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Abstract In this paper we study the K -theory of free quantum groups in the sense
of Wang and Van Daele, more precisely, of free products of free unitary and free
orthogonal quantum groups. We show that these quantum groups are K -amenable and
establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence,
we obtain in particular an explicit computation of the K -theory of free quantum groups.
Our approach relies on a generalization of methods from the Baum–Connes conjec-
ture to the framework of discrete quantum groups. This is based on the categorical
reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a
main result we show that free quantum groups have a γ -element and that γ = 1. As
an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups
acting on trees to the quantum case. We use this to extend some permanence properties
of the Baum–Connes conjecture to our setting.

Mathematics Subject Classification (2000) 20G42 · 46L80 · 19K35

1 Introduction

A classical result in the theory of C∗-algebras is the computation of the K -theory of the
reduced group C∗-algebra C∗

r (Fn) of the free group on n generators by Pimsner and
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Voiculescu [24]. Their result resolved in particular Kadison’s problem on the existence
of nontrivial projections in these C∗-algebras. More generally, Pimsner and Voiculescu
established an exact sequence for the K -theory of reduced crossed products by free
groups [23,24]. This exact sequence is an important tool in operator K -theory.

The K -theory of the full group C∗-algebra C∗
f (Fn) was calculated before by Cuntz

in a simple and elegant way, based on a general formula for the K -theory of free
products [10]. Motivated by this, Cuntz introduced the notion of K -amenability for
discrete groups and gave a shorter proof of the results of Pimsner and Voiculescu [11].
The fact that free groups are K -amenable expresses in a conceptually clear way that
full and reduced crossed products for these groups cannot be distinguished on the level
of K -theory.

The main aim of this paper is to obtain analogous results for free quantum groups.
In fact, in the theory of discrete quantum groups, the rôle of free quantum groups
is analogous to the rôle of free groups among classical discrete groups. Roughly
speaking, any discrete quantum group can be obtained as a quotient of a free quantum
group. Classically, the free group on n generators can be described as the free product

Fn = Z ∗ · · · ∗ Z

of n copies of Z. In the quantum case there is a similar free product construction, but in
contrast to the classical situation there are different building blocks out of which free
quantum groups are assembled. More precisely, a free quantum group is of the form

FU (P1) ∗ · · · ∗ FU (Pk) ∗ FO(Q1) ∗ · · · ∗ FO(Ql)

for matrices Pi ∈ GLmi (C) and Q j ∈ GLn j (C) such that Q j Q j = ±1. Here FU (P)
and FO(Q) are the free unitary and free orthogonal quantum groups, which were first
introduced by Wang [34] and Van Daele [29] with a different notation. The special
case l = 0 and P1 = · · · = Pk = 1 ∈ GL1(C) of this family reduces to the classical
free group Fk on k generators.

In order to explain our notation let us briefly review some definitions. Given a
matrix Q ∈ GLn(C), the full C∗-algebra of the free unitary quantum group FU (Q)
is the universal C∗-algebra C∗

f (FU (Q)) generated by the entries of an n × n-matrix
u satisfying the relations that u and QuQ−1 are unitary. Here u denotes the matrix
obtained from u by taking the transpose of its adjoint. The full C∗-algebra C∗

f (FO(Q))
of the free orthogonal quantum group FO(Q) is the quotient of C∗

f (FU (Q)) by the
relation u = QuQ−1. Finally, the full C∗-algebra of the free product G ∗ H of
two discrete quantum groups G and H is the unital free product C∗

f (G ∗ H) =
C∗

f (G) ∗ C∗
f (H) of the corresponding full C∗-algebras, see [34]. That is, the full

C∗-algebra of a free quantum group as above is simply the free product of the
C∗-algebras C∗

f (FU (Pi )) and C∗
f (FO(Q j )).

We remark that one usually writes C∗
f (FU (Q)) = Au(Q) and C∗

f (FO(Q)) =
Ao(Q) for these C∗-algebras, compare [5]. Following [33], we use a different nota-
tion in order to emphasize that we shall view Au(Q) and Ao(Q) as the full group
C∗-algebras of discrete quantum groups, and not as function algebras of compact
quantum groups.
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Free quantum groups

The approach to the K -theory of free quantum groups in this paper is based on
ideas and methods originating from the Baum–Connes conjecture [6,7]. It relies in
particular on the categorical reformulation of the Baum–Connes conjecture developed
by Meyer and Nest [19]. In fact, our main result is that free quantum groups satisfy an
analogue of the strong Baum–Connes conjecture. The precise meaning of this state-
ment will be explained in Sect. 6, along with the necessary preparations from the theory
of triangulated categories. Together with the results of Banica on the representation
theory of free quantum groups [4,5], the strong Baum–Connes property implies that
every object of the equivariant Kasparov category K K G for a free quantum group G
has a projective resolution of length one. Based on this, we immediately obtain our
Pimsner–Voiculescu exact sequence by invoking some general categorical considera-
tions [20]. As a consequence we conclude in particular that the reduced C∗-algebras
of unimodular free quantum groups do not contain nontrivial idempotents, extending
the results of Pimsner and Voiculescu for free groups mentioned in the beginning.

This paper can be viewed as a continuation of [33], where the Baum–Connes
conjecture for free orthogonal quantum groups was studied. Our results here rely
on the work in [33] on the one hand, and on geometric arguments using actions on
quantum trees in the spirit of [31] on the other hand.

To explain the general strategy let us consider first the case of free unitary quantum
groups G = FU (Q) for Q ∈ GLn(C) satisfying Q Q = ±1. It was shown by
Banica [5] that FU (Q) is a quantum subgroup of the free product FO(Q) ∗ Z in this
case. Since both FO(Q) and Z satisfy the strong Baum–Connes conjecture [12,33], it
suffices to prove inheritance properties of the conjecture for free products of quantum
groups and for suitable quantum subgroups. In the case of free products we adapt the
construction of Kasparov and Skandalis in [14] for groups acting on buildings, and
this is where certain quantum trees show up naturally. An important difference to the
classical situation is that one has to work equivariantly with respect to the Drinfeld
double D(G) of G.

