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Introduction

My research is devoted to the study of discrete quantum groups, from an analytic, algebraic and geometric
point of view.

Initiated by G.I. Kac in the 1960's, the theory of quantum groups enjoyed a second take-o� in the 1980's
with the works of Drinfel'd in mathematical physics and Woronowicz in operator algebras, who introduced the
notion of compact (or dually, discrete) quantum group. In the locally compact case, the axiomatic framework
has been worked out by Kac-Vainerman and Enock-Schwartz in the 1970's, and then by Kustermans-Vaes ath
the end of the 1990's. Since then the theory has been animated by new developments and new applications in
various areas such as operator algebras, representation theory, free probability and mathematical physics.

A discrete quantum group � and its compact dual G are given by the associated reduced Woronowicz C∗-
algebra, Ar = C∗r (�) = Cr(G), which is a unital C∗-algebra endowed with a coproduct ∆ : Ar → Ar⊗Ar
satisfying certain axioms. There is also a full version A = C∗f (�) of this C∗-algebra, and we say that � is
amenable when the natural map from C∗f (�) to C∗r (�) is an isomorphism. In my research I mainly focus on
non-amenable discrete quantum groups which satisfy weaker conditions that amenability, e.g. K-amenability,
Haagerup's Property, Akemann-Ostrand Property, or exactness. Moreover many results are motivated by the
analogy with the case of usual discrete groups, � = Γ: then C∗r (Γ) is the norm closed sub-∗-algebra of B(`2(Γ))
generated by the operators of left translation by elements of Γ.

Another family of �classical� examples is supplied by usual compact groups G: in this case C∗r (�) is the
algebra of continuous functions C(G), and one says that � = Ĝ is the dual of G. The most famous class
of �non-classical� quantum groups is probably the one of q-deformations of compact Lie groups, introduced in
the framework of envelopping algebras by Jimbo and Drinfel'd: one can e.g. de�ne compact quantum groups
Gq = SUq(N), Spinq(N), Spq(N) for q ∈ ]0, 1], which coincide with SU(N), Spin(N), Sp(N) when q = 1.
However the associated discrete quantum groups are amenable.
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In 1995 Wang introduced a new class of examples: the one of universal compact quantum groups, unitary or
orthogonal, given by full Woronowicz C∗-algebras denoted Au(Q), Ao(Q), where the parameter Q ∈ MN (C) is
an invertible matrix. Their discrete duals are also called unitary or orthogonal free quantum groups and denoted
FU(Q), FO(Q). They are non amenable as soon as N ≥ 3 and can be considered in some respects as quantum
analogues of the usual free groups FN . Several results of this rapport deal with the operator algebras associated
to these quantum groups and are motivated by the parallel with free groups.

To each discrete quantum groups � is associated its category of �nite-dimensional corepresentations, Corep�.
When � is the dual of a usual compact group, � = Ĝ, its corepresentations correspond to representations of G
and the classical Peter-Weyl theory shows that Corep� is semisimple. Woronowicz shows that semisimplicity
still holds for discrete quantum groups, and we denote Irr� the set of classes of irreducible corepresentations of
�. The tensor product of two irreducible corepresentations can be decomposed in Irr�: the multiplicities that
appear in this way form the fusion rules of �. In the case when � = Γ is a usual discrete group, Irr� identi�es
with Γ and the fusion rules are given by the product of the group.

Fusion rules of liberated quantum groups

In the article [5], we determine the fusion rules of the quantum re�ection groups G = Hs+
N , which were

introduced by Banica, Belinschi, Capitaine and Collins in 2011. In the s = 1 case one recovers an important
family of quantum groups: the one of quantum permutation groups S+

N introduced by Wang in 1998, whose
fusion rules were computed by Banica in 1999. We show in [5] that Hs+

N is isomorphic to the free wreath product
(Z/sZ) o∗ S+

N , and can be interpreted as the group of quantum symmetries of an explicit �nite graph, namely
the disjoint union of N oriented cycles of length s.

