Hecke Algebras and the Schlichting completion for discrete quantum groups

Roland Vergnioux

joint work with A. Skalski et C. Voigt

Université de Caen

Marseille, May 17th, 2022

Outline

- Introduction
- Hecke algebras for discrete quantum groups
 - Structure of the quotient space
 - Hecke algebra
- The Schlichting Completion
 - Construction of the completion
 - Application to Hecke operators
 - Exemples

Introduction

Let $\mathbb{A} \subset \mathbb{F}$ be a quantum subgroup of a discrete quantum group. The von Neumann algebra of Hecke operators is the commutant of the quasi-regular representation: $\mathscr{L}(\mathbb{F},\mathbb{A}) = B(\ell^2(\mathbb{F}/\mathbb{A}))^{\mathbb{F}}$.

Questions:

- lacktriangle (combinatorial) description of $\mathcal{L}(\Gamma, \Lambda)$?
- ② modular properties of the canonical state $(\delta_{\mathbb{A}} \mid \cdot \delta_{\mathbb{A}})$?
- 3 analytical properties of this von Neumann algebra...

In the classical case \odot is solved using a dense subalgebra $\mathscr{H}(\Gamma,\Lambda)\simeq c_c(\Lambda\backslash\Gamma/\Lambda)$ with convolution product.

- **4** construction and description of Γ/Λ , $\Lambda\backslash\Gamma/\Lambda$?
- **5** boundedness of the action of $c_c(\mathbb{A}\backslash\mathbb{F}/\mathbb{A})$ on $\ell^2(\mathbb{F}/\mathbb{A})$?

→ construction of new locally compact quantum groups.

Outline

- Introduction
- Hecke algebras for discrete quantum groups
 - Structure of the quotient space
 - Hecke algebra
- The Schlichting Completion
 - Construction of the completion
 - Application to Hecke operators
 - Exemples

4/15

Discrete quantum groups

- an algebra of the form $\ell^{\infty}(\mathbb{\Gamma}) = \ell^{\infty} \bigoplus_{\alpha \in I(\mathbb{\Gamma})} B(H_{\alpha})$, dim $H_{\alpha} < \infty$,
- a coproduct $\Delta : \ell^{\infty}(\mathbb{F}) \to \ell^{\infty}(\mathbb{F}) \bar{\otimes} \ell^{\infty}(\mathbb{F})$.

 Δ endows the category $\operatorname{Corep}(\mathbb{\Gamma}) = \operatorname{Rep}(\ell^{\infty}(\mathbb{\Gamma}))$ with a tensor structure: $v \otimes w := (v \otimes w) \circ \Delta$. $I(\mathbb{\Gamma})$ is the set of irreducibles (up to equiv.). Combinatorial data underlying $\mathbb{\Gamma}$: spaces $\operatorname{Hom}_{\mathbb{\Gamma}}(\alpha, \beta \otimes \gamma)$ for $\alpha, \beta, \gamma \in I(\mathbb{\Gamma})$.

Some notation:

- $p_{\alpha} = \mathrm{id}_{H_{\alpha}}$, $a_{\alpha} = p_{\alpha}a \in B(H_{\alpha})$ for $a \in \ell^{\infty}(\mathbb{\Gamma})$, $\alpha \in I(\mathbb{\Gamma})$;
- dual corepresentation $\bar{\alpha}$;
- quantum dimension $\dim_q(\alpha)$, equals $\dim(H_\alpha)$ if $h_L = h_R$;
- Haar weights h_L , h_R on $\ell^{\infty}(\Gamma)$; antipode S.

Classical case $\Gamma = \Gamma$: $\ell^{\infty}(\Gamma)$ commutative $\Leftrightarrow \forall \alpha \dim H_{\alpha} = 1$.

Then $I(\Gamma) = \Gamma$, $\alpha \otimes \beta = \alpha \beta$, $\bar{\alpha} = \alpha^{-1}$, $h_L = h_R =$ counting measure.

Subgroups of discrete quantum groups

A (quantum) **subgroup** $\mathbb{A} \subset \mathbb{F}$ is given by a restriction homomorphism $\pi_{\mathbb{A}} : \ell^{\infty}(\mathbb{F}) \twoheadrightarrow \ell^{\infty}(\mathbb{A})$ compatible with Δ .