The quantum group FU (Q) associated to a general matrix Q ∈ GLn(C) does
not admit an embedding into a free product as above. As in [33] we use an indirect
argument based on the monoidal equivalences for free quantum groups obtained by
Bichon et al. [8]. This allows us to reduce to matrices Q ∈ GL2(C), and in this case
one may even assume Q Q = ±1 without loss of generality. We might actually restrict
attention to 2×2-matrices throughout, however, this would not simplify the arguments.

Let us now describe how the paper is organized. In Sect. 2 we collect some pre-
liminaries on quantum groups and fix our notation. Section 3 contains basic facts
about quantum subgroups of discrete quantum groups and their homogeneous spaces.
In Sect. 4 we introduce and discuss the notion of a divisible quantum subgroup of a
discrete quantum group. This concept appears naturally in the context of inheritance
properties of the Baum–Connes conjecture. Roughly speaking, divisible quantum sub-
groups are particularly well-behaved from the point of view of corepresentation theory.
In Sect. 5 we define the Dirac element associated to a free product of discrete quantum
groups acting on the corresponding quantum tree. Moreover we define the dual Dirac
element and show that the resulting γ -element is equal to the identity. In Sect. 6 we
review the approach to the Baum–Connes conjecture developed by Meyer and Nest.
We explain in particular the categorical ingredients needed to formulate the strong
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Baum–Connes property in our context. Then, using the considerations from Sect. 5
and [33], we prove that free quantum groups have the strong Baum–Connes prop-
erty. Finally, in Sect. 7 we discuss the main consequences of this result. As indicated
above, we derive in particular the K -amenability of free quantum groups and establish
an analogue of the Pimsner–Voiculescu sequence.

Let us make some remarks on notation. We write L(E) for the space of adjointable
operators on a Hilbert A-module E . Moreover K(E) denotes the space of compact
operators. The closed linear span of a subset X of a Banach space is denoted by
[X ]. Depending on the context, the symbol ⊗ denotes either the tensor product of
Hilbert spaces, the minimal tensor product of C∗-algebras, or the tensor product of
von Neumann algebras. We write � for algebraic tensor products. For operators on
multiple tensor products we use the leg numbering notation. If A and B are unital
C∗-algebras we write A ∗ B for the unital free product, that is, the free product of A
and B amalgamated over C.

2 Preliminaries on quantum groups

In this section we recall some basic definitions concerning quantum groups and their
actions on C∗-algebras. In addition we review the definition of the Drinfeld double
and the description of its actions in terms of the underlying quantum group and its
dual. For more information we refer to [2,16,17,26,36]. Our notation and conventions
will mainly follow [21,33].

Let φ be a normal, semifinite and faithful weight on a von Neumann algebra M.
We use the standard notation

M+
φ = {x ∈ M+|φ(x) < ∞}, Nφ = {x ∈ M |φ(x∗x) < ∞}

and write M+∗ for the space of positive normal linear functionals on M. If � : M →
M ⊗ M is a normal unital ∗-homomorphism, the weight φ is called left invariant with
respect to � provided

φ((ω ⊗ id)�(x)) = φ(x)ω(1)

for all x ∈ M+
φ and ω ∈ M+∗ . Similarly one defines right invariant weights.

Definition 2.1 A locally compact quantum group G is given by a von Neumann
algebra L∞(G) together with a normal unital ∗-homomorphism � : L∞(G) →
L∞(G)⊗ L∞(G) satisfying the coassociativity relation

(�⊗ id)� = (id ⊗�)�

and normal semifinite faithful weights φ and ψ on L∞(G) which are left and right
invariant, respectively.

If G is a locally compact group, then the algebra L∞(G) of essentially bounded
measurable functions on G together with the comultiplication � : L∞(G) →
L∞(G)⊗ L∞(G) given by
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�( f )(s, t) = f (st)

defines a locally compact quantum group. The weights φ and ψ are given in this case
by left and right Haar measures on G, respectively. Of course, for a general locally
compact quantum group G the notation L∞(G) is purely formal.

An important tool in the study of locally compact quantum groups are multiplicative
unitaries. If � : Nφ → HG = L2(G) is a GNS-construction for the weight φ, then
the multiplicative unitary WG = W is the operator on HG ⊗ HG given by

W ∗(�( f )⊗�(g)) = (�⊗�)(�(g)( f ⊗ 1))

for all f, g ∈ Nφ. This unitary satisfies the pentagonal equation W12W13W23 =
W23W12, and one can recover the von Neumann algebra L∞(G) as the strong closure
of the algebra (id ⊗L(HG)∗)(W ) where L(HG)∗ denotes the space of normal linear
functionals on L(HG). Moreover one has

�( f ) = W ∗(1 ⊗ f )W

for all f ∈ L∞(G). Let us remark that we will only consider quantum groups G for
which HG = L2(G) is a separable Hilbert space.

The group-von Neumann algebra L(G) of the quantum group G is the strong closure
of the algebra (L(HG)∗⊗id)(W )with the comultiplication �̂ : L(G) → L(G)⊗L(G)
given by

�̂(x) = Ŵ ∗(1 ⊗ x)Ŵ

where Ŵ = �W ∗� and� ∈ L(HG ⊗HG) is the flip map. It defines a locally compact
quantum group which is called the dual of G. Note however that we will reserve the
notation Ĝ for the opposite of this dual, see later in this section. The left invariant
weight φ̂ for the dual quantum group has a GNS-construction �̂ : N

φ̂
→ HG , where

N
φ̂

⊂ L(G).
The reduced C∗-algebra of functions on the quantum group G is

C r
0(G) = [(id ⊗L(HG)∗)(W )] ⊂ L∞(G),

and the reduced group C∗-algebra of G is

C∗
r (G) = [(L(HG)∗ ⊗ id)(W )] ⊂ L(G).

Moreover we have W ∈ M(C r
0(G)⊗ C∗

r (G)). Together with the comultiplications
inherited from L∞(G) and L(G), respectively, the C∗-algebras C r

0(G) and C∗
r (G) are

Hopf-C∗-algebras in the following sense.

