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Introduction

Let < be aquantum subgroup of a discrete quantum group.
The von Neumann algebra of Hecke operators is the commutant of the
quasi-regular representation: Z( , )= B(¢?( / )) .
Questions:
@ (combinatorial) description of Z( , )?
@ modular properties of the canonical state (6 |-6 )?
© analytical properties of this von Neumann algebra...

In the classical case @ is solved using a dense subalgebra
H(T,N) = c.(A\T'/N\) with convolution product.

© construction and descriptionof / , \ / ?

@ boundedness of the action of ¢;( \ / )on 2( / )?

For @, @ we construct the Schlichting completion (G, H) of ( , ).
- construction of new locally compact quantum groups.
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Discrete quantum groups

A discrete quantum group is given by
@ an algebra of the form ¢°( ) = (- @ael( ) B(Ha), dim Hy < oo,
@ acoproduct A : () — £ )®( ).

A endows the category Corep( ) = Rep(¢*°( )) with a tensor structure:

vaw:=(vew)oA. I( )isthe set of irreducibles (up to equiv.).
Combinatorial data underlying : spaces Hom («,8®7y) fore, B,y € I( ).

Some notation:
® p, =idH,, @y = pea@ € B(Hy) fora e ¢( ), acl( );
@ dual corepresentation &;
@ quantum dimension dimg(a), equals dim(H,) if h. = hg;
@ Haar weights h;, hg on ¢*( ); antipode S.

Classical case = T:(®( )commutative & YadimH, = 1.
Thenl( )=T,a®B=aB,a@=a"", h. = hg = counting measure.
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Hecke algebras for discrete quantum groups Structure of the quotient space

Subgroups of discrete quantum groups

A (quantum) subgroup C s given by a restriction homomorphism
n () » £°( ) compatible with A.

We have ¢°( ) ~ p ¢*( ) for some central projection p € £*( ).
We have I( ) c I( ):infact, 7* : Corep( ) — Corep( ) is fully faithful.

Quotient spaces.

@ Quantum: ¢*( / )=¢*( ) ={act®( )| (1ep )A(a)=axp }.
We have A(¢*( /) c®( )&>( /).

@ Classical: I( )/ =I( )/~wherea~Bo dlecl( ) Bca®A

Some notation:
@ v € Corep( ), -isotypical component of v € Corep( );
0 k, =dimg(@®a) forael( );
@ [a]theclassof ainI( )/ (or \I( ));
® Pl] = Zpefa] PE € (/).
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Description of the quotient space

Theorem
® We have (( | )= (=D, Pi¢( / )
@ We have pj,1t( / )= B(H,) N B(H,) canonically.
@ More generally Hom ; (a,8) = B(H,,Hs) -
® Forae(™( /| )wehavea = Y, (hr®id)[(S7"(a,) ® 1)A(p )].

Denote ce( / ) = D pt™( / )c( /) =TTput>( / )

v

Analogue of the counting measure on /A :

Corollary

c.( / ) admits a (unique) positive, -invariant faithful form given by
(@) = Yo 45" hi(aa)-
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The Hecke algebra

Definition
Foraecs( / ),becc( \ ) define

a=b=(ideu)[A(a)(1® S(b))] = (uS@id)[A(b)(S™(a)®1)] € c( )
and a* = S(a*) e co( \ ).

Classical case: Ya dimg(@) = 1, k, = 1. We recover the formula
(axb)(g) = Xnjer/n algh)b(h™).
Proposition-Definition

A, )=ce( /| )nce( \ )isan involutive algebra for + and *,
with unit p , stable under o}, ot and 7.

R. Vergnioux (Univ. Caen) Hecke Algebras and quantum groups Marseille, May 17th, 2022 8/15



The Hecke algebra

Proposition-Definition

H(, ):=ce( /| )nce( \ )isaninvolutive algebra for x and *,
with unit p , stable under o, ot and 7.

NB.cc( / )nce( \ )is also a (possibly degenerate) sub-*-algebra of
¢*( ). Denote, forre \I( )/ :
Lir)=#{ae \I( )laect}, R(r)=#{acl( )/ |lacT)

Proposition-Definition
We say that ( , )isaHeckepairifcc( /| )nce( \ )c€®( )isnon
degenerate & ¥Vt e \I( )/ L(1)<oo.

Examples: finite or finite index. Normal case: ifcc( / ) =cc( \ ),
( , ) is the convolution algebra of the quotient quantum group / .
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Hecke Operators

Recall that c.( / ) is endowed with a left -action.

Proposition

Let( , ) be a Hecke pair. We have isomorphisms
H(, ) — End(ce( /))
ar— T(a):=(-=xa)
Flp) «— F
Moreover (x | T(a)y) = (T(a*)x | y) for the scalar product assoc’d with .

Theorem

Let( , ) be a Hecke pair. T(a) is bounded on ¢( | ) for all
ae( , )iffk, < Cgi,forallyca®p.

