# Hecke Algebras and the Schlichting completion for discrete quantum groups

#### Roland Vergnioux

joint work with A. Skalski et C. Voigt

Université de Caen

Quantum Groups Seminar, June 20th, 2022

## **Outline**

- Introduction
- Hecke algebras for discrete quantum groups
  - Structure of the quotient space
  - Hecke algebra
- The Schlichting Completion
  - Construction of the completion
  - Application to Hecke operators
  - Exemples



#### Introduction

Let  $\mathbb{A} \subset \mathbb{F}$  be a quantum subgroup of a discrete quantum group. The von Neumann algebra of Hecke operators is the commutant of the quasi-regular representation:  $\mathscr{L}(\mathbb{F},\mathbb{A}) = B(\ell^2(\mathbb{F}/\mathbb{A}))^{\mathbb{F}}$ .

#### Questions:

- **(combinatorial)** description of  $\mathcal{L}(\Gamma, \Lambda)$ ?
- ② modular properties of the canonical state  $(\delta_{\mathbb{A}} \mid \cdot \delta_{\mathbb{A}})$ ?
- 3 analytical properties of this von Neumann algebra...

In the classical case  $\bigcirc$  is achieved using a dense subalgebra  $\mathscr{H}(\Gamma,\Lambda) \simeq c_c(\Lambda \setminus \Gamma/\Lambda)$  with convolution product. Quantum case:

- **o** construction and description of  $\Gamma/\Lambda$ ,  $\Lambda\setminus\Gamma/\Lambda$ ?
- **5** boundedness of the action of  $c_c(\Lambda \backslash \Gamma / \Lambda)$  on  $\ell^2(\Gamma / \Lambda)$ ?
- For 3, 5 we construct the Schlichting completion  $(\mathbb{G}, \mathbb{H})$  of  $(\mathbb{F}, \mathbb{A})$ .
- → construction of new locally compact quantum groups.



## **Outline**

- Introduction
- Hecke algebras for discrete quantum groups
  - Structure of the quotient space
  - Hecke algebra
- The Schlichting Completion
  - Construction of the completion
  - Application to Hecke operators
  - Exemples

# Quantum groups

## An algebraic quantum group [Van Daele] $\mathbb G$ is given by

- a (non-unital) \*-algebra  $\mathcal{O}_c(\mathbb{G})$ ,
- a coproduct  $\Delta: \mathscr{O}_c(\mathbb{G}) \to \mathscr{M}(\mathscr{O}_c(\mathbb{G}) \odot \mathscr{O}_c(\mathbb{G}))$

with some axioms, in particular:

- $\Delta(\mathscr{O}_c(\mathbb{G}))(\mathscr{O}_c(\mathbb{G}) \otimes 1) \subset \mathscr{O}_c(\mathbb{G}) \odot \mathscr{O}_c(\mathbb{G}),$
- left integral:  $\varphi : \mathscr{O}_c(\mathbb{G}) \to \mathbb{C}$  s.t.  $(\mathrm{id} \otimes \varphi)((a \otimes 1)\Delta(b)) = \varphi(b)a$ .

There is an associated locally compact quantum group, with  $\nu = 1$ .

**Commutative case:** there exists a locally compact group G with a compact-open  $H \subset G$  s.t.

$$\mathscr{O}_{c}(\mathbb{G}) = \{ f \in C_{c}(G) \mid \dim \operatorname{Vect}(H \cdot f) < \infty \}.$$

5/17

# Quantum groups

## An algebraic quantum group [Van Daele] $\mathbb G$ is given by

- a (non-unital) \*-algebra  $\mathcal{O}_c(\mathbb{G})$ ,
- a coproduct  $\Delta: \mathscr{O}_c(\mathbb{G}) \to \mathscr{M}(\mathscr{O}_c(\mathbb{G}) \odot \mathscr{O}_c(\mathbb{G}))$

with some axioms, in particular:

- $\Delta(\mathscr{O}_c(\mathbb{G}))(\mathscr{O}_c(\mathbb{G}) \otimes 1) \subset \mathscr{O}_c(\mathbb{G}) \odot \mathscr{O}_c(\mathbb{G}),$
- left integral:  $\varphi : \mathscr{O}_{c}(\mathbb{G}) \to \mathbb{C}$  s.t.  $(\mathrm{id} \otimes \varphi)((a \otimes 1)\Delta(b)) = \varphi(b)a$ .