Definition 2.2 A Hopf C∗-algebra is a C∗-algebra S together with an injective non-
degenerate ∗-homomorphism � : S → M(S ⊗ S) such that the diagram
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S
� ��

��

M(S ⊗ S)

id ⊗�
��

M(S ⊗ S)
�⊗id �� M(S ⊗ S ⊗ S)

is commutative and [�(S)(1 ⊗ S)] = S ⊗ S = [(S ⊗ 1)�(S)].
A morphism between Hopf-C∗-algebras (S,�S) and (T,�T ) is a nondegenerate

∗-homomorphism π : S → M(T ) such that �T π = (π ⊗ π)�S .

If S is a Hopf C∗-algebra we write Scop for S viewed as a Hopf C∗-algebra with
the opposite coproduct �cop = σ�, where σ denotes the flip map.

We are mainly interested in discrete or compact quantum groups, and in these cases
the general theory simplifies considerably. A quantum G is called compact if C r

0(G)
is unital, and it is called discrete if C∗

r (G) is unital. For a discrete quantum group G
we will write l2(G) = HG for the Hilbert space associated to G.

Definition 2.3 Let B be a C∗-algebra. A unitary corepresentation of a Hopf-C∗-
algebra S on a Hilbert B-module E is a unitary X ∈ L(S ⊗ E) satisfying

(�⊗ id)(X) = X13 X23.

If S = C∗
r (G) for a locally compact quantum group G and X is a unitary corepre-

sentation of S on E we say that E is a unitary corepresentation of G. If G is discrete,
all unitary corepresentations of G on Hilbert spaces are completely reducible, and
all irreducible corepresentations are finite dimensional. We will write Corep(G) for
the corresponding semisimple C∗-tensor category of finite dimensional corepresen-
tations. Moreover we denote by Irr(G) the set of equivalence classes of irreducible
corepresentations of G in this case. The matrix coefficients (id ⊗ζ ∗)X (id ⊗ξ), with
X ∈ C∗

r (G) ⊗ L(H) a corepresentation in Corep(G) and ζ, ξ ∈ H, span a dense
Hopf-∗-algebra C[G] ⊂ C∗

r (G).
If S is a Hopf-C∗-algebra, then a universal dual of S is a Hopf-C∗-algebra Ŝ

together with a unitary corepresentation X ∈ M(S ⊗ Ŝ) satisfying the following
universal property. For every Hilbert B-module E and every unitary corepresentation
X ∈ L(S ⊗E) there exists a unique nondegenerate ∗-homomorphism πX : Ŝ → L(E)
such that (id ⊗πX )(X ) = X.

Every locally compact quantum group G admits a universal dual C∗
f (G) of C r

0(G)
and a universal dual C f

0(G)of C∗
r (G), respectively [16]. In general, we have a surjective

morphism π̂ : C∗
f (G) → C∗

r (G) of Hopf-C∗-algebras associated to the multiplicative
unitary W ∈ M(C0(G)⊗C∗

r (G)). Similarly, there is a canonical surjective morphism
π : C f

0(G) → C r
0(G). Every discrete quantum group G is coamenable in the sense

that π is an isomorphism. We will simply write C0(G) for C f
0(G) = C r

0(G) in this
case. We say that G is amenable if π̂ is an isomorphism.

If G is a discrete quantum group, then inside C∗
r (G) we have the dense Hopf-∗-

algebra C[G] spanned by the matrix coefficients as above, and inside C0(G) we have
a dense multiplier Hopf-∗-algebra Cc(G) in the sense of Van Daele [28]. The algebras
C[G] ⊂ C∗

r (G) and Cc(G) ⊂ C0(G) are linearly spanned by elements of the form
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Free quantum groups

(ω⊗ id)(W ) and (id ⊗ω)(W ), respectively, where ω = ωξ,η ∈ L(HG)∗ is associated
to vectors ξ, η ∈ �̂(C[G]).

If f ∈ Cc(G) and x ∈ C[G] are represented by L f , Lx ∈ L(l2(G))∗ in the sense
that (id ⊗L f )(W ) = f and (Lx ⊗ id)(W ) = x, then we obtain a well-defined bilinear
pairing

〈 f, x〉 = 〈x, f 〉 = (Lx ⊗ L f )(W ) = L f (x) = Lx ( f )

between Cc(G) and C[G], see definition 1.3 of [2]. It is easy to check that the product
of C[G] is dual to the coproduct of Cc(G), whereas the product of Cc(G) is dual to
the opposite coproduct of C[G]. In other terms, we have for all f, g ∈ Cc(G) and
x, y ∈ C[G] the relations

〈 f, xy〉 = 〈 f(1), x〉〈 f(2), y〉 and 〈 f g, x〉 = 〈 f, x(2)〉〈g, x(1)〉

where we use the Sweedler notation�( f ) = f(1)� f(2) and �̂(x) = x(1)�x(2) for the
comultiplications on Cc(G) and C[G] induced by W as above. We point out that this
notation has to be interpreted with care, let us remark in particular that the coproduct
�( f ) of an element f of the multiplier Hopf ∗-algebra Cc(G) can be represented only
as an infinite sum of simple tensors in general.

At several points of the paper we will consider free products of discrete quantum
groups. If G and H are discrete quantum groups the free product G ∗ H is the discrete
quantum group determined by C∗

f (G ∗ H) = C∗
f (G) ∗ C∗

f (H), equipped with the
comultiplication induced from the two factors in the evident way, see [34] for more
information. The irreducible corepresentations of G ∗ H are precisely the alternating
tensor products of nontrivial irreducible corepresentations of G and H.We may there-
fore identify Irr(G ∗ H)with the set Irr(G)∗ Irr(H) of alternating words in Irr(G) and
Irr(H).

We are mainly interested in the free unitary and free orthogonal quantum groups
introduced by Wang [34] and Van Daele [29]. These discrete quantum groups are most
conveniently defined in terms of their full group C∗-algebras. For a matrix u = (ui j )

of elements in a ∗-algebra we write u = (u∗
i j ) and ut = (u ji ) for its conjugate and

transposed matrices, respectively.