We have $\ell^{\infty}(\mathbb{A}) \simeq p_{\mathbb{A}}\ell^{\infty}(\mathbb{F})$ for some central projection $p_{\mathbb{A}} \in \ell^{\infty}(\mathbb{F})$. We have $I(\mathbb{A}) \subset I(\mathbb{F})$: in fact, $\pi_{\mathbb{A}}^* : \operatorname{Corep}(\mathbb{A}) \to \operatorname{Corep}(\mathbb{F})$ is fully faithful.

Quotient spaces.

- Quantum: $\ell^{\infty}(\Gamma/\Lambda) = \ell^{\infty}(\Gamma)^{\Lambda} = \{a \in \ell^{\infty}(\Gamma) \mid (1 \otimes p_{\Lambda})\Delta(a) = a \otimes p_{\Lambda}\}.$ We have $\Delta(\ell^{\infty}(\Gamma/\Lambda)) \subset \ell^{\infty}(\Gamma)\bar{\otimes}\ell^{\infty}(\Gamma/\Lambda).$
- Classical: $I(\mathbb{F})/\mathbb{A} = I(\mathbb{F})/\sim$ where $\alpha \sim \beta \Leftrightarrow \exists \lambda \in I(\mathbb{A}) \quad \beta \subset \alpha \otimes \lambda$.

Some notation:

- $v_{\mathbb{A}} \in \operatorname{Corep}(\mathbb{A})$, \mathbb{A} -isotypical component of $v \in \operatorname{Corep}(\mathbb{F})$;
- $\kappa_{\alpha} = \dim_{\mathfrak{q}}(\bar{\alpha} \otimes \alpha)_{\mathbb{A}} \text{ for } \alpha \in I(\mathbb{\Gamma});$
- $[\alpha]$ the class of α in $I(\Gamma)/\mathbb{A}$ (or $\mathbb{A}\setminus I(\Gamma)$);
- $p_{[\alpha]} = \sum_{\beta \in [\alpha]} p_{\beta} \in \ell^{\infty}(\mathbb{\Gamma}/\mathbb{A}).$

Description of the quotient space

Theorem

- We have $\ell^{\infty}(\Gamma/\Lambda) = \ell^{\infty} \bigoplus_{[\alpha]} p_{[\alpha]} \ell^{\infty}(\Gamma/\Lambda)$.
- We have $p_{[\alpha]}\ell^{\infty}(\mathbb{\Gamma}/\mathbb{A}) \simeq B(H_{\alpha})_{\mathbb{A}}' \cap B(H_{\alpha})$ canonically.
- More generally $\operatorname{Hom}_{\Gamma/\mathbb{A}}(\alpha,\beta) = B(H_{\alpha},H_{\beta})_{\mathbb{A}}$.
- For $a \in \ell^{\infty}(\mathbb{F}/\mathbb{A})$ we have $a = \sum_{[\alpha]} \kappa_{\alpha}^{-1}(h_R \otimes \mathrm{id})[(S^{-1}(a_{\alpha}) \otimes 1)\Delta(p_{\mathbb{A}})].$

Denote
$$c_c(\mathbb{\Gamma}/\mathbb{A})=\bigoplus p_{[a]}\ell^\infty(\mathbb{\Gamma}/\mathbb{A}),\, c(\mathbb{\Gamma}/\mathbb{A})=\prod p_{[a]}\ell^\infty(\mathbb{\Gamma}/\mathbb{A}).$$

Analogue of the counting measure on Γ/Λ :

Corollary

 $c_c(\mathbb{F}/\mathbb{A})$ admits a (unique) positive, \mathbb{F} -invariant faithful form given by $\mu(\mathbf{a}) = \sum_{\lceil \alpha \rceil} \kappa_{\alpha}^{-1} h_L(\mathbf{a}_{\alpha}).$

The Hecke algebra

Definition

For
$$a \in c_c(\mathbb{\Gamma}/\mathbb{A})$$
, $b \in c_c(\mathbb{A}\backslash\mathbb{\Gamma})$ define $a*b = (\mathrm{id} \otimes \mu)[\Delta(a)(1 \otimes S(b))] = (\mu S \otimes \mathrm{id})[\Delta(b)(S^{-1}(a) \otimes 1)] \in c(\mathbb{\Gamma})$ and $a^\sharp = S(a^*) \in c_c(\mathbb{A}\backslash\mathbb{\Gamma})$.