**Discrete case:**  $\mathscr{O}_{c}(\mathbb{F}) \simeq \bigoplus_{\alpha \in I(\mathbb{F})} B(H_{\alpha}), \dim H_{\alpha} < \infty.$ 

The existence of integrals  $\varphi := h_L$ ,  $h_R$  is automatic.

We put  $c_c(\mathbb{\Gamma}) = \mathscr{O}_c(\mathbb{\Gamma}), \, \ell^\infty(\mathbb{\Gamma}) = \mathit{M}(c_c(\mathbb{\Gamma})).$ 

Denote  $p_{\alpha} = \mathrm{id}_{H_{\alpha}}$ ,  $a_{\alpha} = p_{\alpha}a \in B(H_{\alpha})$  for  $a \in \ell^{\infty}(\mathbb{\Gamma})$ ,  $\alpha \in I(\mathbb{\Gamma})$ .

 $\Delta$  endows the  $C^*$ -category  $\operatorname{Corep}(\mathbb{\Gamma}) := \operatorname{Rep}(c_c(\mathbb{\Gamma}))$  with a tensor structure:  $v \otimes w := (v \otimes w) \circ \Delta$ . Underlying combinatorial data: spaces  $\operatorname{Hom}_{\mathbb{\Gamma}}(\alpha, \beta \otimes \gamma)$  for  $\alpha, \beta, \gamma \in I(\mathbb{\Gamma})$ .

# Subgroups of discrete quantum groups

A (quantum) **subgroup**  $\mathbb{A} \subset \mathbb{F}$  is given by  $\ell^{\infty}(\mathbb{A}) \simeq p_{\mathbb{A}} \ell^{\infty}(\mathbb{F})$  for some central proj.  $p_{\mathbb{A}} \in \ell^{\infty}(\mathbb{F})$  s.t.  $\Delta(p_{\mathbb{A}})(1 \otimes p_{\mathbb{A}}) = p_{\mathbb{A}} \otimes p_{\mathbb{A}} = \Delta(p_{\mathbb{A}})(p_{\mathbb{A}} \otimes 1)$ . We have  $I(\mathbb{A}) \subset I(\mathbb{F})$ ,  $Corep(\mathbb{A}) \subset Corep(\mathbb{F})$ ,  $p_{\mathbb{A}} = \sum_{\alpha \in I(\mathbb{A})} p_{\alpha}$ .

#### Quotient spaces.

- Quantum:  $\ell^{\infty}(\Gamma/\Lambda) = \ell^{\infty}(\Gamma)^{\Lambda} = \{a \in \ell^{\infty}(\Gamma) \mid (1 \otimes p_{\Lambda})\Delta(a) = a \otimes p_{\Lambda}\}.$ We have  $\Delta(\ell^{\infty}(\Gamma/\Lambda)) \subset \ell^{\infty}(\Gamma)\bar{\otimes}\ell^{\infty}(\Gamma/\Lambda).$
- Categorical:  $\operatorname{Corep}(\mathbb{\Gamma}/\mathbb{A}) := \operatorname{Rep}(\ell^{\infty}(\mathbb{\Gamma}/\mathbb{A}))$  is a left- $\operatorname{Corep}(\mathbb{\Gamma})$ -module category with restriction functor  $\operatorname{Corep}(\mathbb{\Gamma}) \to \operatorname{Corep}(\mathbb{\Gamma}/\mathbb{A})$ .
- Classical:  $I(\mathbb{F})/\mathbb{A} = I(\mathbb{F})/\sim$  where  $\alpha \sim \beta \Leftrightarrow \exists \lambda \in I(\mathbb{A}) \quad \beta \subset \alpha \otimes \lambda$ .

#### Some notation:

- $p_{[\alpha]} = \sum_{\beta \in [\alpha]} p_{\beta} \in \ell^{\infty}(\Gamma/\Lambda) \text{ for } [\alpha] \in I(\Gamma)/\Lambda \text{ (or } \Lambda \setminus I(\Gamma)),$
- $v_{\mathbb{A}} \in \operatorname{Corep}(\mathbb{A})$ ,  $\mathbb{A}$ -isotypical component of  $v \in \operatorname{Corep}(\mathbb{F})$ ,
- $\kappa_{\alpha} = \dim_{\sigma}(\bar{\alpha} \otimes \alpha)_{\mathbb{A}}$  for  $\alpha \in I(\mathbb{\Gamma})$ .



