \nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $v \in \operatorname{Prob}(X), f \in C(X) \rightarrow P_{v}(f) = v * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

i) $\forall v \in \operatorname{Prob}(X)$ $X \subset \Gamma \cdot v$ (X is a Γ -boundary)

- ii) $\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}$
- iii) $\forall v \in \operatorname{Prob}(X), f \in C(X)_{sa} ||f|| = \sup_{u} |\langle \mu, v * f \rangle|$
- iv) $\forall v \in \operatorname{Prob}(X)$ P_v is isometric

伺 ト イ ヨ ト イ ヨ ト

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

i)
$$\forall v \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot v}$$
 (X is a Γ -boundary)

ii)
$$\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}}$$

iii)
$$\forall v \in \operatorname{Prob}(X), f \in C(X)_{sa} ||f|| = \sup_{\mu} |\langle \mu, v * f \rangle|$$

- iv) $\forall v \in \operatorname{Prob}(X)$ P_v is isometric
- v) all unital positive Γ -maps $T : C(X) \to \ell^{\infty}(\Gamma)$ are isometric (indeed $T = P_{\nu}$ for $\nu = ev_e \circ T$)

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

i) $\forall v \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot v}$ (X is a Γ -boundary)

- ii) $\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}}$
- iii) $\forall v \in \operatorname{Prob}(X), f \in C(X)_{sa} ||f|| = \sup_{\mu} |\langle \mu, v * f \rangle|$
- iv) $\forall v \in \operatorname{Prob}(X) \quad P_v$ is isometric
- v) all unital positive Γ -maps $T : C(X) \to \ell^{\infty}(\Gamma)$ are isometric
- vi) all unital positive Γ -maps $T : C(X) \to B$ are isometric

- 4 伺 2 4 日 2 4 日 2 日

Continuous action $\Gamma \curvearrowright X$ on X compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

Convolution operations: $\mu \in \operatorname{Prob}(\Gamma)$, $\nu \in \operatorname{Prob}(X) \rightarrow \mu * \nu \in \operatorname{Prob}(X)$ $\nu \in \operatorname{Prob}(X)$, $f \in C(X) \rightarrow P_{\nu}(f) = \nu * f \in \ell^{\infty}(\Gamma)$

The following assertions are equivalent:

i)
$$\forall v \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot v}$$
 (X is a Γ -boundary)

ii)
$$\forall v \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * v, \mu \in \operatorname{Prob}(\Gamma)\}}$$

iii)
$$\forall v \in \operatorname{Prob}(X), f \in C(X)_{sa} ||f|| = \sup_{\mu} |\langle \mu, v * f \rangle|$$

iv)
$$\forall v \in \operatorname{Prob}(X) \quad P_v$$
 is isometric

- v) all unital positive Γ -maps $T : C(X) \to \ell^{\infty}(\Gamma)$ are isometric
- vi) all unital positive Γ -maps $T : C(X) \rightarrow B$ are isometric

Quantum case: no sets X, Γ anymore but

- noncommutative "function" algebras $C(\mathbb{X}), \ell^{\infty}(\mathbb{\Gamma})$
- state spaces $\operatorname{Prob}(\mathbb{X}) = S(C(\mathbb{X})), \operatorname{Prob}(\mathbb{F}) = S_*(\ell^{\infty}(\mathbb{F}))$

マラトマラト ラ

Outline

- Classical facts
 - Reduced group C*-algebras
 - C*-simplicity and Uniqueness of trace
 - Boundary actions

The quantum case

- Discrete quantum groups
- Actions of quantum groups
- Quantum Furstenberg boundary
- The amenable radical

An example

- Orthogonal free quantum groups
- The Gromov boundary of $\mathbb{F}O(Q)$
- Unique sationarity
- Faithful boundary actions
 - Uniqueness of trace

Discrete quantum groups

A discrete quantum group $\mathbb \Gamma$ is given by :

- a von Neumann algebra $\ell^{\infty}(\mathbb{F}) = \bigoplus_{\alpha \in I}^{\ell^{\infty}} B(H_{\alpha})$ with dim $H_{\alpha} < \infty$
- a normal *-homomorphism $\Delta : \ell^{\infty}(\mathbb{T}) \to \ell^{\infty}(\mathbb{T}) \bar{\otimes} \ell^{\infty}(\mathbb{T})$ such that $(\Delta \otimes id)\Delta = (id \otimes \Delta)\Delta$ (coproduct)
- left and right Δ -invariant nsf weights h_L , h_R on $\ell^{\infty}(\Gamma)$

Denote $\ell^2(\mathbb{F}) = L^2(\ell^{\infty}(\mathbb{F}), h_L)$ the GNS space for h_L .