Classical case: $\forall \alpha \ \dim_q(\alpha) = 1$, $\kappa_\alpha = 1$. We recover the formula $(a*b)(g) = \sum_{[h] \in \Gamma/\Lambda} a(gh)b(h^{-1})$.

Proposition-Definition

 $\mathscr{H}(\mathbb{\Gamma}, \mathbb{A}) := c_c(\mathbb{\Gamma}/\mathbb{A}) \cap c_c(\mathbb{A}\backslash\mathbb{\Gamma})$ is an involutive algebra for * and $^\sharp$, with unit $p_{\mathbb{A}}$, stable under σ^R_t , σ^L_t and τ_t .

The Hecke algebra

Proposition-Definition

 $\mathscr{H}(\mathbb{F},\mathbb{A}) := c_c(\mathbb{F}/\mathbb{A}) \cap c_c(\mathbb{A}\backslash\mathbb{F})$ is an involutive algebra for * and $^\sharp$, with unit $p_{\mathbb{A}}$, stable under σ_t^R , σ_t^L and τ_t .

NB. $c_c(\Gamma/\Lambda) \cap c_c(\Lambda \setminus \Gamma)$ is also a (possibly degenerate) sub-*-algebra of $\ell^{\infty}(\Gamma)$. Denote, for $\tau \in \Lambda \setminus I(\Gamma)/\Lambda$: $L(\tau) = \#\{\alpha \in \Lambda \setminus I(\Gamma) \mid \alpha \subset \tau\}, \quad R(\tau) = \#\{\alpha \in I(\Gamma)/\Lambda \mid \alpha \subset \tau\}.$

Proposition-Definition

We say that (\mathbb{F}, \mathbb{A}) is a Hecke pair if $c_c(\mathbb{F}/\mathbb{A}) \cap c_c(\mathbb{A}\backslash\mathbb{F}) \subset \ell^{\infty}(\mathbb{F})$ is non degenerate $\Leftrightarrow \forall \tau \in \mathbb{A}\backslash I(\mathbb{F})/\mathbb{A} \quad L(\tau) < \infty$.

Examples: \mathbb{A} finite or finite index. Normal case: if $c_c(\mathbb{\Gamma}/\mathbb{A}) = c_c(\mathbb{A}\backslash\mathbb{\Gamma})$, $\mathscr{H}(\mathbb{\Gamma},\mathbb{A})$ is the convolution algebra of the quotient quantum group $\mathbb{\Gamma}/\mathbb{A}$.

Hecke Operators

Recall that $c_c(\mathbb{\Gamma}/\mathbb{A})$ is endowed with a left $\mathbb{\Gamma}$ -action.

Proposition

Let (Γ, Λ) be a Hecke pair. We have isomorphisms

$$\mathscr{H}(\mathbb{\Gamma}, \mathbb{A}) \longrightarrow \operatorname{End}(c_c(\mathbb{\Gamma}/\mathbb{A}))^{\mathbb{\Gamma}}$$

 $a \longmapsto T(a) := (\cdot * a)$
 $F(p_{\mathbb{A}}) \longleftrightarrow F$

Moreover $(x \mid T(a)y) = (T(a^{\sharp})x \mid y)$ for the scalar product assoc'd with μ .

Theorem

Let (Γ, Λ) be a Hecke pair. T(a) is bounded on $\ell^2(\Gamma/\Lambda)$ for all $a \in \mathcal{H}(\Gamma, \Lambda)$ iff $\kappa_{\gamma} \leq C_{\beta} \kappa_{\alpha}$ for all $\gamma \subset \alpha \otimes \beta$.

This property is not satisfied by all inclusions $\mathbb{A} \subset \mathbb{F}$. I don't know how to prove *directly* that it is satisfied by Hecke pairs.