# Description of the quotient space

#### **Theorem**

- We have  $\ell^{\infty}(\Gamma/\Lambda) = \ell^{\infty} \bigoplus_{[\alpha]} p_{[\alpha]} \ell^{\infty}(\Gamma/\Lambda)$ .
- We have  $p_{[\alpha]}\ell^{\infty}(\mathbb{\Gamma}/\mathbb{A}) \simeq B(H_{\alpha})_{\mathbb{A}}' \cap B(H_{\alpha})$  canonically.
- More generally  $\operatorname{Hom}_{\Gamma/\mathbb{A}}(\alpha,\beta) = B(H_{\alpha},H_{\beta})_{\mathbb{A}}$ .
- For  $a \in \ell^{\infty}(\mathbb{F}/\mathbb{A})$  we have  $a = \sum_{[\alpha]} \kappa_{\alpha}^{-1}(h_R \otimes \mathrm{id})[(S^{-1}(a_{\alpha}) \otimes 1)\Delta(p_{\mathbb{A}})].$

Denote 
$$c_c(\mathbb{\Gamma}/\mathbb{A})=\bigoplus p_{[a]}\ell^\infty(\mathbb{\Gamma}/\mathbb{A}),\, c(\mathbb{\Gamma}/\mathbb{A})=\prod p_{[a]}\ell^\infty(\mathbb{\Gamma}/\mathbb{A}).$$

Analogue of the counting measure on  $\Gamma/\Lambda$ :

## Corollary

 $c_c(\mathbb{F}/\mathbb{A})$  admits a (unique) positive,  $\mathbb{F}$ -invariant faithful form given by  $\mu(\mathbf{a}) = \sum_{[\alpha]} \kappa_{\alpha}^{-1} h_L(\mathbf{a}_{\alpha}).$ 

# Hecke pairs

The subalgebra  $c_c(\mathbb{\Gamma}/\mathbb{A}) \cap c_c(\mathbb{A}\backslash\mathbb{F}) \subset \ell^{\infty}(\mathbb{F})$  can be degenerate.

#### **Definition**

The commensurator of  $\mathbb A$  in  $\mathbb F$  is the unique intermediate quantum subgroup  $\mathbb A \subset \mathbb F' \subset \mathbb F$  such that  $c_c(\mathbb A \backslash \mathbb F'/\mathbb A) = c_c(\mathbb F/\mathbb A) \cap c_c(\mathbb A \backslash \mathbb F)$ . We say that  $(\mathbb F, \mathbb A)$  is a Hecke pair if  $\mathbb F' = \mathbb F$ .

Denote, for 
$$\tau \in \mathbb{A} \setminus I(\mathbb{F})/\mathbb{A}$$
:  

$$L(\tau) = \#\{\alpha \in \mathbb{A} \setminus I(\mathbb{F}) \mid \alpha \subset \tau\}, \quad R(\tau) = \#\{\alpha \in I(\mathbb{F})/\mathbb{A} \mid \alpha \subset \tau\}.$$

## Proposition

$$\Gamma'$$
 is given by  $I(\Gamma') = \{\alpha \in I(\Gamma) \mid L(\llbracket \alpha \rrbracket), R(\llbracket \alpha \rrbracket) < \infty\}.$ 

Trivial examples: finite subgroups, finite index subgroups.

# The Hecke algebra

#### Definition

For 
$$a \in c_c(\mathbb{\Gamma}/\mathbb{A})$$
,  $b \in c_c(\mathbb{A}\backslash\mathbb{\Gamma})$  define  $a*b = (\mathrm{id} \otimes \mu)[\Delta(a)(1 \otimes S(b))] = (\mu S \otimes \mathrm{id})[\Delta(b)(S^{-1}(a) \otimes 1)] \in c(\mathbb{\Gamma})$  and  $a^\sharp = S(a^*) \in c_c(\mathbb{A}\backslash\mathbb{\Gamma})$ .

Classical case:  $\forall \alpha \ \dim_q(\alpha) = 1$ ,  $\kappa_\alpha = 1$ . We recover the formula  $(a*b)(g) = \sum_{[h] \in \Gamma/\Lambda} a(gh)b(h^{-1})$ .

