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Introduction

Introduction
Let � ⊂ � be a quantum subgroup of a discrete quantum group. The von
Neumann algebra of Hecke operators is the commutant of the
quasi-regular representation: L (�,�) = B(`2(�/�))�.

Questions:
1 (combinatorial) description of L (�,�)?
2 modular properties of the canonical state (δ� | · δ�)?
3 analytical properties of this von Neumann algebra...

In the classical case 1 is achieved using a dense subalgebra
H (Γ,Λ) ' cc(Λ\Γ/Λ) with convolution product. Quantum case:

4 construction and description of �/�, �\�/�?
5 boundedness of the action of cc(�\�/�) on `2(�/�)?

For 3 , 5 we construct the Schlichting completion (G,H) of (�,�).
I construction of new locally compact quantum groups.
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Hecke algebras for discrete quantum groups Structure of the quotient space

Quantum groups
An algebraic quantum group [Van Daele] G is given by

a (non-unital) ∗-algebra Oc(G),
a coproduct ∆ : Oc(G)→M (Oc(G) � Oc(G))

with some axioms, in particular:
∆(Oc(G))(Oc(G) ⊗ 1) ⊂ Oc(G) � Oc(G),
left integral: ϕ : Oc(G)→ C s.t. (id ⊗ ϕ)((a ⊗ 1)∆(b)) = ϕ(b)a.

There is an associated locally compact quantum group, with ν = 1.

Commutative case: there exists a locally compact group G with a
compact-open H ⊂ G s.t.

Oc(G) = {f ∈ Cc(G) | dim Vect(H · f) < ∞}.
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Hecke algebras for discrete quantum groups Structure of the quotient space

Quantum groups
An algebraic quantum group [Van Daele] G is given by

a (non-unital) ∗-algebra Oc(G),
a coproduct ∆ : Oc(G)→M (Oc(G) � Oc(G))

with some axioms, in particular:
∆(Oc(G))(Oc(G) ⊗ 1) ⊂ Oc(G) � Oc(G),
left integral: ϕ : Oc(G)→ C s.t. (id ⊗ ϕ)((a ⊗ 1)∆(b)) = ϕ(b)a.

Discrete case: Oc(�) '
⊕

α∈I(�) B(Hα), dim Hα < ∞.
The existence of integrals ϕ := hL , hR is automatic.
We put cc(�) = Oc(�), `∞(�) = M(cc(�)).
Denote pα = idHα , aα = pαa ∈ B(Hα) for a ∈ `∞(�), α ∈ I(�).

∆ endows the C∗-category Corep(�) := Rep(cc(�)) with a tensor structure:
v⊗w := (v⊗w)◦∆. Underlying combinatorial data: spaces Hom�(α, β⊗γ)
for α, β, γ ∈ I(�).
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Hecke algebras for discrete quantum groups Structure of the quotient space

Subgroups of discrete quantum groups
A (quantum) subgroup � ⊂ � is given by `∞(�) ' p�`

∞(�) for some
central proj. p� ∈ `

∞(�) s.t. ∆(p�)(1 ⊗ p�) = p� ⊗ p� = ∆(p�)(p� ⊗ 1).
We have I(�) ⊂ I(�), Corep(�) ⊂ Corep(�), p� =

∑
α∈I(�) pα.

Quotient spaces.
Quantum: `∞(�/�) = `∞(�)� = {a ∈ `∞(�) | (1 ⊗ p�)∆(a) = a ⊗ p�}.
We have ∆(`∞(�/�)) ⊂ `∞(�)⊗̄`∞(�/�).
Categorical: Corep(�/�) := Rep(`∞(�/�)) is a left-Corep(�)-module
category with restriction functor Corep(�)→ Corep(�/�).
Classical: I(�)/� = I(�)/∼ where α ∼ β⇔ ∃λ ∈ I(�) β ⊂ α ⊗ λ.