Modular properties

Canonical state on $\mathscr{H}(\mathbb{F}, \mathbb{A})$: $\omega = \epsilon = (p_{\mathbb{A}} \mid T(\cdot)p_{\mathbb{A}})$. It is faithful.

Proposition-Definition

Let $\nabla \in c(\mathbb{A} \setminus \mathbb{F}/\mathbb{A})$ unique such that $\mu S(a) = \mu(\nabla a)$ for all $a \in \mathcal{H}(\mathbb{F}, \mathbb{A})$. Then $\theta_t : a \mapsto \sigma_t^R(\nabla^{it}a)$ is a group of \sharp -automorphisms of $\mathcal{H}(\mathbb{F}, \mathbb{A})$ and ω is θ -KMS.

Theorem

Asumme \mathbb{A} is unimodular. Then $\nabla_{\alpha} = (\tilde{L}(\llbracket \alpha \rrbracket)/\tilde{R}(\llbracket \alpha \rrbracket)) F_{\alpha}^2$ where the F_{α} are Woronowicz' modular matrices, and for $\tau = \llbracket \alpha \rrbracket \in \mathbb{A} \setminus I(\mathbb{F})/\mathbb{A}$:

$$\tilde{L}(\tau) = \sum_{[\delta] \in \mathbb{A} \setminus I(\mathbb{F}), [\delta] \subset \tau} (\dim_q \delta)^2 / \kappa_{\bar{\delta}}
\tilde{R}(\tau) = \sum_{[\delta] \in I(\mathbb{F}) / \mathbb{A}, [\delta] \subset \tau} (\dim_q \delta)^2 / \kappa_{\delta}.$$

There is also a more involved formula when \mathbb{A} is not unimodular...

Outline

- Introduction
- Hecke algebras for discrete quantum groups
 - Structure of the quotient space
 - Hecke algebra
- The Schlichting Completion
 - Construction of the completion
 - Application to Hecke operators
 - Exemples

The C*-Hopf algebra

Classical reminder. Consider $\lambda : \Gamma \to \operatorname{Sym}(\Gamma/\Lambda)$ by left translations.

Define $G = \overline{\lambda(\Gamma)}$. If (Γ, Λ) is a Hecke pair, it is a locally compact group and $H = \overline{\lambda(\Lambda)}$ is compact open.

But $Sym(\Gamma/\Lambda)$ has no good quantum analogue...

The C*-Hopf algebra

Classical reminder. Consider $\lambda : \Gamma \to \operatorname{Sym}(\Gamma/\Lambda)$ by left translations.

Define $G = \overline{\lambda(\Gamma)}$. If (Γ, Λ) is a Hecke pair, it is a locally compact group and $H = \overline{\lambda(\Lambda)}$ is compact open.

But $Sym(\Gamma/\Lambda)$ has no good quantum analogue...

Definition

We put
$$\mathscr{O}_{c}(\mathbb{G}) = \operatorname{alg} - \langle a * b, a \in c_{c}(\Gamma/\Lambda), b \in c_{c}(\Lambda\backslash\Gamma) \rangle \subset c(\Gamma).$$

$$C_{0}(\mathbb{G}) = C^{*} - \langle a * b, a \in c_{c}(\Gamma/\Lambda), b \in c_{c}(\Lambda\backslash\Gamma) \rangle \subset \ell^{\infty}(\Gamma).$$

Classical case: $\Gamma \to G$ induces $C_0(G) \subset \ell^{\infty}(G)$. If $a = \mathbb{1}_{[r]}$, $b = \mathbb{1}_{[s]}$ then $a * b = \mathbb{1}_{\{g \mid g[s]^{-1} = [r]\}}$.

The C*-Hopf algebra

Definition

We put
$$\mathscr{O}_c(\mathbb{G}) = \mathrm{alg} - \langle a * b, a \in c_c(\Gamma/\Lambda), b \in c_c(\Lambda \backslash \Gamma) \rangle \subset c(\Gamma).$$

$$C_0(\mathbb{G}) = C^* - \langle a * b, a \in c_c(\Gamma/\Lambda), b \in c_c(\Lambda \backslash \Gamma) \rangle \subset \ell^{\infty}(\Gamma).$$

Classical case: $\Gamma \to G$ induces $C_0(G) \subset \ell^{\infty}(G)$. If $a = \mathbb{1}_{[r]}$, $b = \mathbb{1}_{[s]}$ then $a * b = \mathbb{1}_{\{g \mid g[s]^{-1} = [r]\}}$.