The notion of free wreath product G o∗ S+
N has been introduced by Bichon in 2004 for any compact quantum

group G. There is no general result allowing to describe the fusion rules of the wreath product in terms of the
ones of G. The following result can be seen as a �rst step in this direction, dealing with the case G = Z/sZ:

Theorem 1 [5, Thm. 7.3] For N ≥ 4 the irreducible representations rx of Hs+
N can be indexed by words x on

Z/sZ in such a way that we have the following recursive fusion rules, where x, y are words and i, j are letters:

rxi⊗rjy =

{
rxijy ⊕ rx(i+j)y if i+ j 6= 0 mod s,
rxijy ⊕ rx(i+j)y ⊕ (rx⊗ry) else.

In the article [6], we describe the fusion rules of the half-liberated orthogonal groups G = O∗N introduced by
Banica and Speicher in 2009. The results we obtain, and the methods used, are inspired by the classical theory
of weights for representations of usual compact Lie groups.

The C∗-algebra Cf (O∗N ) is generated by elements uij which form the fundamental representation u = (uij)
of O∗N . It is easy to see that the quotient of Cf (O∗N ) by the ideal generated by �o�-diagonal� generators (uij ,
i 6= j) identi�es with the C∗-algebra C∗(L) of a usual discrete group L, called diagonal group of O∗N . It turns out
that L plays the role of a noncommutative weight lattice for O∗N . More precisely, the image of any representation
v ∈ RepO∗N in C∗(L) decomposes as a direct sum of elements of L. Denoting P (v) the set (with multiplicities)
of elements of L appearing in this way, we have the following classi�cation result:

Theorem 2 [6, Thm. 6.2] Let L be the diagonal group of O∗N , and v, w two representations of O∗N . If we have
P (v) = P (w) as subsets of L with multiplicities, then v and w are equivalent.

We compute also the group L: it identi�es in a natural way with a subgroup of ZN o (Z/2Z) isomorphic
to ZN−1 o (Z/2Z), where Z/2Z acts as −id on ZN and ZN−1. Using the natural map from ZN o (Z/2Z) onto
X = ZN identi�ed with the weight lattice of the compact group UN , we manage to describe the fusion rules of
O∗N in terms of the ones of UN , and to compute the dimensions of its irreducible representations. It turns out
that these fusion rules are noncommutative, and that the dual of O∗N has polynomial growth � in particular it
is amenable.

The Property of Rapid Decay

The article [3] deals with the Property of Rapid Decay in the framework of discrete quantum groups. The
de�nitions and equivalent characterizations of the classical case are easy to generalize to the quantum case. Given
a generating subset of Corep�, there is a notion of length for irreducible objects of Corep�, and an associated
graduation of the C∗-algebra C∗r (�) into subspaces C∗r (�)k, k ∈ N. Denoting ‖ · ‖r the norm of C∗r (�), and ‖ · ‖2
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the hilbertian norm induced by the Haar state on C∗r (�), we have in general ‖x‖2 ≤ ‖x‖r for all x ∈ C∗r (�).
We say that � as the Property of Rapid Decay if there exists a polynomial P such that ‖x‖r ≤ P (k)‖x‖2 for all
x ∈ C∗r (�)k and all k ∈ N.

In [3], I show that for amenable discrete quantum groups, the Property of Rapid Decay corresponds to
polynomial growth, correctly formulated in the quantum framework. In particular duals of compact Lie groups
have the Property of Rapid Decay. I also show that the Property of Rapid Decay implies that the discrete
quantum group under consideration is unimodular � which is not automatic in the quantum case. In particular
duals of q-deformations à la Jimbo-Drinfel'd do not have the Property of Rapid Decay. Finally I show that the
classical application of the Property of Rapid Decay to K-theory extends to the quantum case: the subspace
H∞(�) ⊂ C∗r (�) of �functions with rapid decay� is a dense sub-∗-algebra which has the same K-theory as C∗r (�).

However the main result of [3] is the following one:

Theorem 3 [3, Thm. 4.9] Let Q ∈ GLN (C) be a matrix such that QQ̄ ∈ CIN and QQ∗ ∈ CIN . Then FO(Q)
has the Property of Rapid Decay.