This property is not satisfied by all inclusions < . | don’t know how to
prove directly that it is satisfied by Hecke pairs.
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Modular properties
Canonical stateon .7( , J):w=¢€e=(p | T(-)p ). Itis faithful.
Proposition-Definition

LetVec( \ / )unique suchthatuS(a) = pu(Va) forallac 2( , ).
Then 6; : a — ol(V'a) is a group of §-automorphisms of 7#( , ) and w
is 6-KMS.

Theorem

Asumme is unimodular. ThenV, = (L([a])/R([al)) F? where the F,
are Woronowicz’ modular matrices, and fort = [[all € \I( )/ :

NE(T) = Yisle \I( )sler (dimg8)?/k;

R(7) = Xpsjei )/ sjer (dimg 6)?/ks.

There is also a more involved formula when is not unimodular...
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The C*-Hopf algebra

Classical reminder. Consider A4 : ' — Sym(I'/A) by left translations.

Define G = A(I). If (I', A) is a Hecke pair, it is a locally compact group and
H = A(A) is compact open.

But Sym(I'/A) has no good quantum analogue...
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The C*-Hopf algebra

Classical reminder. Consider A4 : ' — Sym(I'/A) by left translations.

Define G = A(I). If (I', A) is a Hecke pair, it is a locally compact group and
H = A(A) is compact open.

But Sym(I'/A) has no good quantum analogue...
Definition

We put 0;(G) = alg—(a*xb,acce( / ),bece( \ ))cec( ).
Co(G)=C*<(axb,accs( / ).,becs( \ )yce().

Classical case: ' — G induces Cy(G) c £*(G).
Ifa= 1[,], b= 1[31 thenaxb = 1{9 | g[s]~'=[r]}-
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The C*-Hopf algebra
Definition

We put 0;(G) = alg—(a=xb,accs( /| ),becs( \ )ce( ).
Co(G)=C*—(axb,accs( / ).,beces( \ )ce().

Classical case: ' — G induces Cy(G) c £*(G).
Ifa= 1[r]1 b= 1[3] thenaxb = 1{9 | g[s]~'=[r]}-

Theorem
If( , ) is a Hecke pair we have
A(0:(G))(1® O:(G)) = Ox(G) © G.(G) = A(0:(G))(0:(G) ®1).
0¢(G) is a multiplier Hopf algebra.
Co(G) is a bisimplifiable Hopf C*-algebra.
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The Haar weights

Corollary-Definition

C(H) := p Co(G) is a Hopf C*-algebra (with unitp ).
Hence it admits a Haar state h.

We have cc( /| ) = O:(G)™ in ().

Corollary-Definition

¢ = u(id® hp )A is an integral on 0(G). G is an algebraic quantum
group, hence a locally compact quantum group.

NB. If the action of on / isfaithful and is infinite, G is non-discrete.

NB. The algebraic quantum groups G with commutative &;(G) are exactly
the locally compact groups G admitting a compact-open subgroup H, and
Oc(G) = {f € C¢(G) | dim Vect(H - f) < oo}.
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The Hecke Algebra
Let (G, H) be the Schlichting completion of a Hecke pair ( , ).

Since H is compact, we can consider
@ ¢:(G/H) := 0,(G)" c 0,(G) and ¢3(G/H) = c.(G/H) c L3(G),
e 7 (G,H) :="0,(G)" with the convolution product of 0,(G).

Proposition
We have (G, H) ~ End(c:(G/H))%, b T'(b) := (- * b). J

By construction of (G, H) we have
End(c.(G/H))® = End(ce( / )) and 3(G/H) = ¢3( / ).
The operators T’(b) arise from the right regular repr. of G, hence:

Corollary
The Hecke operators T(a), fora € #( , ), are bounded on £?( | ). }
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HNN Extensions

Fixe .1 C o withanisomorphismé: |1 — _j.
Consider = HNN( o,6) [Fima 2013]. C[ ] is generated by C[ (] and a
group-like unitary w such that wexw™ = 6¢(x) for x e C[ ¢].
Proposition
@ If .4 have finite index in ¢ and are different from g,
then ¢ c is almost normal, not normal, of infinite index.
@ If Nkez Dom@* = (1} the action of on /| ¢ is faithful.
o We have V,, = (L([wl)/R(Iw1)) pw with
L(Iwl) = Spse 1\ o) dimg(6 ®3)/ dimg(5 ®6) |,
R(IW) = Zisjei o)) _; dimg(3 ® 6)/ dimg(5®6) _,.
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HNN Extensions

Proposition
@ If .4 have finite index in ¢ and are different from ),
then ¢ c is almost normal, not normal, of infinite index.
@ If Nkez Dom 6% = {1} the action of on /| o is faithful.
o We have V,, = (L([wl)/R([w1)) pw with
L(Iwl) = Zpgje ¢ 4) dimg(6 ®3)/ dimg(6 ®3) ,,
R(IWD) = Ssjei o) dimg(3 ® 6)/ dimg(5®6) _,.

Example. > .4 non abelian finite classical groups.
Take o = [Tkez- Lsen(k) AN ¢ = [Theze e ngn(k) < o
Then the Proposition applies, L(l[w]]) #2¥1, R([w]) = #X_1.

G is a non-discrete, non-classical, non-co-classical locally compact
quantum group, with non-trivial modular group if #¥1 # #X_4.
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