## **Proposition-Definition**

 $\mathscr{H}(\mathbb{F},\mathbb{A}) := c_c(\mathbb{F}/\mathbb{A}) \cap c_c(\mathbb{A}\backslash\mathbb{F})$  is an involutive algebra for \* and  $^\sharp$ , with unit  $p_{\mathbb{A}}$ , stable under  $\sigma^R_t$ ,  $\sigma^L_t$  and  $\tau_t$ .

Normal case: if  $c_c(\mathbb{\Gamma}/\mathbb{A}) = c_c(\mathbb{A}\backslash\mathbb{\Gamma})$ ,  $\mathscr{H}(\mathbb{\Gamma},\mathbb{A})$  is the convolution algebra of the quotient quantum group  $\mathbb{\Gamma}/\mathbb{A}$ .

# **Hecke Operators**

Recall that  $c_c(\Gamma/\Lambda)$  is endowed with a left  $\Gamma$ -action.

## Proposition

Let  $(\mathbb{F}, \mathbb{A})$  be a Hecke pair. We have an isomorphism  $\mathscr{H}(\mathbb{F}, \mathbb{A}) \to \operatorname{End}(c_c(\mathbb{F}/\mathbb{A}))^{\mathbb{F}}$ ,  $a \mapsto T(a) := (\cdot * a)$  with inverse  $(T \to T(p_{\mathbb{A}}))$ . Moreover  $(x \mid T(a)y) = (T(a^{\sharp})x \mid y)$  for the scalar product associated with  $\mu$ .

#### **Theorem**

Let  $(\Gamma, \Lambda)$  be a Hecke pair. T(a) is bounded on  $\ell^2(\Gamma/\Lambda)$  for all  $a \in \mathcal{H}(\Gamma, \Lambda)$  iff we have  $(RT) : \kappa_{\gamma} \leq C_{\beta} \kappa_{\alpha}$  for all  $\gamma \subset \alpha \otimes \beta$ .

# **Hecke Operators**

#### **Theorem**

Let  $(\Gamma, \Lambda)$  be a Hecke pair. T(a) is bounded on  $\ell^2(\Gamma/\Lambda)$  for all  $a \in \mathcal{H}(\Gamma, \Lambda)$  iff we have  $(RT) : \kappa_{\gamma} \leq C_{\beta} \kappa_{\alpha}$  for all  $\gamma \subset \alpha \otimes \beta$ .

This property is not satisfied by all inclusions  $\Lambda \subset \Gamma$ .

By restriction to  $\ell^{\infty}(\mathbb{F}/\mathbb{A})$  we have also  $\alpha \in \operatorname{Corep}(\mathbb{F}/\mathbb{A})$ . Denote  $\tilde{\alpha}$  is the image of  $\alpha$  in the Grothendieck ring  $\mathbb{Z}[\mathbb{F}/\mathbb{A}]$ . If  $\mathbb{F}$  is unimodular:

$$\kappa_{\alpha} = \dim_{q}(\bar{\alpha} \otimes \alpha)_{\mathbb{A}} = ||\tilde{\alpha}||_{2}^{2}.$$

#### **Exercise**

Prove in  $Corep(\Gamma/\Lambda)$  that (RT) is satisfied if  $(\Gamma, \Lambda)$  is a Hecke pair.

In the sequel we will see an analytical proof.



# Modular properties

Canonical state on  $\mathscr{H}(\mathbb{F}, \mathbb{A})$ :  $\omega = \epsilon = (p_{\mathbb{A}} \mid T(\cdot)p_{\mathbb{A}})$ . It is faithful.

## **Proposition-Definition**

Let  $\nabla \in c(\mathbb{A} \setminus \mathbb{F}/\mathbb{A})$  unique such that  $\mu S(a) = \mu(\nabla a)$  for all  $a \in \mathcal{H}(\mathbb{F}, \mathbb{A})$ . Then  $\theta_t : a \mapsto \sigma_t^R(\nabla^{it}a)$  is a group of  $\sharp$ -automorphisms of  $\mathcal{H}(\mathbb{F}, \mathbb{A})$  and  $\omega$  is  $\theta$ -KMS.