Definition 2.4 Let n ∈ N and Q ∈ GLn(C). The group C∗-algebra C∗
f (FU (Q)) of

the free unitary quantum group FU (Q) is the universal C∗-algebra with generators
ui j , 1 ≤ i, j ≤ n such that the resulting matrices u and QuQ−1 are unitary. The
comultiplication �̂ : C∗

f (FU (Q)) → C∗
f (FU (Q))⊗ C∗

f (FU (Q)) is given by

�̂(ui j ) =
n∑

k=1

uik ⊗ ukj

on the generators.

As explained in the introduction, we adopt the conventions in [33] and deviate from
the standard notation Au(Q) for the C∗-algebras C∗

f (FU (Q)). Let us also remark
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that there is a canonical isomorphism C∗
f (FU (Q))cop ∼= C∗

f (FU (Qt )) for all Q ∈
GLn(C).

Definition 2.5 Let Q ∈ GLn(C) such that Q Q = ±1. The group C∗-algebra
C∗

f (FO(Q)) of the free orthogonal quantum group FO(Q) is the universal C∗-algebra
with generators ui j , 1 ≤ i, j ≤ n such that the resulting matrix u is unitary and the
relation u = QuQ−1 holds. The comultiplication of the generators is given by the
same formula as in the unitary case.

Following [5] we remark that the free quantum groups FO(Q) for Q ∈ GL2(C)

exhaust up to isomorphism precisely the duals of SUq(2) for q ∈ [−1, 1]\{0}.
If Q ∈ GLn(C) is arbitrary the above definition of FO(Q) still makes sense.

However, in this case the fundamental corepresentation u is no longer irreducible in
general. According to [35], the quantum group FO(Q) can be decomposed into a free
product of the form

FO(Q) ∼= FU (P1) ∗ · · · ∗ FU (Pk) ∗ FO(Q1) ∗ · · · ∗ FO(Ql)

for appropriate matrices Pi and Q j such that Q j Q j = ±1 for all j. In this way the
study of FO(Q) for general Q reduces to the above cases.

Let us now fix our notation concerning coactions on C∗-algebras and crossed
products.

Definition 2.6 A (continuous, left) coaction of a Hopf C∗-algebra S on a C∗-algebra
A is an injective nondegenerate ∗-homomorphism α : A → M(S ⊗ A) such that the
diagram

A
α ��

α

��

M(S ⊗ A)

�⊗id
��

M(S ⊗ A)
id ⊗α �� M(S ⊗ S ⊗ A)

is commutative and [α(A)(S ⊗ 1)] = S ⊗ A.
If (A, α) and (B, β) are C∗-algebras with coactions of S, then a ∗-homomorphism

f : A → M(B) is called S-colinear, or S-equivariant, if β f = (id ⊗ f )α.

A C∗-algebra A equipped with a continuous coaction of the Hopf-C∗-algebra S is
called an S-C∗-algebra. If S = C r

0(G) for a locally compact quantum group G we
say that A is G-C∗-algebra. In this case S-colinear ∗-homomorphisms will be called
G-equivariant or simply equivariant.

If G is a discrete quantum group it is useful to consider algebraic coactions as well.
Assume that A is a ∗-algebra equipped with an injective ∗-homomorphism α : A →
M(Cc(G)� A) such that (Cc(G)�1)α(A) = Cc(G)� A and (�� id)α = (id �α)α.
Here M(Cc(G)� A) is the algebraic multiplier algebra of Cc(G)� A, see [28]. In
this case we say that A is a G-algebra, and we refer to α as an algebraic coaction.

If A is a G-algebra we have a left C[G]-module structure on A given by

x · a = 〈a(−1), S(x)〉a(0)
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where α(a) = a(−1) � a(0) is Sweedler notation for the coaction on A and S is the
antipode of C[G]. This action turns A into a C[G]-module algebra in the sense that

x · (ab) = (x(1) · a)(x(2) · b), x · a∗ = (S(x)∗ · a)∗

for all x ∈ C[G] and a, b ∈ A.
Similarly, we may associate to an algebraic coaction γ : A → M(C[G] � A) a

left Cc(G)-module structure on A given by

f · a = 〈 f, a(−1)〉a(0)
where γ (a) = a(−1)� a(0). This turns A into a Cc(G)-module algebra. We will study
coactions in this way at several points below.

Let us next recall the definition of reduced crossed products. If G is a locally compact
quantum group and A is a G-C∗-algebra with coaction α, the reduced crossed product
G �r A = C∗

r (G)
cop

�r A is defined by

G �r A = C∗
r (G)

cop
�r A = [(C∗

r (G)⊗ 1)α(A)] ⊂ M(K(l2(G))⊗ A).

The crossed product G�r A is naturally a C∗
r (G)

cop-C∗-algebra with the dual coaction
α̂ : G �r A → M(C∗

r (G)
cop ⊗ (G �r A)) determined by α̂(x ⊗ 1) = �̂cop(x)⊗ 1

for x ∈ C∗
r (G) and α̂(α(a)) = 1 ⊗ α(a) for a ∈ A. In the sequel we will denote by

Ĝ the dual compact quantum group of the discrete quantum group G determined by
C r(Ĝ) = C∗

r (G)
cop, so that G �r A is a Ĝ-C∗-algebra.

Apart from the reduced crossed product G�r A one also has the full crossed product
G�f A = C∗

f (G)
cop

�f A which is defined by a universal property. There is a canonical
map G �f A → G �r A, and this map is an isomorphism if G is amenable. We refer
to [21] for more details.

Finally, let us recall the definition of the Drinfeld double of a locally compact
quantum group G, see [3]. The Drinfeld double D(G) of G is a locally compact
quantum group such that the Hopf C∗-algebra C r

0(D(Gq)) is given by C r
0(D(Gq)) =

C r
0(G)⊗ C∗

r (G) with the comultiplication

�D(Gq ) = (id ⊗σ ⊗ id)(id ⊗ad(W )⊗ id)(�⊗ �̂),

here ad(W ) is conjugation with the multiplicative unitary W ∈ M(C r
0(G)⊗ C∗

r (G))
and σ denotes the flip map.