In particular the Property of Rapid Decay is a common feature of free quantum groups FO(Q) and classical
free groups, for which the proof, of combinatorial nature, goes back to Haagerup's foundational paper in 1979.
The proof of the Theorem above is quite di�erent because there is no �free combinatorics� inside FO(Q). It
relies instead on computations in the category Corep�, and in particular on the study of the geometry of fusion
rules. Let us note that the hypothesis QQ∗ ∈ CIN is equivalent to unimodularity of the discrete quantum group
FO(Q).

Quantum Cayley graphs and applications

In the article [2] I introduce a general notion of quantum Cayley graph for discrete quantum groups and I
investigate it in detail in the case of free quantum groups F, that is, in the case of free products of quantum
groups FO(Q) and FU(Q). A quantum Cayley graph X is given by C∗-algebras C0(X(0)), C0(X(1)) represented
on Hilbert spaces `2(X(0)), `2(X(1)), and by source, target and reversing operators S, T : `2(X(1)) → `2(X(0))
and Θ : `2(X(1)) → `2(X(1)). Moreover the spaces `2(X(i)) as endowed with representations of C∗r (�) which are
intertwined by these operators.

In the case of a usual tree X = X endowed with an origin, one can de�ne a Fredholm operator from the
space of antisymetric edges, `2∧(X(1)) = Ker(Θ + id), to the space of vertices `2(X(0)): it is the so-called Julg-
Valette operator, which maps each edge to its furthest endpoint from the origin. One shows moreover that this
operator de�nes an equivariant KK-theoretic element γ ∈ KKΓ(C,C), and using this element Julg and Valette
established in 1984 the K-amenability of groups acting on trees with amenable stabilizers, i.e. the fact the the
natural map C∗f (Γ)→ C∗r (Γ) induces an isomorphism in KK-theory.

Motivated by this result I introduce a notion of ascending orientation for quantum Cayley trees X, given
by two �ascending projectors� p+F and pF+ acting �on the right and on the left� of `2(X(1)), and I use this
notion to describe the space of antisymetric edges `2∧(X(1)) ⊂ `2(X(1)). It turns out in the quantum case that
Θ is not involutive, and that the space `2∧(X(1)) is �to small�. However, the interaction between the orientation
projectors p+F(1 − pF+) and the reversing operator Θ yields an inductive system inside `2(X(1)), and I study
its inductive limit, denoted `2∞(X(1)). This space of �edges at in�nity� is equipped with a natural operator
P : p++`

2(X(1)) → `2∞(X(1)), where p++ = p+FpF+. Using computations in the category Corep� and �ne
analytic arguments one obtains:

Theorem 4 [2, Thm. 6.5] Let X be the quantum Cayley graph associated to a free quantum group F. If the
quantum dimensions of generators of CorepF are di�erent from 2 we have

p++`
2(X(1)) = p++`

2
∧(X(1))⊕ P ∗`2∞(X(1)).

Moreover p++ and P commute to the natural actions of C∗(�) modulo compact operators. In particular the
operator T (p++ + P ∗) : `2∧(X(1))⊕ `2∞(X(1))→ `2(X(0)) de�nes an element δ ∈ KKF(C,C).

I show moreover that the actions of F on `2∧(X(1)), `2∞(X(1)) and `2(X(0)) are weakly contained in the regular
representation. To obtain the K-amenability of free quantum groups it remains to show that δ = [id]. However
this question stays open and the K-amenability of free quantum groups was established only later in the article
[8], using results of Voigt about the orthogonal case. On the other hand I give another application of the
techniques developed in the article:

Theorem 5 [2, Thm. 8.3] Let F be a free quantum group such that the quantum dimensions of the generators
of CorepF are di�erent from 2. Then F satis�es the Akemann-Ostrand Property.
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In the article [7] I pursue the study of quantum Cayley graphs associated to free quantum groups. In the
case of a usual free group FN , the Cayley graph X is a tree, and in particular one can associate to each element
g ∈ FN , which is also a vertex in the tree, the sum c(g) of edges along the unique path from g to the origin,
considered as an element of `2∧(X(1)). It is easy to see that the map c : FN → `2∧(X(1)) is a cocycle for the
natural representation of FN on `2∧(X(1)), moreover the norm ‖c(g)‖ =

√
2l(g) goes to +∞ as l(g)→ +∞: the

cocycle c is said to be proper. This establishes Haagerup's Property for the free group FN .
Motivated by this classical result, I investigate in [7] the notion of path cocycle in a quantum Cayley graph X.