Some notation:
p[α] =

∑
β∈[α] pβ ∈ `∞(�/�) for [α] ∈ I(�)/� (or �\I(�)),

v� ∈ Corep(�), �-isotypical component of v ∈ Corep(�),
κα = dimq(ᾱ ⊗ α)� for α ∈ I(�).
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Hecke algebras for discrete quantum groups Structure of the quotient space

Description of the quotient space

Theorem
We have `∞(�/�) = `∞−

⊕
[α] p[α]`

∞(�/�).

We have p[α]`
∞(�/�) ' B(Hα)′� ∩ B(Hα) canonically.

More generally Hom�/�(α, β) = B(Hα,Hβ)�.

For a ∈ `∞(�/�) we have a =
∑

[α] κ
−1
α (hR ⊗ id)[(S−1(aα) ⊗ 1)∆(p�)].

Denote cc(�/�) =
⊕

p[α]`
∞(�/�), c(�/�) =

∏
p[α]`

∞(�/�).

Analogue of the counting measure on Γ/Λ :

Corollary
cc(�/�) admits a (unique) positive, �-invariant faithful form given by

µ(a) =
∑

[α] κ
−1
α hL (aα).
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Hecke algebras for discrete quantum groups Hecke algebra

Hecke pairs
The subalgebra cc(�/�) ∩ cc(�\�) ⊂ `∞(�) can be degenerate.

Definition
The commensurator of � in � is the unique intermediate quantum
subgroup � ⊂ �′ ⊂ � such that cc(�\�′/�) = cc(�/�) ∩ cc(�\�).
We say that (�,�) is a Hecke pair if �′ = �.

Denote, for τ ∈ �\I(�)/�:
L(τ) = #{α ∈ �\I(�) | α ⊂ τ}, R(τ) = #{α ∈ I(�)/� | α ⊂ τ}.

Proposition
�′ is given by I(�′) = {α ∈ I(�) | L(~α�),R(~α�) < ∞}.

Trivial examples: finite subgroups, finite index subgroups.
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Hecke algebras for discrete quantum groups Hecke algebra

The Hecke algebra

Definition
For a ∈ cc(�/�), b ∈ cc(�\�) define
a ∗ b = (id ⊗ µ)[∆(a)(1 ⊗ S(b))] = (µS ⊗ id)[∆(b)(S−1(a) ⊗ 1)] ∈ c(�)

and a] = S(a∗) ∈ cc(�\�).

Classical case: ∀α dimq(α) = 1, κα = 1. We recover the formula
(a ∗ b)(g) =

∑
[h]∈Γ/Λ a(gh)b(h−1).

Proposition-Definition

H (�,�) := cc(�/�) ∩ cc(�\�) is an involutive algebra for ∗ and ],
with unit p�, stable under σR

t , σL
t and τt .

Normal case: if cc(�/�) = cc(�\�), H (�,�) is the convolution algebra of
the quotient quantum group �/�.
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Hecke algebras for discrete quantum groups Hecke algebra

Hecke Operators
Recall that cc(�/�) is endowed with a left �-action.

Proposition
Let (�,�) be a Hecke pair. We have an isomorphism

H (�,�)→ End(cc(�/�))�, a 7→ T(a) := ( · ∗ a)
with inverse (T → T(p�)). Moreover (x | T(a)y) = (T(a])x | y) for the
scalar product associated with µ.

Theorem
Let (�,�) be a Hecke pair. T(a) is bounded on `2(�/�) for all
a ∈H (�,�) iff we have (RT) : κγ ≤ Cβ κα for all γ ⊂ α ⊗ β.
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Hecke algebras for discrete quantum groups Hecke algebra

Hecke Operators

Theorem
Let (�,�) be a Hecke pair. T(a) is bounded on `2(�/�) for all
a ∈H (�,�) iff we have (RT) : κγ ≤ Cβ κα for all γ ⊂ α ⊗ β.

This property is not satisfied by all inclusions � ⊂ �.