It is shown in [21] that a D(G)-C∗-algebra A is uniquely determined by coactions
α : A → M(C r

0(G)⊗ A) and γ : A → M(C∗
r (G)⊗ A) satisfying the Yetter–Drinfeld

compatibility condition

(σ ⊗ id)(id ⊗α)γ = (ad(W )⊗ id)(id ⊗γ )α.

In a similar way one can study D(G)-equivariant Hilbert modules.
The Drinfeld double plays an important rôle in the definition of braided tensor

products. If A is a D(G)-C∗-algebra determined by the coactionsα : A → M(C r
0(G)⊗
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A) and γ : A → M(C∗
r (G) ⊗ A) and B is G-C∗-algebra with coaction β : B →

M(C r
0(G)⊗ B), then the braided tensor product of A and B is defined by

A � B = A �G B = [γ (A)12β(B)13] ⊂ L(HG ⊗ A ⊗ B).

The braided tensor product is naturally a G-C∗-algebra, and it is a natural replace-
ment of the minimal tensor product of G-C∗-algebras in the group case, see [21] for
more information.

We will be interested in the case that G is a discrete quantum group and work with
D(G)-C∗-algebras obtained from algebraic actions and coactions. More precisely, in
the algebraic setting we have a pair of algebraic coactions α : A → M(Cc(G)� A)
and γ : A → M(C[G] � A), and the Yetter–Drinfeld condition can bewritten as

f(1)a(−1)S( f(3))� f(2) · a(0) = ( f · a)(−1) � ( f · a)(0)

in this case. Here we denote by f ·a the action of f ∈ Cc(G) on a ∈ A corresponding
to the coaction γ and α(a) = a(−1) � a(0).

3 Quantum subgroups of discrete quantum groups

In this section we collect some basic constructions related to quantum subgroups of
discrete quantum groups. The general concept of a closed quantum subgroup of a
locally compact quantum group is discussed in [26,27]. For background information
on discrete quantum groups we refer to chapter 3 in [15].

A morphism H → G of locally compact quantum groups is a nondegenerate
∗-homomorphism π : C f

0(G) → M(C f
0(H)) compatible with the comultiplications.

For every such morphism there exists a dual morphism π̂ : C∗
f (H) → M(C∗

f (G)).By
definition, a closed quantum subgroup H ⊂ G of a locally compact quantum group
G is a morphism H → G for which the associated map C∗

f (H) → M(C∗
f (G)) is

accompanied by a compatible unital faithful normal ∗-homomorphism L(H) → L(G)
of the von Neumann algebras [26,27].

In the case of discrete quantum groups we will simply speak of quantum subgroups
instead of closed quantum subgroups. In fact, in this case the above definition can be
rephrased purely algebraically. Let G be a discrete quantum group and let H ⊂ G be
a closed quantum subgroup. Then H is automatically discrete, and the corresponding
map ι : L(H) → L(G) induces an injective ∗-homomorphism C[H ] → C[G] of
Hopf-∗-algebras. Conversely, if H and G are discrete, every injective homomorphism
ι : C[H ] → C[G] of Hopf-∗-algebras extends uniquely to a unital faithful normal
∗-homomorphism on the von Neumann algebra level, and thus turns H into a quantum
subgroup of G.

If H ⊂ G is a quantum subgroup of the discrete quantum group G, then the
category Corep(H) is a full tensor subcategory of Corep(G) containing the triv-
ial corepresentation and closed under taking duals. In fact, quantum subgroups of
G can be characterized in terms of such subcategories, see for instance [30]. The
C∗-algebra C0(H) is obtained as the sum of matrix blocks in C0(G) corresponding
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to corepresentations in Irr(H), and the map π : C0(G) → C0(H) ⊂ M(C0(H)) is
the canonical projection.

We will need some basic facts concerning homogeneous spaces and induced
C∗-algebras for discrete quantum groups. The general theory of induced coactions
for locally compact quantum groups is due to Vaes [26], and it is technically quite
involved. However, in the discrete case the constructions that we need can be described
more directly. We start with some elementary algebraic considerations.

For a discrete quantum group G we denote by C(G) the algebra M(Cc(G)) of
algebraic multipliers of Cc(G). Heuristically, the elements of C(G) can be viewed as
functions with arbitrary support on G. The canonical bilinear pairing between Cc(G)
and C[G] extends uniquely to a bilinear pairing between C(G) and C[G], and in this
way we obtain a natural identification of C(G) with the algebraic dual space C[G]∗.
We write again 〈 f, x〉 = 〈x, f 〉 for f ∈ Cc(G) and x ∈ C[G].
Definition 3.1 Let H be a quantum subgroup of a discrete quantum group G. The
algebra of all functions on the homogeneous space G/H is

C(G/H) = { f ∈ C(G) | (id �π)�( f ) = f � 1}

where π : C(G) → C(H) is the canonical projection map. Moreover we define

C[G/H ] = C[G] �C[H ] C

where C[H ] acts via ι : C[H ] → C[G] on C[G] and via the counit on C.

Let τ : C[G] → C[G/H ] be the canonical projection given by τ(x) = x � 1.
The transpose of τ induces an injective linear map C[G/H ]∗ → C[G]∗ = C(G).
Moreover π is the transpose of ι in the duality between C(G) and C[G]. Hence for
f ∈ C(G/H), x ∈ C[G] and y ∈ C[H ] we obtain

〈 f, xι(y)〉=〈�( f ), x � ι(y)〉=〈(id �π)�( f ), x � y〉=〈 f � 1,x � y〉=〈 f ,xε(y)〉

and conclude that f is contained in C[G/H ]∗. An analogous argument shows that
every f ∈ C[G/H ]∗ satisfies the invariance condition defining C(G/H). In other
words, we may identify C[G/H ]∗ ⊂ C[G]∗ with C(G/H) ⊂ C(G). Note also that
the comultiplication of C[G] induces a natural coalgebra structure on C[G/H ].