Consider the natural dense sub-∗-algebra C[�] ⊂ C∗(�), the natural dense subspaces `2f (X(i)) ⊂ `2(X(i)) corre-

sponding to functions with �nite support, as well as the distinguished cyclic vector ξ0 ∈ `2(X(0)) corresponding
to the origin of the graph. A path cocycle is a linear map c : C[�]→ `2∧f (X(1)) such that c(xy) = xc(y) + c(x)ε(y)
and T ◦ c(x) = xξ0− ε(x)ξ0, where ε : C[�]→ C is the co-unit of �. In the case of free quantum groups, pursuing
the study of `2∧(X(1)) started in [2], I prove existence and uniqueness of path cocycles: hence X can be interpreted
as a quantum tree.

Theorem 6 [7, Crl. 4.2, Thm. 4.4 and Prop. 4.5] Let X be the quantum Cayley graph associated to a free quantum
group F. Assume that the quantum dimensions of generators of Corep� are di�erent from 2. Then:

1. There exists a unique path cocycle c : C[�]→ `2∧f (X(1)).

2. If F = FO(Q), this cocycle is bounded.

3. If F = FU(Q), it is neither proper nor bounded.

One sees that the cocycles obtained in this way are not proper, in particular this construction does not
yield Haagerup's Property. In the orthogonal case, the cocycle is bounded, and this contrasts strongly with the
situation for usual free groups. We exploit this fact, using a �university Lemma� and the Property of Rapid
Decay, to study the Hochschild groups H1

(2)(C[�]) = H1(C[�], `2(�)) and to compute the �rst L2-Betti number
of orthogonal free quantum groups:

Theorem 7 [7, Thm. 5.1, Crl. 5.2] Let Q ∈MN (C) be a unitary matrix.

If QQ̄ ∈ CIN we have H1
(2)(C[FO(Q)]) = 0 and β

(2)
1 (FO(Q)) = 0. Besides, if N ≥ 2 we have β

(2)
1 (FU(Q)) 6= 0.

This constitutes the �rst harmonic analysis result showing a di�erent behaviour for the orthogonal free quantum

groups FO(Q) compared to usual free groups FN : indeed for the later ones we have β
(2)
1 (FN ) = N − 1.

Gromov boundary and applications

In the article [4] we establish several structural results for the von Neumann algebras associated to orthogonal
free quantum groups FO(Q). One of the main tools we use is a quantum analogue of the Gromov boundary
of free groups. Denoting Sn the sphere of radius n in the free group FN with respect to the word length, we
have natural maps Sn+1 → Sn obtained by deletion of the last letter. The Gromov boundary ∂FN of FN is the
projective limit of the spheres Sn relatively to these maps, it is a compact, totally disconnected space for the
initial topology associated to the projective system. Moreover the action of FN on itself by left multiplication
induces an action by homeomorphisms on ∂FN which is amenable, and this implies exactness of the group FN .

In the case of F = FO(Q) we have a decomposition of the algebra of functions into matrix algebras:
C0(F) =

⊕
n pnC0(F) with pnC0(F) ' L(Hn), where Hn is the space of the nth irreducible corepresentation

rn ∈ CorepF. This decomposition corresponds to the decomposition of FN into spheres. Moreover we have
the fusion rules rn⊗r1 ' rn+1 ⊕ rn−1, and the inclusion Hn+1 → Hn⊗H1 induces completely positive maps
pnC0(F)→ pn+1C0(F). We denote then C(∂F) = lim−→ pnC0(F) with respect to these maps: this injective limit is
a priori a subspace of Cb(F)/C0(F).

