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Introduction

Let < be aquantum subgroup of a discrete quantum group. The von
Neumann algebra of Hecke operators is the commutant of the
quasi-regular representation: .Z( , )= B(¢?( / )) .
Questions:

@ (combinatorial) description of Z( , )?

@ modular properties of the canonical state (§ |- )?

@ analytical properties of this von Neumann algebra...

In the classical case @ is achieved using a dense subalgebra
H(I', \) =~ c(A\I'/A\) with convolution product. Quantum case:

© construction and descriptionof / , \ / ?
© boundedness of the action of co( \ / )on 3( / )?

For @, @ we construct the Schlichting completion (G, H) of ( , ).
- construction of new locally compact quantum groups.
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Discrete quantum groups and subgroups

A discrete quantum group s given by
@ a x-algebra of the form ¢;( ) = @ae,( ) B(Ha), dim Hy < oo,
@ acoproduct A : co( ) = A (co( )ocs( )).

The existence of integrals ¢ := h;, hg is automatic.

Denote p, = idk,, 8 = paa € B(H,), () = M(cq( ).
I( ): irreducible reps of Corep( ) = Rep(ce( )).
Tensor structure : v w := (v®w) o A. Duality : v=voR.

Classical case =1 :¢*( )commutative © YadimH, = 1.
Thenl( )=T,e®B=0af,@a=a".

A (closed quantum) subgroup c isgivenby I( ) c I( ) stable under

tensor product and duality. Thenc.( )=p c:( ), A =(p ®p )A
where p = ¥ ,ei( )Pa € £( ). We have Corep( ) c Corep( ).
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The quotient space

Quotient spaces.
@ Classical: I( )/ =1I( )/~wherea~Bedlel( ) Bcad®
@ Quantum: ¢*( / )=¢( ) =faet( )|(1®p )A(a)=a®p }.
We have A(*( /) c®( )®=( /).
@ Categorical: Corep( / ):=Rep(£*( / ))is aleft-Corep( )-module
category with restriction functor Corep( ) — Corep( / ).

Some notation:
@ v € Corep( ), -isotypical component of v € Corep( ),
@ kg =dimg(@®a) forael ),
@ [a]theclassof ainI( )/ (or \I( )),
@ Plo) = pef P ELCT( /)
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Hecke algebras for discrete quantum groups Structure of the quotient space

Description of the quotient space

Theorem
© We have (| )=t~ D Pait™( / ).
@ We have pj,t=( / )= B(H.)" N B(H.) canonically.
@ More generally Hom ; (a,) = B(Ha, Hp) .
@ Foraet™( /| )wehavea = Y, &' (hr®id)[(S7'(a,) ® 1)A(p ).

Denote ce( / ) =D pwt™( / ). c( / )=T1put( / ).
Analogue of the counting measure on /A :

Corollary
c.( / ) admits a (unique) positive, -invariant faithful form given by

#(@) = Sy k' he(a)-
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The Hecke algebra

Definition
Foraecs( / ),becc( \ )define

axb = (ideu)[Aa)(1® S(b))] = (uS®id)[A(b)(ST'(a)®1)] € ¢( )
and a® = S(a*) e co( \ ).

Classical case: Ya dimg(@) = 1, k, = 1. We recover the formula
(a*b)(9) = Xnjer/a algh)b(h™).
Proposition-Definition

H(, )i=ce( /| )nce( \ )isaninvolutive algebra for x and ¥,
with unit p , stable under o}, ot and ;.
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The Hecke algebra

Proposition-Definition

H(, )i=ces( /| )nce( \ ) isaninvolutive algebra for x and ¥,
with unit p , stable under off, ot and ;.

NB.c:( / )nece( \ )is also a (possibly degenerate) sub-=-algebra of
¢*( ). Denote,forre \I( )/ :
Lr)=#{ae \I( )lact), R@Er)=#acl( )/ lacth

Proposition-Definition
We say that ( , ) is a Hecke pairifcc( / )Nnce( \ ) c¢®( )isnon
degenerate & Yt e \I( )/ L(7)<oo.

Examples: finite or finite index. Normal case: if c.( / ) =cc( \ ),
( , ) is the convolution algebra of the quotient quantum group / .
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Hecke Operators
Recall that c;( / ) is endowed with a left -action.

Proposition

Let( , ) be a Hecke pair. We have an isomorphism

H(, )= End(cc( / )) ,a— T(a):=(-*a)
with inverse (T — T(p )). Moreover (x | T(a)y) = (T(a")x | y) for the
scalar product associated with p.

Theorem

Let( , ) be aHecke pair. T(a) is bounded on ¢?( | )forallae s#( , )
iff we have (RT) :k, < Cgk, forally C a®p.

y
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Hecke Operators

Theorem

Let( , ) be aHecke pair. T(a) is bounded on ¢?( | )forallae s#( , )
iff we have (RT) :k, < Cgk, forally c a®p.