Let Corep(H) ⊂ Corep(G) be the full tensor subcategory corresponding to the
inclusion H ⊂ G. For an irreducible corepresentation r ∈ Irr(G) we denote by
C[G]r ⊂ C[G] the linear subspace of matrix coefficients of r. By definition of the
tensor product we have

C[G]r · C[G]s =
⊕

t⊂r⊗s

C[G]t

for r, s ∈ Irr(G).Moreover if r ⊗ s = t is already irreducible, then the multiplication
map defines an isomorphism C[G]r � C[G]s ∼= C[G]t .
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In [30], an equivalence relation on Irr(G) is defined by setting r ∼ s iff r ⊗ s
contains an element t ∈ Irr(H). Equivalently, r ∼ s iff s ⊂ r ⊗ t for some t ∈ Irr(H).
We denote by Irr(G)/Irr(H) the corresponding quotient space, so that the class [r ]
of r ∈ Irr(G) is the set of isomorphism classes of irreducible subobjects of tensor
products r ⊗ t with t ∈ Irr(H).

For α ∈ Irr(G)/Irr(H) let us write C[G]α the direct sum of subspaces C[G]r
with r ∈ α. Then C[G] is clearly the direct sum of the subspaces C[G]α over all
α ∈ Irr(G)/Irr(H), and C[G][ε] = C[H ] where ε is the trivial corepresentation.

We may write C(G) as

C(G) ∼=
∏

r∈Irr(G)

C(G)r

where C(G)r = C[G]∗r is the matrix algebra corresponding to r ∈ Irr(G). Let us
denote by pr ∈ C(G) the central projection associated to the identity in C(G)r , so
that 〈pr , x〉 = δt,rε(x) for x ∈ C[G]t . For α ∈ Irr(G)/Irr(H) we let pα ∈ C(G) be
the sum of the projections pr with r ∈ α. By construction, the sum of the elements
pα over α ∈ Irr(G)/Irr(H) is equal to 1. For α, β ∈ Irr(G)/Irr(H) and x ∈ C[G]β
we compute 〈pα, x〉 = δα,βε(x) and conclude that

〈pα, xy〉 = 〈pα, xε(y)〉

for all x ∈ C[G] and y ∈ C[H ]. This implies pα ∈ C(G/H).
Let A be an H -algebra with coaction α : A → M(Cc(H) � A) in the sense

explained in Sect. 2. Inside the algebraic multiplier algebra M(Cc(G)� A) we have
the ∗-subalgebra

C(G, A) =
∏

r∈Irr(G)

C(G)r � A ⊂ M(Cc(G)� A)

of functions with values in A ⊂ M(A). We let

C(G, A)H = { f ∈ C(G, A) | (ρ � id)( f ) = (id �α)( f )}

where ρ : Cc(G) → M(Cc(G)� Cc(H)) is the right coaction ρ = (id �π)�. Note
that pα � 1 is a central element in M(C(G, A)H ) for every α ∈ Irr(G)/Irr(H) in a
natural way. In the case A = C the construction of C(G, A)H obviously reduces to
the algebraic homogeneous space C(G/H) defined above.

Definition 3.2 Let G be a discrete quantum group and let H ⊂ G be a quantum
subgroup. The algebraic induced algebra of an H -algebra A is the ∗-algebra

algindG
H (A) =

⊕

α∈Irr(G)/Irr(H)

pαC(G, A)H

inside C(G, A)H .
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In the case A = C with the trivial action we shall use the notation

Cc(G/H) =
⊕

α∈Irr(G)/Irr(H)

pαC(G/H) ⊂ C(G)

for the algebraic induced algebra. We may view Cc(G/H) as the algebra of finitely
supported functions on the homogeneous space G/H.

Let us show that algindG
H (A) becomes a G-algebra in a natural way. To this end

let r ∈ Irr(G), α ∈ Irr(G)/Irr(H) and consider the finite subset rα ⊂ Irr(G)/Irr(H)
given by the equivalence classes of all irreducible subobjects of r ⊗ s for some s ∈ α.
Note that this set is independent of the choice of s. Moreover let prα ∈ Cc(G/H) be
the sum of the projections pβ for β ∈ rα. Then we have

(pr � id)�(pα) = (pr � prα)�(pα),

and it follows that (Cc(G)� 1)(�� id)(algindG
H (A)) ⊂ Cc(G)� algindG

H (A) inside
M(Cc(G)� Cc(G)� A). Using the antipode of Cc(G) it is straightforward to check
that this inclusion is in fact an equality. We conclude that the map

�� id : algindG
H (A) → M(Cc(G)� algindG

H (A))

is a well-defined algebraic coaction which turns algindG
H (A) into a G-algebra.

We are mainly interested in the case that A is an H -C∗-algebra. In this situation we
let Cb(G, A) ⊂ C(G, A)be the l∞-direct sum of the spaces C(G)t⊗A over t ∈ Irr(G).
Note that Cb(G, A) is naturally contained in the multiplier algebra M(C0(G)⊗ A).

Lemma 3.3 Let H ⊂ G be as above and let A be an H-C∗-algebra. Then algindG
H (A)

is contained in Cb(G, A).

Proof Clearly it suffices to show pαC(G, A)H ⊂ Cb(G, A) for α ∈ Irr(G)/Irr(H).
That is, for f = ( ft )t∈α in C(G, A)H with ft ∈ C(G)t ⊗ A we have to show that
|| ft ||t∈α is bounded. Upon replacing f by f ∗ f we may assume that all ft are positive.
Consider the element

F = (id ⊗α)( f ) = (ρ ⊗ id)( f ) ∈
∏

r∈α,s∈Irr(H)

C(G)r ⊗ C(G)s ⊗ A

Let us write ||F ||r,s for the norm of the restriction of F to C(G)r ⊗C(G)s ⊗ A. Since
α is isometric we have ||F ||r,s ≤ ||F ||r,ε = || fr || for all s ∈ Irr(H), where ε denotes
the trivial corepresentation. Next observe that we have ||(ρ ⊗ id)( ft )||r,s = || ft ||
provided t ⊂ r ⊗ s. From F = (ρ ⊗ id)( f ) and the fact that all fr are positive we
obtain the estimate || ft || ≤ ||F ||r,s for all r ∈ α, s ∈ Irr(H) such that t ⊂ r ⊗ s.
We conclude || ft || ≤ ||F ||r,s ≤ ||F ||r,ε = || fr ||. This shows that || ft || is in fact
independent of t, and in particular the family || ft ||t∈α is bounded. �

Lemma 3.3 shows that the canonical projection pα algindG
H (A) → C(G)t ⊗ A is

injective for all t ∈ α. Moreover we see that pα algindG
H (A) is a C∗-subalgebra of

Cb(G, A) for all α ∈ Irr(G)/Irr(H).
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Definition 3.4 Let H⊂G be a quantum subgroup of the discrete quantum group G
and let A be an H -C∗-algebra. The induced C∗-algebra indG

H (A) is the closure of
algindG

H (A) inside Cb(G, A) ⊂ M(C0(G)⊗ A).