The coproduct induces a tensor product $\pi \otimes \rho := (\pi \otimes \rho)\Delta$ for representations π, ρ of $\ell^{\infty}(\mathbb{F}) \rightarrow$ tensor C^* -category Corep (\mathbb{F}) .

Classical case:
$$\Gamma = \Gamma = I$$
, $\ell^{\infty}(\Gamma) = \ell^{\infty}(\Gamma)$, $\Delta(f) = ((r, s) \mapsto f(rs))$,
 $h_L(f) = h_R(f) = \sum_{r \in \Gamma} f(r)$.

イロト (得) (ヨト (ヨト) ヨ

Actions of quantum groups

Actions of quantum groups

Canonical dense subalgebra : $c_0(\Gamma) \subset \ell^{\infty}(\Gamma)$ given by $\bigoplus_{\alpha \in I}^{c_0}$. A Γ -*C**-algebra is a *C**-algebra *A* equipped with a *-homomorphism $\alpha : A \to M(c_0(\Gamma) \otimes A)$ such that $(\mathrm{id} \otimes \alpha)\alpha = (\Delta \otimes \mathrm{id})\alpha$ (coaction).

For
$$a \in A$$
, $v \in A^*$, $\mu \in c_0(\mathbb{F})^*$ we can then define
 $L_{\mu}(a) = (\mu \otimes \mathrm{id})\alpha(a) \in M(A),$
 $P_{\nu}(a) = (\mathrm{id} \otimes \nu)\alpha(a) \in \ell^{\infty}(\mathbb{F}),$
 $\mu * \nu = (\mu \otimes \nu)\alpha \in A^*.$

A Γ -map $T : A \to B$ is a linear map such that $T \circ L_{\mu} = L_{\mu} \circ T$.

Classical case: $\Gamma \curvearrowright X$, $A = C_0(X)$, $\alpha(f) = ((r, x) \mapsto f(r \cdot x))$.

Example: $A = c_0(\mathbb{F}), \alpha = \Delta$ "translation action". By invariance, the maps L_{μ} extend to bounded operators on $\ell^2(\mathbb{F})$. $\rightarrow C^*$ -algebra $C^*_{\text{red}}(\mathbb{F}) = \overline{\text{Span}} \{L_{\mu}\}$ with state $h = (\xi_0 | \cdot \xi_0)$. **Note:** *h* is a trace $\Leftrightarrow \mathbb{F}$ unimodular.

イロト イポト イヨト イヨト 二日

Quantum Furstenberg boundary

In the noncommutative framework it is better to work with **completely** positive (resp. isometric) maps $T : A \to B$, i.e. such that $T \otimes id : M_n(A) \to M_n(B)$ is positive (resp. isometric) for all *n*.

Definition (KKSV, after Kalantar-Kennedy and Hamana)

A unital \mathbb{F} - C^* -algebra A is a \mathbb{F} -boundary if every UCP \mathbb{F} -map $T : A \to B$ is automatically UCI.

This has good categorical properties : $\mathbb{C} \hookrightarrow A$ is an "essential extension" in the category of unital \mathbb{F} - C^* -algebras with UCP \mathbb{F} -maps as morphisms and UCI \mathbb{F} -maps as embeddings.

Theorem (KKSV, after Hamana)

There exists a universal \mathbb{F} -boundary $C(\partial_F \mathbb{F})$. For any \mathbb{F} -boundary A there exists a unique \mathbb{F} -equivariant *-homomorphism $T : A \to C(\partial_F \mathbb{F})$.

イロト イポト イヨト イヨト 三日

The amenable radical

Let $\alpha : A \to M(c_0(\mathbb{F}) \otimes A)$ be a coaction.

Definition

The cokernel $N_{\alpha} \subset \ell^{\infty}(\mathbb{F})$ of α is the weak closure of $\{P_{\nu}(a), a \in A, \nu \in A^*\}$. We say that α is faithful if $N_{\alpha} = \ell^{\infty}(\mathbb{F})$.

The subspace $M = N_{\alpha}$ is a *Baaj–Vaes subalgebra*: $\Delta(M) \subset M \bar{\otimes} M$.

In the classical case this implies $M = \ell^{\infty}(\Gamma)^{\Lambda}$ with $\Lambda \triangleleft \Gamma$, and for $M = N_{\alpha}$ we have $\Lambda = \operatorname{Ker} \alpha$. In the quantum case a Baaj-Vaes subalgebra M is not necessarily associated to a subgroup $\Lambda < \Gamma$ — it rather corresponds to a subgroup of the dual...