Theorem

If (Γ, Λ) is a Hecke pair we have

$$\Delta(\mathscr{O}_c(\mathbb{G}))(1\otimes\mathscr{O}_c(\mathbb{G}))=\mathscr{O}_c(\mathbb{G})\odot\mathscr{O}_c(\mathbb{G})=\Delta(\mathscr{O}_c(\mathbb{G}))(\mathscr{O}_c(\mathbb{G})\otimes 1).$$

 $\mathscr{O}_{c}(\mathbb{G})$ is a multiplier Hopf algebra.

 $C_0(\mathbb{G})$ is a bisimplifiable Hopf C^* -algebra.

The Haar weights

Corollary-Definition

 $C(\mathbb{H}) := p_{\mathbb{A}}C_0(\mathbb{G})$ is a Hopf C^* -algebra (with unit $p_{\mathbb{A}}$).

Hence it admits a Haar state h.

We have $c_c(\mathbb{\Gamma}/\mathbb{A}) = \mathscr{O}_c(\mathbb{G})^{\mathbb{H}}$ in $\ell^{\infty}(\mathbb{\Gamma})$.

Corollary-Definition

 $\varphi := \mu(\mathrm{id} \otimes \mathsf{hp}_{\wedge}) \Delta$ is an integral on $\mathscr{O}_c(\mathbb{G})$. \mathbb{G} is an algebraic quantum group, hence a locally compact quantum group.

NB. If the action of \mathbb{F} on \mathbb{F}/\mathbb{A} is faithful and \mathbb{A} is infinite, \mathbb{G} is non-discrete.

NB. The algebraic quantum groups \mathbb{G} with commutative $\mathscr{O}_{c}(\mathbb{G})$ are exactly the locally compact groups G admitting a compact-open subgroup H, and $\mathscr{O}_{c}(G) = \{f \in C_{c}(G) \mid \dim \operatorname{Vect}(H \cdot f) < \infty\}.$

The Hecke Algebra

Let (\mathbb{G}, \mathbb{H}) be the Schlichting completion of a Hecke pair (\mathbb{F}, \mathbb{A}) .

Since $\ensuremath{\mathbb{H}}$ is compact, we can consider

- $\bullet \ c_c(\mathbb{G}/\mathbb{H}) := \mathscr{O}_c(\mathbb{G})^\mathbb{H} \subset \mathscr{O}_c(\mathbb{G}) \ \text{and} \ \ell^2(\mathbb{G}/\mathbb{H}) = \overline{c_c(\mathbb{G}/\mathbb{H})} \subset L^2(\mathbb{G}),$
- $ullet \ \mathscr{H}(\mathbb{G},\mathbb{H}):={}^{\mathbb{H}}\mathscr{O}_c(\mathbb{G})^{\mathbb{H}}$ with the convolution product of $\mathscr{O}_c(\mathbb{G})$.

Proposition

We have $\mathscr{H}(\mathbb{G},\mathbb{H}) \simeq \operatorname{End}(c_c(\mathbb{G}/\mathbb{H}))^{\mathbb{G}}, \, b \mapsto T'(b) := (\cdot * b).$

By construction of (\mathbb{G}, \mathbb{H}) we have

$$\operatorname{End}(c_c(\mathbb{G}/\mathbb{H}))^{\mathbb{G}}=\operatorname{End}(c_c(\mathbb{F}/\mathbb{A}))^{\mathbb{F}} \text{ and } \ell^2(\mathbb{G}/\mathbb{H})=\ell^2(\mathbb{F}/\mathbb{A}).$$

The operators T'(b) arise from the right regular repr. of \mathbb{G} , hence:

Corollary

The Hecke operators T(a), for $a \in \mathcal{H}(\Gamma, \Lambda)$, are bounded on $\ell^2(\Gamma/\Lambda)$.