#### **Theorem**

Asumme  $\mathbb{A}$  is unimodular. Then  $\nabla_{\alpha} = (\tilde{L}(\llbracket \alpha \rrbracket)/\tilde{R}(\llbracket \alpha \rrbracket)) F_{\alpha}^2$  where the  $F_{\alpha}$  are Woronowicz' modular matrices, and for  $\tau = \llbracket \alpha \rrbracket \in \mathbb{A} \setminus I(\Gamma)/\mathbb{A}$ :

$$\tilde{L}(\tau) = \sum_{[\delta] \in \mathbb{A} \setminus I(\mathbb{F}), [\delta] \subset \tau} (\dim_q \delta)^2 / \kappa_{\bar{\delta}} 
\tilde{R}(\tau) = \sum_{[\delta] \in I(\mathbb{F}) / \mathbb{A}, [\delta] \subset \tau} (\dim_q \delta)^2 / \kappa_{\delta}.$$

There is also a more involved formula when  $\mathbb{A}$  is not unimodular...



## **Outline**

- Introduction
- Hecke algebras for discrete quantum group
  - Structure of the quotient space
  - Hecke algebra
- The Schlichting Completion
  - Construction of the completion
  - Application to Hecke operators
  - Exemples

# The C\*-Hopf algebra

**Classical reminder.** Consider  $\pi : \Gamma \to \operatorname{Bij}(\Gamma/\Lambda)$  by left translations.

Define  $G = \overline{\pi(\Gamma)}$ . If  $(\Gamma, \Lambda)$  is a Hecke pair, it is a locally compact group and  $H = \overline{\pi(\Lambda)}$  is compact open.

But  $\mathrm{Bij}(\Gamma/\Lambda)$  has no good quantum analogue...

# The C\*-Hopf algebra

**Classical reminder.** Consider  $\pi : \Gamma \to \operatorname{Bij}(\Gamma/\Lambda)$  by left translations.

Define  $G = \overline{\pi(\Gamma)}$ . If  $(\Gamma, \Lambda)$  is a Hecke pair, it is a locally compact group and  $H = \overline{\pi(\Lambda)}$  is compact open.

But  $Bij(\Gamma/\Lambda)$  has no good quantum analogue...

#### Definition

We put 
$$\mathscr{O}_c(\mathbb{G}) = \mathrm{alg} - \langle a * b, a \in c_c(\Gamma/\Lambda), b \in c_c(\Lambda \backslash \Gamma) \rangle \subset c(\Gamma).$$

$$C_0(\mathbb{G}) = C^* - \langle a * b, a \in c_c(\Gamma/\Lambda), b \in c_c(\Lambda \backslash \Gamma) \rangle \subset \ell^{\infty}(\Gamma).$$

Classical case:  $\Gamma \to G$  induces  $C_0(G) \subset \ell^{\infty}(\Gamma)$ . If  $a = \mathbb{1}_{[r]}$ ,  $b = \mathbb{1}_{[s]}$  then  $a * b = \mathbb{1}_{\{g \mid g[s]^{-1} = [r]\}}$ .

# The C\*-Hopf algebra

## Definition

We put 
$$\mathscr{O}_c(\mathbb{G}) = \mathrm{alg} - \langle a * b, a \in c_c(\Gamma/\Lambda), b \in c_c(\Lambda \backslash \Gamma) \rangle \subset c(\Gamma).$$

$$C_0(\mathbb{G}) = C^* - \langle a * b, a \in c_c(\Gamma/\Lambda), b \in c_c(\Lambda \backslash \Gamma) \rangle \subset \ell^{\infty}(\Gamma).$$

Classical case:  $\Gamma \to G$  induces  $C_0(G) \subset \ell^{\infty}(\Gamma)$ . If  $a = \mathbb{1}_{[r]}$ ,  $b = \mathbb{1}_{[s]}$  then  $a * b = \mathbb{1}_{\{g \mid g[s]^{-1} = [r]\}}$ .

#### **Theorem**

If  $(\Gamma, \Lambda)$  is a Hecke pair we have

$$\Delta(\mathscr{O}_c(\mathbb{G}))(1\otimes\mathscr{O}_c(\mathbb{G}))=\mathscr{O}_c(\mathbb{G})\odot\mathscr{O}_c(\mathbb{G})=\Delta(\mathscr{O}_c(\mathbb{G}))(\mathscr{O}_c(\mathbb{G})\otimes 1).$$

 $\mathscr{O}_{c}(\mathbb{G})$  is a multiplier Hopf algebra.

 $C_0(\mathbb{G})$  is a bisimplifiable Hopf  $C^*$ -algebra.