Our above considerations imply that indG
H (A) is simply the c0-direct sum of the

algebras pαalgindG(A)
H .Moreover from the fact that algindG

H (A) is a G-algebra we see
easily that indG

H (A) is a G-C∗-algebra in a canonical way.
In the case of A = C with the trivial action we write indG

H (C) = C0(G/H) for
the induced C∗-algebra. Observe in particular that C0(G/H) is a direct sum of finite
dimensional C∗-algebras.

Let us briefly compare Definition 3.4 with the general construction of induced
C∗-algebras by Vaes [26].

Proposition 3.5 Let G be a discrete quantum group and let H ⊂ G be a quantum
subgroup. If A is an H-C∗-algebra then the C∗-algebra indG

H (A) defined above is
G-equivariantly isomorphic to the induced C∗-algebra defined by Vaes.

Proof It suffices to check that the C∗-algebra indG
H (A) satisfies the conditions stated

in theorem 7.2 of [26].
We have already remarked above that �⊗ id : indG

H (A) → M(C0(G)⊗indG
H (A))

yields a well-defined continuous coaction. Consider the algebra

Ã={X ∈ M(K(l2(G))⊗ A) | X ∈ (L∞(G)′ ⊗ 1)′ and (ρ ⊗ id)(X)=(id ⊗α)(X)}

used in [26]. For α ∈ Irr(G)/Irr(H) and a ∈ A we have that X (pα⊗a) and (pα⊗a)X
are contained in Cb(G, A) for all X ∈ Ã. It follows that algindG

H (A) ⊂ Ã is strong*
dense. We conclude that � ⊗ id extends to a well-defined ∗-homomorphism Ã →
M(C0(G)⊗ indG

H (A)) which is strictly continuous on the unit ball of Ã.
Finally note that [α(A)(l2(H)⊗A)] = l2(H)⊗A becauseα is a coaction. Moreover

we have [C[G] · l2(H)] = l2(G) where we consider the left action of C[G] corre-
sponding to the regular coaction on l2(G). Since we may view α(A) as a subalgebra
of indG

H (A) we obtain

[l2(G)⊗ A] = [C[G] · (l2(H)⊗ A)] = [C[G] · (α(A)(l2(H)⊗ A))]
⊂ [C[G] · (indG

H (A)(l
2(H)⊗ A))] ⊂ [indG

H (A)(l
2(G)⊗ A)]

so that indG
H (A) ⊂ Ã is nondegenerate. �

Next we shall analyze the Hilbert space associated to the homogeneous space G/H.
Since the Haar state for C[G] restricts to the Haar state for C[H ] we have a canonical
inclusion l2(H) ⊂ l2(G). This yields a conditional expectation E : C∗

r (G) → C∗
r (H)

such that φ̂E = φ̂ where φ̂ denotes the Haar state of C[G]. We have E(C[G]r ) = 0
if r /∈ Irr(H), and it is easily checked that

(E ⊗ id)� = �E = (id ⊗E)�.
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Using E we define l2(G/H) as the separated completion of C[G] with respect to the
inner product

〈x, y〉 = εE(x∗y).

The canonical left action of C[G] extends to a unital ∗-homomorphism C∗
f (G) →

L(l2(G/H)). We denote by l2(G/H)α the image of C[G]α in l2(G/H).
Besides it is easy to check that the canonical map from C[G] to l2(G/H) factors

through C[G/H ]. We want to show that this map C[G/H ] → l2(G/H) is injective.
For this we will do computations in C[G] using matrix coefficients of irreducible
corepresentations, and we will identify C[G]∗r ∼= C(G)r ∼= L(Hr ) where Hr is
the underlying Hilbert space of r ∈ Irr(G). Recall that for r ∈ Irr(G) there is a
unique r ∈ Irr(G) such that r ⊗ r contains the trivial corepresentation ε. We denote
by tr : ε → r ⊗ r a morphism such that t∗r tr = dimq(r) id where dimq(r) is the
quantum dimension of r. Such a morphism is unique up to a phase, and there is a
corresponding morphism sr : ε → r ⊗ r such that (id ⊗s∗

r )(tr ⊗ id) = id . We also
have (s∗

r ⊗ id)(id ⊗tr ) = id and s∗
r sr = dimq(r)1. In fact, we can always take tr = sr

and sr = tr if r is not equivalent to r . For x ∈ C[G]r and y ∈ C[G]r the Schur
orthogonality relations become

φ̂(xy) = 1

dimq(r)
〈x ⊗ y, sr s∗

r 〉

in our notation.

Lemma 3.6 The canonical map C[G/H ] → l2(G/H) is injective.

Proof If x ∈ C[G]r and y ∈ C[G]s with r, s ∈ Irr(G) in different classes modulo
Irr(H), then x∗y ∈ C[G]r · C[G]s decomposes inside coefficients spaces C[G]t with
t /∈ Irr(H). This implies that the subspaces l2(G/H)α for α ∈ Irr(G)/Irr(H) are
pairwise orthogonal.

In particular it suffices to check injectivity for fixed α ∈ Irr(G)/Irr(H). We let
r ∈ α and recall that C[G/H ]α = τ(C[G]r ) is spanned by the elements from C[G]r .
Let y be an element of C[G]r such that εE(xy) = 0 for every x ∈ C[G]r . We have
to show y = 0 in C[G/H ].