Theorem 8 [4, Prop. 3.4, 3.6 et 3.8, Thm. 4.5] Let ∂F be the Gromov boundary of an orthogonal free quantum
group F = FO(Q). Then:

1. C(∂F) is a nuclear unital sub-C∗-algebra of Q = Cb(F)/C0(F).

2. The �right� coaction of C0(F) on Cb(F), factorized through Q, induces the trivial action of F on ∂F.

3. The �left� coaction of C0(F) on Cb(F), factorized through Q, induces an action of F on ∂F.

4. This last action is amenable.
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As in the case of usual discrete groups, this result implies again the Akemann-Ostrand Property for FO(Q),
without restriction on the quantum dimension of r1, as well as the exactness of C∗r (FO(Q)). We give also
another argument that allows to deduce exactness from the monoidal equivalence between FO(Q) and the dual
of a quantum group SUq(2). Finally, we show that the Gromov boundary ∂FO(Q) identi�es to the Martin
boundary of the quantum random walk on FO(Q) generated by the fundamental corepresentation r1.

On the other hand we investigate the structure of the von Neumann algebra L (�) = C∗r (�)′′ ⊂ B(`2(�)) for
� = FO(Q). The main tool of this study is an operator P : `2(�) → `2(�) which is the quantum analogue of
�conjugation by generators�: in the case of FN = 〈ai〉, one would consider

P (f) = (2N)−1
∑(

f(a−1
i · ai) + f(ai · a−1

i )
)
.

In the classical case, the analytic properties of P are studied using the combinatorics of conjugation in the
free group. In the quantum case, we use rather computations in the category Corep�, and more precisely, we
establish asymptotic properties of the geometry of fusion rules between irreducible corepresentations. From this
investigation we can deduce the following results:

Theorem 9 [4, Thm. 7.1] Let Q ∈MN (C), N ≥ 3, be a matrix such that QQ̄ = ±IN and ‖Q‖2 ≤ Tr(Q∗Q)/
√

5.
We denote F = FO(Q) and Λ ⊂ R∗+ the subgroup generated by the spectrum of (Q∗Q)⊗(Q∗Q)−1. Then the von
Neumann algebra L (F) is a full and solid factor. If Q is unitary, L (F) is type II1. If Λ = λZ with λ ∈ ]0, 1[,
L (F) is type IIIλ, and in the remaining cases L (F) is type III1.

Note that the assumption ‖Q‖2 ≤ Tr(Q∗Q)/
√

5, which is imposed by technical limitations of our proof, means
that Q cannot be �too far� from a unitary matrix. The solidity of L (F), which follows from Akemann-Ostrand
Property and exactness, implies the fact that L (F) is a prime factor : if L (F) ' M1⊗̄M2, necessarily M1 or
M2 is type I. Combining the study of the operator P and the Property of Rapid Decay, we prove as well the
simplicity of C∗r (FO(Q)) when Q∗Q is su�ciently close to IN .

Quantum Bass-Serre trees and applications

The article [1] presents results from my Ph.D. Thesis concerning equivariant KK-theory of C∗-algebras with
respect to actions of locally compact quantum groups, in the framework introduced by Baaj and Skandalis in 1989.
We extend to the quantum case several results of the classical theory, including the Green-Julg isomorphism,
the construction of a descent morphism and various characterizations of K-amenability.

In the second part of the article I investigateK-amenability of amalgamated free products of discrete quantum
groups, using a quantum analogue of the Bass-Serre tree. Recall that for an amalgamated free product Γ =
Γ0 ∗Λ Γ1 of usual discrete groups, the Bass-Serre tree has Γ/Γ0 tΓ/Γ1 as set of vertices and Γ/Λ as set of edges,
with the natural projections as target and source maps t, s. The result of Julg and Valette mentionned above
applies equally to this situation and implies that an amalgamated free product of amenable discrete groups is
K-amenable.

In the quantum case, after proving some useful results about subgroups and quotients of discrete quantum
groups, I construct an element γ ∈ KK�(C,C), for � = �0 ∗� �1: to this purpose I use a quantum analogue
of the Julg-Valette operator associated to the Bass-Serre tree of the free product, which connects the Hilbert
spaces `2(X(0)) = `2(�/�0)⊕ `2(�/�1) and `2(X(1)) = `2(�/�). Then one proves:

Theorem 10 [1, Thm. 3.3] Let γ ∈ KK�(C,C) be the element of KK-theory induced by the Julg-Valette operator
associated to an amalgamated free product � = �0 ∗� �1 of discrete quantum groups.