By restriction to `∞(�/�) we have also α ∈ Corep(�/�). Denote α̃ is the
image of α in the Grothendieck ring Z[�/�]. If � is unimodular:

κα = dimq(ᾱ ⊗ α)� = ‖α̃‖22.

Exercise
Prove in Corep(�/�) that (RT) is satisfied if (�,�) is a Hecke pair.

In the sequel we will see an analytical proof.
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Hecke algebras for discrete quantum groups Hecke algebra

Modular properties
Canonical state on H (�,�) : ω = ε = (p� | T(·)p�). It is faithful.

Proposition-Definition
Let ∇ ∈ c(�\�/�) unique such that µS(a) = µ(∇a) for all a ∈H (�,�).
Then θt : a 7→ σR

t (∇ita) is a group of ]-automorphisms of H (�,�) and ω
is θ-KMS.

Theorem

Asumme � is unimodular. Then ∇α = (L̃(~α�)/R̃(~α�)) F2
α where the Fα

are Woronowicz’ modular matrices, and for τ = ~α� ∈ �\I(�)/�:
L̃(τ) =

∑
[δ]∈�\I(�),[δ]⊂τ (dimq δ)2/κδ̄

R̃(τ) =
∑

[δ]∈I(�)/�,[δ]⊂τ (dimq δ)2/κδ.

There is also a more involved formula when � is not unimodular...
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The Schlichting Completion Construction of the completion

The C∗-Hopf algebra
Classical reminder. Consider π : Γ→ Bij(Γ/Λ) by left translations.
Define G = π(Γ). If (Γ,Λ) is a Hecke pair, it is a locally compact group and
H = π(Λ) is compact open.

But Bij(Γ/Λ) has no good quantum analogue...
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The Schlichting Completion Construction of the completion

The C∗-Hopf algebra
Classical reminder. Consider π : Γ→ Bij(Γ/Λ) by left translations.
Define G = π(Γ). If (Γ,Λ) is a Hecke pair, it is a locally compact group and
H = π(Λ) is compact open.

But Bij(Γ/Λ) has no good quantum analogue...

Definition
We put Oc(G) = alg−〈a ∗ b , a ∈ cc(�/�), b ∈ cc(�\�)〉 ⊂ c(�).

C0(G) = C∗−〈a ∗ b , a ∈ cc(�/�), b ∈ cc(�\�)〉 ⊂ `∞(�).

Classical case: Γ→ G induces C0(G) ⊂ `∞(Γ).
If a = 1[r], b = 1[s] then a ∗ b = 1{g | g[s]−1=[r]}.
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The Schlichting Completion Construction of the completion

The C∗-Hopf algebra

Definition
We put Oc(G) = alg−〈a ∗ b , a ∈ cc(�/�), b ∈ cc(�\�)〉 ⊂ c(�).

C0(G) = C∗−〈a ∗ b , a ∈ cc(�/�), b ∈ cc(�\�)〉 ⊂ `∞(�).

Classical case: Γ→ G induces C0(G) ⊂ `∞(Γ).
If a = 1[r], b = 1[s] then a ∗ b = 1{g | g[s]−1=[r]}.

Theorem
If (�,�) is a Hecke pair we have

∆(Oc(G))(1 ⊗ Oc(G)) = Oc(G) � Oc(G) = ∆(Oc(G))(Oc(G) ⊗ 1).
Oc(G) is a multiplier Hopf algebra.
C0(G) is a bisimplifiable Hopf C∗-algebra.
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The Schlichting Completion Construction of the completion

The Haar weights
Recall: C0(G) is a bisimplifiable Hopf C∗-algebra.
To define a quantum group we need Haar weights.

Corollary-Definition
C(H) := p�C0(G) is a Hopf C∗-algebra (with unit p�).
Hence it admits a Haar state h.

Moreover by definition of (G,H) we have Oc(G)H = cc(�/�).
One can project onto cc(�/�) using h.