伺 とう きょう とう うう

The amenable radical

Let $\alpha : A \to M(c_0(\mathbb{F}) \otimes A)$ be a coaction.

Definition

The cokernel $N_{\alpha} \subset \ell^{\infty}(\mathbb{F})$ of α is the weak closure of $\{P_{\nu}(a), a \in A, \nu \in A^*\}$. We say that α is faithful if $N_{\alpha} = \ell^{\infty}(\mathbb{F})$.

The subspace $M = N_{\alpha}$ is a *Baaj–Vaes subalgebra*: $\Delta(M) \subset M \bar{\otimes} M$. A \mathbb{F} -invariant subalgebra $M \subset \ell^{\infty}(\mathbb{F})$ is called *relatively amenable* if there exists a UCP \mathbb{F} -map $T : \ell^{\infty}(\mathbb{F}) \to M$.

Theorem (KKSV)

The cokernel N_F of $\Gamma \curvearrowright \partial_F \Gamma$ is the unique minimal relatively amenable Baaj-Vaes subalgebra of $\ell^{\infty}(\Gamma)$.

Hence there exists a faithful \mathbb{T} -boundary **iff** $\ell^{\infty}(\mathbb{T})$ has no proper relatively amenable Baaj-Vaes subalgebra.

イロト 不得 トイヨト イヨト 二日

Outline

- Classical facts
 - Reduced group C*-algebras
 - C*-simplicity and Uniqueness of trace
 - Boundary actions

The quantum case

- Discrete quantum groups
- Actions of quantum groups
- Quantum Furstenberg boundary
- The amenable radical

An example

- Orthogonal free quantum groups
- The Gromov boundary of $\mathbb{F}O(Q)$
- Unique sationarity
- Faithful boundary actions
 - Uniqueness of trace

Orthogonal free quantum groups

Let $N \in \mathbb{N}$, $Q \in GL_N(\mathbb{C})$ s.t. $Q\overline{Q} = \pm I_N$.

One defines a "Woronowicz C^* -algebra" by generators and relations:

$$\begin{array}{l} \mathcal{A}_{o}(Q) = C^{*} \langle 1, u_{ij} \mid uu^{*} = u^{*}u = I_{n}, Q\bar{u}Q^{-1} = u \rangle, \\ \Delta : \mathcal{A}_{o}(Q) \rightarrow \mathcal{A}_{o}(Q) \otimes \mathcal{A}_{o}(Q), u_{ij} \mapsto \sum_{k} u_{ik} \otimes u_{kj}. \end{array}$$

Here $\bar{u} = (u_{ij}^*)_{ij}$. This algebra has a unique bi-invariant state $h \rightarrow$ reduced algebra $\pi_h(A_o(Q)) = C_{red}^*(\mathbb{F}O(Q))$.

One can then construct Corep($\mathbb{F}O(Q)$) and the dual algebra... We have $\ell^{\infty}(\mathbb{F}O(Q)) = \bigoplus_{k \in \mathbb{N}}^{\ell^{\infty}} B(H_k)$, with $H_0 = \mathbb{C}$, $H_1 = \mathbb{C}^N$ and $H_k \otimes H_1 \simeq H_1 \otimes H_k \simeq H_{k-1} \oplus H_{k+1}$ ($k \ge 1$)

in the tensor category of representations of $\ell^{\infty}(\mathbb{F}O(Q))$.

The terminology comes from the following "classical" quotients of $A_o(I_N)$: $A_o(I_N)/(u_{ij}, i \neq j) \simeq C^*((\mathbb{Z}/2\mathbb{Z})^{*N}), \quad A_o(I_N)/([u_{ij}, u_{kl}]) \simeq C(O_N).$

The Gromov boundary of $\mathbb{F}O(Q)$

Classical case: free group $\Gamma = \Gamma = F_N$. Word length: |g|, spheres: $S_K = \{g \in F_N; |g| = k\}$. Gromov boundary $\partial_G F_N$: set of infinite reduced words. It can be described as a projective limit: $\partial_G F_N = \varprojlim(S_k, \rho_k)$ where $\rho_k : S_{k+1} \to S_k$ "forgets last letter".

Quantum case: $\Gamma = \mathbb{F}O(Q), N \ge 3$. We have $\ell^{\infty}(\Gamma) = \bigoplus_{k\ge 0}^{\ell^{\infty}} B(H_k)$ and isometries $V_k : H_{k+1} \to H_k \otimes H_1$. Define connecting maps $r_k : B(H_k) \to B(H_{k+1}), r_k(f) = V_k^*(f \otimes 1)V_k$ and

$$C(\partial_G \mathbb{F}O(Q)) = \varinjlim(B(H_k), r_k).$$

By construction we have $C(\partial_G \mathbb{F}O(Q)) \subset \ell^{\infty}(\mathbb{F}O(Q))/c_0(\mathbb{F}O(Q)).$

Theorem (Vaes-Vergnioux 2007)

 $C(\partial_G \mathbb{F}O(Q))$ is a sub- $\mathbb{F}O(Q)$ - C^* -algebra of $\ell^{\infty}(\mathbb{F}O(Q))/c_0(\mathbb{F}O(Q))$.