1. We have γ = [id] in KK�(C,C).

2. If �0, �1 are amenable, then the representations of � on `2(�/�0), `2(�/�1) and `2(�/�) are weakly
contained in the regular representation.

Therefore, an amalgamated free product of amenable discrete quantum groups is K-amenable.

In the article [8] we establish the strong Baum-Connes Property for unitary free quantum groups FU(Q),
which allows to compute their K-theory. We base on work by Voigt in 2011 who proves that orthogonal free
quantum groups FO(Q) satisfy this property: via the inclusions FU(Q) ⊂ Z∗FO(Q) established by Banica when
QQ̄ ∈ CIN , it su�ces then to prove the stability of the Baum-Connes Property under passage to free products
and subgroups � more precisely we consider a particular type of subgroups that we call divisible.
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For the stability under free products, we use again the quantum Bass-Serre tree X associated to � = �0 ∗�1.
Following ideas of Kasparov and Skandalis, we associate to X a C∗-algebra P ⊂ C0(R)⊗K(`2(X(0))⊕ `2(X(1)))
obtained by assembling the algebras C0(X(i)) and the operators R, S with support conditions over R. We check
that P is stable with respect to the natural representation of �, and the inclusion of ΣP = C0(R)⊗P in
C0(R2)⊗K(`2(X(0)) ⊕ `2(X(1))) induces then a Dirac element α ∈ KK�(ΣP,C). Combining this construction
with the one of the γ element above, we obtain as well β ∈ KK�(C,ΣP) such that β⊗α = γ = [id] ∈ KK�(C,C).

For the strong Baum-Connes Property in the quantum framework we use the approach to the Baum-Connes
conjecture developed by Meyer and Nest � in particular we work in the category KK� triangulated by mapping
cones. We denote TI� the full subcategory whose objects are of the form C0(�)⊗A, with trivial action on
A, and 〈TI�〉 the localizing subcategory generated by TI�. We say that � satis�es the (torsion-free) strong
Baum-Connes Property if 〈TI�〉 = KK�: this implies K-amenablity and, in the classical case, the validity of
the Baum-Connes conjecture with coe�cients. Then we show the stability of this Property under free products
using the preceeding constructions � in fact one needs to check that all these constructions are equivariant with
respect to the actions of the Drinfel'd double D�.

Theorem 11 [8, Thm. 6.6] Let � = �0 ∗ �1 be a free product of discrete quantum groups, and X the associated
Bass-Serre tree. We denote α, β, γ the elements of D�-equivariant KK-theory associated to X. If �0 and �1

satisfy the strong Baum-Connes Property, then ΣP ∈ 〈TI�〉 and α⊗β = [id] ∈ KK�(ΣP,ΣP). As a result, �
satis�es the strong Baum-Connes Property.

Corollary 12 [8, Thm. 6.9] The free quantum groups F = FU(P1) ∗ · · · ∗ FU(Pk) ∗ FO(Q1) ∗ · · · ∗ FO(Ql), with
QiQ̄i scalar, satisfy the strong Baum-Cones Property. In particular they are K-amenable.

The strong Baum-Connes Property allows to e�ectively compute the K-theory groups. More precisely, a
length 2 resolution of A ∈ KK�

0→ C1 → C0 → A→ 0

by objects Ci ∈ TI�, exact in non-equivariant K-theory, induces a cyclic exact sequence that computes the
K-theory of the crossed product Ao�. In the case when � = FU(Q) is a unitary free quantum group, it is easy
to construct such a resolution of A = C, and we can deduce:

Theorem 13 [8, Thm. 7.2] Let Q ∈ GLN (C) and F = FU(Q). We have K0(C∗r (F)) = Z, generated by the class
of the unit, and K1(C∗r (F)) = Z2, generated by the classes of the fundamental corepresentation and its conjugate.
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