HNN Extensions

Fixe $\mathbb{A}_{\pm 1} \subset \mathbb{F}_0$ with an isomorphism $\theta : \mathbb{A}_1 \to \mathbb{A}_{-1}$. Consider $\mathbb{F} = HNN(\mathbb{F}_0, \theta)$ [Fima 2013]. $\mathbb{C}[\mathbb{F}]$ is generated by $\mathbb{C}[\mathbb{F}_0]$ and a group-like unitary w such that $w^\epsilon x w^{-\epsilon} = \theta^\epsilon(x)$ for $x \in \mathbb{C}[\mathbb{A}_\epsilon]$.

Proposition

- If $\mathbb{A}_{\pm 1}$ have finite index in \mathbb{F}_0 and are different from \mathbb{F}_0 , then $\mathbb{F}_0 \subset \mathbb{F}$ is almost normal, not normal, of infinite index.
- If $\bigcap_{k \in \mathbb{Z}} \operatorname{Dom} \theta^k = \{1\}$ the action of \mathbb{F} on \mathbb{F}/\mathbb{F}_0 is faithful.
- We have $\nabla_w = (\tilde{L}(\llbracket w \rrbracket)/\tilde{R}(\llbracket w \rrbracket)) p_w$ with $\tilde{L}(\llbracket w \rrbracket) = \sum_{[\delta] \in \mathbb{A}_1 \setminus I(\mathbb{F}_0)} \dim_q(\delta \otimes \bar{\delta}) / \dim_q(\delta \otimes \bar{\delta})_{\mathbb{A}_1},$ $\tilde{R}(\llbracket w \rrbracket) = \sum_{[\delta] \in I(\mathbb{F}_0)/\mathbb{A}_{-1}} \dim_q(\bar{\delta} \otimes \delta) / \dim_q(\bar{\delta} \otimes \delta)_{\mathbb{A}_{-1}}.$

HNN Extensions

Proposition

- If $\mathbb{A}_{\pm 1}$ have finite index in \mathbb{F}_0 and are different from \mathbb{F}_0 , then $\mathbb{F}_0 \subset \mathbb{F}$ is almost normal, not normal, of infinite index.
- If $\bigcap_{k \in \mathbb{Z}} \operatorname{Dom} \theta^k = \{1\}$ the action of \mathbb{F} on \mathbb{F}/\mathbb{F}_0 is faithful.
- We have $\nabla_w = (\tilde{L}(\llbracket w \rrbracket)/\tilde{R}(\llbracket w \rrbracket)) p_w$ with $\tilde{L}(\llbracket w \rrbracket) = \sum_{[\delta] \in \mathbb{A}_1 \setminus I(\mathbb{F}_0)} \dim_q(\delta \otimes \bar{\delta}) / \dim_q(\delta \otimes \bar{\delta})_{\mathbb{A}_1},$ $\tilde{R}(\llbracket w \rrbracket) = \sum_{[\delta] \in I(\mathbb{F}_0)/\mathbb{A}_{-1}} \dim_q(\bar{\delta} \otimes \delta) / \dim_q(\bar{\delta} \otimes \delta)_{\mathbb{A}_{-1}}.$

Example. $\Sigma_{\pm 1}$ non abelian finite classical groups.

Take
$$\hat{\mathbb{F}}_0 = \prod_{k \in \mathbb{Z}^*}' \hat{\Sigma}_{\operatorname{sgn}(k)}$$
 and $\mathbb{A}_{\epsilon} = \prod_{k \in \mathbb{Z}^*, k \neq \epsilon}' \hat{\Sigma}_{\operatorname{sgn}(k)} \subset \mathbb{F}_0$.
Then the Proposition applies, $\tilde{L}(\llbracket w \rrbracket) = \#\Sigma_1$, $\tilde{R}(\llbracket w \rrbracket) = \#\Sigma_{-1}$.

 $\mathbb G$ is a non-discrete, non-classical, non-co-classical locally compact quantum group, with non-trivial modular group if $\#\Sigma_1 \neq \#\Sigma_{-1}$.