This property is not satisfied by all inclusions ¢

By restriction to £*°( / ) we have also @ € Corep( / ). Denote @ is the
image of « in the Grothendieck ring Z[ / ]. If is unimodular:
Ko = dimg(@®@ ) = ||@lf3.
Exercise
Prove in Corep( / ) that (RT) is satisfied if ( , ) is a Hecke pair. J

In the sequel we will see an analytical proof.
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Modular properties
Canonical stateon 77( , J):w=¢€e=(p | T(-)p ). Itis faithful.
Proposition-Definition

LetVec( \ / )unique suchthatuS(a) = pu(Va) forallae 2( , ).
Then 6; : a — o (V'a) is a group of §-automorphisms of 7#( , ) and w
is 6-KMS.

Theorem

Asumme is unimodular. Then V,, = (L([[a])/R([al)) F? where the F,
are Woronowicz’ modular matrices, and fort = [[a]l € \I( )/ :

L(7) = Spse \i( ysjer (dimg 8)2 /K5

R(7) = Xpsjei )/ sjer (dimg 6)?/ks.

There is also a more involved formula when is not unimodular...
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The Schlichting Completion Construction of the completion

The C*-Hopf algebra

Classical reminder.

Consider 7 : I — Bij(I'/A) by left translations. Define G = #(I"), H = n(A).
If (I, A\) is a Hecke pair, G is a locally compact and H is compact open.

But Bij(I'/A) has no good quantum analogue...
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The C*-Hopf algebra

Classical reminder.
Consider 7 : I — Bij(I'/A) by left translations. Define G = #(I"), H = n(A).
If (I, A\) is a Hecke pair, G is a locally compact and H is compact open.

But Bij(I'/A) has no good quantum analogue...
Definition

We put 0;(G) = alg—(axb,accc( / )
Co(G)=C*—(axb,accs( /)

)

bec( \ )ce().
bece( \

€ C;

Classical case: ' — G induces Cyo(G) c £*(I).
Ifa= 1[r]= b= l[s] thena+b = 1{9 | g[s]-"=[r]}-
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The C*-Hopf algebra
Definition

We put 0,(G) = alg—(a=xb,accs( / ),becs( \ )cec().
Co(G)=C*~<(axb,acce( / ),bece( \ ))ct().

Classical case: ' — G induces Cy(G) c £=(I).
Ifa= 1[r]= b= l[s] thena+b = 1{9 | g[s]-'=[r]}-

Theorem
If( , ) is a Hecke pair we have
A(0:(G))(1 ® O:(G)) = 0:(G) © Gc(G) = A(O:(G))(0:(G) ® 1).
O¢(G) is a multiplier Hopf algebra.
Co(G) is a bisimplifiable Hopf C*-algebra.
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The Haar weights

Corollary

C(H) := p Co(G) is a Hopf C*-algebra (with unitp ).
Hence it admits a Haar state h.

Moreover one has 0.(G)" = ¢;( / ) as subspaces of £°( ).

Corollary

¢ = pu(id® hp )A is an integral on 0.(G). G is an algebraic quantum
group, hence a locally compact quantum group.

If AcTisnormal, H=n(A)={1}, G=T/A..

Proposition
If the action of on |/ s faithful and s infinite, G is non-discrete. J
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The Hecke Algebra

Let (G, H) be the Schlichting completion of a Hecke pair ( , ).
Recall that H is compact and put
@ ¢c.(G/H) := 0,(G)* c 0:(G) and (3(G/H) = ¢;(G/H) c L3(G),
e J#(G,H) = 0,(G)¥ with the convolution product of ,(G).

Proposition
We have 7#(G,H) ~ End(c:(G/H))®, b — T'(b) := (- * b). J

By construction of (G, H) we have
End(c.(G/H))® = End(cc( / )) and £3(G/H) = £2( / ).
Since the operators T’(b) arise from the right regular repr. of G we get:

Corollary
The Hecke operators T(a), fora € #( , ), are bounded on (?>( | ). }
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HNN Extensions

Fixe .1 C o withanisomorphismé: 1 — _j.
Consider = HNN( o, 6) [Fima 2013]. Corep( ) is generated by

Corep( o) and a 1-dimensional w such that we ® v w™¢ = 65(v) for
v € Corep( ).

Proposition
@ If .1 have finite index in o and are different from o,
then o c is almost normal, not normal, of infinite index.
@ IfNkez Dom#* = {1} the action of on /| q is faithful.
e We have V,, = (L([w1])/R([w])) pw with
L(IwD) = Zpsge i o) dimg(6 ® 6)/ dimg(5®6) ,,
R(IWI) = Ssjei o)y s dimg(6 ® 6)/ dimg(6®6) _,.
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HNN Extensions

Proposition
@ If .1 have finite index in o and are different from o,
then o c is almost normal, not normal, of infinite index.
@ IfNkez Dom#* = {1} the action of on /| q is faithful.
e We have V,, = (L([wl)/R([w1)) pw with
L(IwD) = Zsge i o) dimg(5 ®6)/ dimg(5®6) ,,
R(IW]) = Zisjei o)) ; dimg(3 ®6)/ dimg(5®6) _,.

Example. . non classical finite quantum groups.
Take o = [Tkeze sen(k) @nd = [Tkez: ke sgn(k) € 0-
Then the Proposition applies, L([w]) = # 1, R(Iw]) = # _1.

G is a non-discrete, non-classical, hon-co-classical locally compact
quantum group, with non-trivial modular group if # 1 # # _4.
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