# The Haar weights

Recall:  $C_0(\mathbb{G})$  is a bisimplifiable Hopf  $C^*$ -algebra.

To define a quantum group we need Haar weights.

# Corollary-Definition

 $C(\mathbb{H}) := p_{\mathbb{A}}C_0(\mathbb{G})$  is a Hopf  $C^*$ -algebra (with unit  $p_{\mathbb{A}}$ ).

Hence it admits a Haar state h.

Moreover by definition of  $(\mathbb{G}, \mathbb{H})$  we have  $\mathscr{O}_c(\mathbb{G})^{\mathbb{H}} = c_c(\mathbb{F}/\mathbb{A})$ . One can project onto  $c_c(\mathbb{F}/\mathbb{A})$  using h.

## **Corollary-Definition**

 $\varphi := \mu(\mathrm{id} \otimes hp_{\wedge})\Delta$  is an integral on  $\mathscr{O}_{c}(\mathbb{G})$ .  $\mathbb{G}$  is an algebraic quantum group, hence a locally compact quantum group.

# Reduced pairs

If  $\delta: C_0(\mathbb{X}) \to M(c_0(\mathbb{F}) \otimes C_0(\mathbb{X}))$  is an action of  $\mathbb{F}$  on  $\mathbb{X}$ , consider the cokernel  $N(\mathbb{X}) = \{(\mathrm{id} \otimes \varphi)\delta(a) \mid a \in C_0(\mathbb{X}), \varphi \in C_0(\mathbb{X})^*\}'' \subset \ell^{\infty}(\mathbb{F}).$ 

We have  $N(\mathbb{X}) = \ell^{\infty}(\mathbb{Z})$  for a discrete quantum group  $\mathbb{Z}$  which in general is not a quotient of  $\mathbb{F}$ . We say that the action is faithful if  $N(\mathbb{X}) = \ell^{\infty}(\mathbb{F})$ .

#### Definition

We call the pair  $(\mathbb{\Gamma}, \mathbb{A})$  reduced if the action of  $\mathbb{\Gamma}$  on  $\mathbb{X} = \mathbb{\Gamma}/\mathbb{A}$  is faithful.

By definition of  $a*b=(\mathrm{id}\otimes\mu)[\Delta(a)(1\otimes S(b))]$ , we have  $N(\mathbb{\Gamma}/\mathbb{A})=C_0(\mathbb{G})''\subset\ell^\infty(\mathbb{\Gamma}).$   $(\mathbb{\Gamma},\mathbb{A})$  is reduced **iff** " $\mathbb{\Gamma}$  embeds into  $\mathbb{G}$ ".

## **Proposition**

Assume  $(\mathbb{F}, \mathbb{A})$  is reduced. Then  $\mathbb{G}$  is discrete **iff**  $\mathbb{A}$  is finite.



# The Hecke Algebra

Let  $(\mathbb{G}, \mathbb{H})$  be the Schlichting completion of a Hecke pair  $(\mathbb{F}, \mathbb{A})$ . Since  $\mathbb{H}$  is compact, it makes sense to consider  $\mathscr{O}_{c}(\mathbb{G})^{\mathbb{H}}$ .

## Proposition

We have  ${}^{\mathbb{H}}\mathscr{O}_{c}(\mathbb{G})^{\mathbb{H}} \simeq \operatorname{End}(\mathscr{O}_{c}(\mathbb{G})^{\mathbb{H}})^{\mathbb{G}}$ ,  $b \mapsto T'(b) := (\cdot * b)$ , using the convolution product of  $\mathscr{O}_{c}(\mathbb{G})$ .

Denote  $\ell^2(\mathbb{G}/\mathbb{H}) = \mathscr{O}_c(\mathbb{G})^{\mathbb{H}} \subset L^2(\mathbb{G})$ . By construction of  $(\mathbb{G}, \mathbb{H})$  we have  $\mathscr{O}_c(\mathbb{G})^{\mathbb{H}} = c_c(\mathbb{F}/\mathbb{A})$  and  $\ell^2(\mathbb{G}/\mathbb{H}) \simeq \ell^2(\mathbb{F}/\mathbb{A})$ .

Since the operators T'(b) arise from the right regular repr. of  $\mathbb{G}$  we get:

## Corollary

The Hecke operators T(a), for  $a \in \mathcal{H}(\Gamma, \Lambda)$ , are bounded on  $\ell^2(\Gamma/\Lambda)$ .