イロト 不得 トイヨト イヨト 二日

The Gromov boundary of $\mathbb{F}O(Q)$

Quantum case: $\Gamma = \mathbb{F}O(Q), N \ge 3$. We have $\ell^{\infty}(\Gamma) = \bigoplus_{k\ge 0}^{\ell^{\infty}} B(H_k)$ and isometries $V_k : H_{k+1} \to H_k \otimes H_1$. Define connecting maps $r_k : B(H_k) \to B(H_{k+1}), r_k(f) = V_k^*(f \otimes 1)V_k$ and

$$C(\partial_G \mathbb{F}O(Q)) = \varinjlim(B(H_k), r_k).$$

By construction we have $C(\partial_G \mathbb{F}O(Q)) \subset \ell^{\infty}(\mathbb{F}O(Q))/c_0(\mathbb{F}O(Q))$.

Theorem (Vaes-Vergnioux 2007)

 $C(\partial_{G}\mathbb{F}O(Q))$ is a sub- $\mathbb{F}O(Q)$ - C^* -algebra of $\ell^{\infty}(\mathbb{F}O(Q))/c_0(\mathbb{F}O(Q))$.

We have "quantum traces" $\operatorname{qtr}_k : B(H_k) \to \mathbb{C}$ with $\operatorname{qtr}_{k+1} \circ r_k = \operatorname{qtr}_k$. We get a state $\omega = \varinjlim \operatorname{qtr}_k \operatorname{on} C(\partial_G \mathbb{F}O(Q))$ and the corresponding reduced algebra $C_{\operatorname{red}}(\partial_G \mathbb{F}O(Q)) = \pi_\omega(C(\partial_G \mathbb{F}O(Q)))$.

イロト 不得 トイヨト イヨト 二日

Unique stationarity

Choose $\mu \in S(c_0(\Gamma))$. A state $\nu \in S(A)$ is μ -stationary if $\mu * \nu = \nu$.

Proposition (Kalantar)

Assume that A admits a **unique** μ -stationary state ν and that P_{ν} is completely isometric. Then A is a \mathbb{F} -boundary.

One checks that ω is μ -stationary for $\mu = \operatorname{qtr}_1 \in B(H_1)^* \subset c_0(\mathbb{F}O(Q))^*$.

Theorem (Vaes-Vergnioux)

Assume $N \ge 3$. Then P_{ω} extends to a normal *-isomorphism between $C_{\text{red}}(\partial \mathbb{F}O(Q))''$ and the space of harmonic functions $H^{\infty}_{\mu}(\mathbb{F}O(Q))$.

Theorem (KKSV)

For $N \ge 3$, ω is the unique μ -stationary state on $C(\partial_G \mathbb{F}O(Q))$. Hence $C_{red}(\partial_G \mathbb{F}O(Q))$ is an $\mathbb{F}O(Q)$ -boundary.

R. Vergnioux (Univ. Normandy)

Outline

- Classical facts
 - Reduced group C*-algebras
 - C*-simplicity and Uniqueness of trace
 - Boundary actions

The quantum case

- Discrete quantum groups
- Actions of quantum groups
- Quantum Furstenberg boundary
- The amenable radical

An example

- Orthogonal free quantum groups
- The Gromov boundary of $\mathbb{F}O(Q)$
- Unique sationarity

Faithful boundary actions

Uniqueness of trace

Uniqueness of trace

Theorem (KKSV)

Assume that \mathbb{F} acts faithfully on some \mathbb{F} -boundary A. Then:

- if \mathbb{F} is unimodular, h is the unique trace on $C^*_{\mathrm{red}}(\mathbb{F})$;
- else $C^*_{red}(\mathbb{F})$ does not admit any KMS state wrt the scaling group.

Theorem (KKSV)

For $N \ge 3$, $\mathbb{F}O(Q)$ acts faithfully on $\partial_G \mathbb{F}O(Q)$.

Note: uniqueness of trace was already proved in [Vaes–Vergnioux]. In the non-unimodular case, the absence of τ -KMS state is new.

Questions. In the unimodular case, does uniqueness of trace imply the existence of a faithful boundary action? What about free actions and C^* -simplicity?

イロト イポト イヨト イヨト 三日