Corollary-Definition
ϕ := µ(id ⊗ hp�)∆ is an integral on Oc(G). G is an algebraic quantum
group, hence a locally compact quantum group.
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The Schlichting Completion Construction of the completion

Reduced pairs
If δ : C0(X)→ M(c0(�) ⊗ C0(X)) is an action of � on X, consider the
cokernel N(X) = {(id ⊗ ϕ)δ(a) | a ∈ C0(X), ϕ ∈ C0(X)∗}′′ ⊂ `∞(�).

We have N(X) = `∞(�) for a discrete quantum group � which in general is
not a quotient of �. We say that the action is faithful if N(X) = `∞(�).

Definition
We call the pair (�,�) reduced if the action of � on X = �/� is faithful.

By definition of a ∗ b = (id ⊗ µ)[∆(a)(1 ⊗ S(b))], we have
N(�/�) = C0(G)′′ ⊂ `∞(�).

(�,�) is reduced iff “� embeds into G”.

Proposition
Assume (�,�) is reduced. Then G is discrete iff � is finite.
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The Schlichting Completion Application to Hecke operators

The Hecke Algebra
Let (G,H) be the Schlichting completion of a Hecke pair (�,�).
Since H is compact, it makes sense to consider Oc(G)H.

Proposition

We have HOc(G)H ' End(Oc(G)H)G, b 7→ T ′(b) := ( · ∗ b),
using the convolution product of Oc(G).

Denote `2(G/H) = Oc(G)H ⊂ L2(G). By construction of (G,H) we have
Oc(G)H = cc(�/�) and `2(G/H) ' `2(�/�).

Since the operators T ′(b) arise from the right regular repr. of G we get:

Corollary

The Hecke operators T(a), for a ∈H (�,�), are bounded on `2(�/�).
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The Schlichting Completion Exemples

HNN Extensions
Fixe �±1 ⊂ �0 with an isomorphism θ : �1 → �−1.
Consider � = HNN(�0, θ) [Fima 2013]. Corep(�) is generated by
Corep(�0) and a 1-dimensional w such that wε ⊗ v ⊗ w−ε = θε∗(v) for
v ∈ Corep(�ε).

Proposition
If �±1 have finite index in �0 and are different from �0,
then �0 ⊂ � is almost normal, not normal, of infinite index.

If
⋂

k∈ZDom θk = {1} the action of � on �/�0 is faithful.

We have ∇w = (L̃(~w�)/R̃(~w�)) pw with
L̃(~w�) =

∑
[δ]∈�1\I(�0) dimq(δ ⊗ δ̄)/ dimq(δ ⊗ δ̄)�1 ,

R̃(~w�) =
∑

[δ]∈I(�0)/�−1 dimq(δ̄ ⊗ δ)/ dimq(δ̄ ⊗ δ)�−1 .
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The Schlichting Completion Exemples

HNN Extensions

Proposition
If �±1 have finite index in �0 and are different from �0,
then �0 ⊂ � is almost normal, not normal, of infinite index.

If
⋂

k∈ZDom θk = {1} the action of � on �/�0 is faithful.

We have ∇w = (L̃(~w�)/R̃(~w�)) pw with
L̃(~w�) =

∑
[δ]∈�1\I(�0) dimq(δ ⊗ δ̄)/ dimq(δ ⊗ δ̄)�1 ,

R̃(~w�) =
∑

[δ]∈I(�0)/�−1 dimq(δ̄ ⊗ δ)/ dimq(δ̄ ⊗ δ)�−1 .

Example. �±1 non classical finite quantum groups.
Take �0 =

∏′
k∈Z∗ �sgn(k) and �ε =

∏′
k∈Z∗,k,ε �sgn(k) ⊂ �0.

Then the Proposition applies, L̃(~w�) = #�1, R̃(~w�) = #�−1.

G is a non-discrete, non-classical, non-co-classical locally compact
quantum group, with non-trivial modular group if #�1 , #�−1.
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