## **HNN Extensions**

Fixe  $\mathbb{A}_{\pm 1} \subset \mathbb{F}_0$  with an isomorphism  $\theta : \mathbb{A}_1 \to \mathbb{A}_{-1}$ . Consider  $\mathbb{F} = HNN(\mathbb{F}_0, \theta)$  [Fima 2013]. Corep( $\mathbb{F}$ ) is generated by  $\operatorname{Corep}(\mathbb{F}_0)$  and a 1-dimensional w such that  $w^{\epsilon} \otimes v \otimes w^{-\epsilon} = \theta_*^{\epsilon}(v)$  for  $v \in \operatorname{Corep}(\mathbb{A}_{\epsilon})$ .

## Proposition

- If A<sub>±1</sub> have finite index in Γ<sub>0</sub> and are different from Γ<sub>0</sub>, then Γ<sub>0</sub> ⊂ Γ is almost normal, not normal, of infinite index.
- If  $\bigcap_{k \in \mathbb{Z}} \operatorname{Dom} \theta^k = \{1\}$  the action of  $\mathbb{F}$  on  $\mathbb{F}/\mathbb{F}_0$  is faithful.
- We have  $\nabla_{w} = (\tilde{L}(\llbracket w \rrbracket)/\tilde{R}(\llbracket w \rrbracket)) p_{w}$  with  $\tilde{L}(\llbracket w \rrbracket) = \sum_{[\delta] \in \mathbb{A}_{1} \setminus I(\llbracket o)} \dim_{q}(\delta \otimes \bar{\delta}) / \dim_{q}(\delta \otimes \bar{\delta})_{\mathbb{A}_{1}},$   $\tilde{R}(\llbracket w \rrbracket) = \sum_{[\delta] \in I(\llbracket o)/\mathbb{A}_{-1}} \dim_{q}(\bar{\delta} \otimes \delta) / \dim_{q}(\bar{\delta} \otimes \delta)_{\mathbb{A}_{-1}}.$



## **HNN Extensions**

## Proposition

- If  $\mathbb{A}_{\pm 1}$  have finite index in  $\mathbb{F}_0$  and are different from  $\mathbb{F}_0$ , then  $\mathbb{F}_0 \subset \mathbb{F}$  is almost normal, not normal, of infinite index.
- If  $\bigcap_{k \in \mathbb{Z}} \operatorname{Dom} \theta^k = \{1\}$  the action of  $\mathbb{F}$  on  $\mathbb{F}/\mathbb{F}_0$  is faithful.
- We have  $\nabla_w = (\tilde{L}(\llbracket w \rrbracket)/\tilde{R}(\llbracket w \rrbracket)) p_w$  with  $\tilde{L}(\llbracket w \rrbracket) = \sum_{[\delta] \in \mathbb{A}_1 \setminus I(\mathbb{F}_0)} \dim_q(\delta \otimes \bar{\delta}) / \dim_q(\delta \otimes \bar{\delta})_{\mathbb{A}_1},$   $\tilde{R}(\llbracket w \rrbracket) = \sum_{[\delta] \in I(\mathbb{F}_0)/\mathbb{A}_{-1}} \dim_q(\bar{\delta} \otimes \delta) / \dim_q(\bar{\delta} \otimes \delta)_{\mathbb{A}_{-1}}.$

**Example.**  $\Sigma_{\pm 1}$  non classical finite quantum groups.

Take 
$$\mathbb{F}_0 = \prod_{k \in \mathbb{Z}^*}' \mathbb{E}_{\operatorname{sgn}(k)}$$
 and  $\mathbb{A}_{\epsilon} = \prod_{k \in \mathbb{Z}^*, k \neq \epsilon}' \mathbb{E}_{\operatorname{sgn}(k)} \subset \mathbb{F}_0$ .  
Then the Proposition applies,  $\tilde{L}(\llbracket w \rrbracket) = \# \mathbb{E}_1$ ,  $\tilde{R}(\llbracket w \rrbracket) = \# \mathbb{E}_{-1}$ .

 $\mathbb{G}$  is a non-discrete, non-classical, non-co-classical locally compact quantum group, with non-trivial modular group if  $\#\mathbb{Z}_1 \neq \#\mathbb{Z}_{-1}$ .