Let us write p ∈ C(G) for the central projection corresponding to Irr(H) ⊂ Irr(G)
and q = (pr ⊗ pr )�(p). If we put g = (id ⊗y)(q) ∈ C(G)r then

〈x, g〉 = 〈x ⊗ y, q〉 = 〈xy, p〉 = 〈E(xy), 1〉 = εE(xy) = 0

for all x ∈ C[G]r . Moreover, by duality there is a unique y′ ∈ C[G]r such that
〈y′, f 〉 = t∗r ( f ⊗ g)tr for all f ∈ C(G)r .Using the Schur orthogonality relations and
our previous calculation we obtain

dimq(r)φ̂(xy′) = 〈x ⊗ y′, sr s∗
r 〉 = 〈x, (id ⊗t∗r )(sr s∗

r ⊗ g)(id ⊗tr )〉 = 〈x, g〉 = 0
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for all x ∈ C[G]r . Since φ̂ is faithful on C[G] this yields y′ = 0. We will show that
y′ = λy in the quotient space C[G/H ] for some λ > 0, this will finish the proof.

Let us write

q =
N∑

i=1

Ti T
∗

i ∈ L(Hr ⊗ Hr )

where Ti : ri → r ⊗ r are isometric intertwiners with ri ∈ Irr(H) for all i
such that T ∗

j Ti = δi j . Without loss of generality we may assume r1 = ε and

T1 = dimq(r)−1/2sr . For f ∈ C(G)r we have

(t∗r ⊗ id)( f ⊗ q)(tr ⊗ id) =
N∑

i=1

(t∗r ⊗ id)(id ⊗Ti )( f ⊗ 1)(id ⊗T ∗
i )(tr ⊗ id)

=
N∑

i=1

R∗
i ( f ⊗ 1)Ri

where Ri = (id ⊗T ∗
i )(tr ⊗ id). Inserting the definitions of g and y′ yields

〈y′, f 〉 =
∑

〈y, R∗
i ( f ⊗ 1)Ri 〉,

and hence y′ = (id ⊗ε)(z), where z ∈ C[G]r � C[H ] ⊂ C[G] ⊗ C[G] is defined by

〈z, f ⊗ h〉 =
n∑

i=1

〈y, R∗
i ( f ⊗ h)Ri 〉.

If μ denotes the multiplication of C[G] and f ∈ C(G)t we get

〈μ(z), f 〉 = 〈z,�( f )〉 =
N∑

i=1

Ni∑

j=1

〈y, R∗
i Si j f S∗

i j Ri 〉,

where Si j : t → r ⊗ ri are isometric intertwiners such that S∗
i j Sik = δ jk and

Ni∑

j=1

Si j S∗
i j ∈ L(Hr ⊗ Hri )

projects onto the spectral subspace corresponding to t.Note that R∗
i Si j is an intertwiner

from t to r for all i, j. Since the corepresentations r and t are irreducible it follows
that R∗

i Si j = 0 unless r = t, and for r = t the map R∗
i Si j is a multiple of the identity.

Inserting this into the above equation yieldsμ(z) = λy for some λ ≥ 0.Moreover, for
r = t and i = 1 we may normalize such that S11 is equal to the identity map. Together
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with our previous normalization of T1 this implies R∗
1 S11 = dimq(r)−1/2 and hence

λ > 0.
Since μ(z)=(id⊗ε)(z) in C[G/H ] we deduce y′ =λy in C[G/H ] as desired. �
From Lemma 3.6 it follows in particular that the elements of Cc(G/H) ⊂ C(G)

correspond to linear functionals on C[G] of the form dH (x) where

dH (x)(y) = εE(S(x)y).

Indeed, an element f ∈ Cc(G/H) corresponds to a linear form on C[G/H ] which
is supported on a finite subset of Irr(G)/Irr(H). Hence f can be written as the scalar
product by a vector in l2(G/H). Using Lemma 3.6 and the fact that the spaces C[G]α
for α ∈ Irr(G)/Irr(H) are finite dimensional we obtain the claim.

In this way we obtain a linear isomorphism dH : C[G/H ] → Cc(G/H). This
allows us to define an inner product on Cc(G/H) such that dH is unitary. In the case
of the trivial subgroup we write

d(x)(y) = φ̂(S(x)y),

and note that d : C[G] → Cc(G) is unitary with respect to the standard scalar products

〈x, y〉 = φ̂(x∗y), 〈 f, g〉 = φ( f ∗g)

on C[G] and Cc(G), respectively.
It is easy to check that the comultiplication of C[G] induces a linear map � :

C[G/H ] → C[G/H ]�C[G/H ].Using the identification C(G/H) ∼= C[G/H ]∗ we
define the regular action of C(G/H) on C[G/H ] by

λ( f )(x) = 〈 f, x(1)〉x(2)

for f ∈ Cc(G) and x ∈ C[G/H ]. This action turns C[G/H ] into a left C(G/H)-
module.

Lemma 3.7 The regular action of C(G/H) on C[G/H ] induces a faithful
∗-representation λ : Cb(G/H) → L(l2(G/H)). Under this representation all ele-
ments of C0(G/H) are mapped into K(l2(G/H)).

Proof Under the isomorphism d : C[G] → Cc(G) the canonical left action of an
element f ∈ C(G) on Cc(G) is identified with the action λ( f )(x) = 〈 f, x(1)〉x(2) on
C[G], and we have

φ̂(λ( f ∗)(x)∗y) = φ̂(x∗λ( f )(y))

for all x, y ∈ C[G]. If f ∈ C(G/H) ⊂ C(G) then the relation

λ( f )(y)z = 〈 f, y(1)〉y(2)z = 〈 f, y(1)z(1)〉y(2)z(2) = λ( f )(yz)
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for y ∈ C[G] and z ∈ C[H ] shows

φ̂((λ( f ∗)(x))∗yz) = φ̂(x∗λ( f )(y)z).

Since φ̂ is faithful on C[H ] we conclude

E(x∗λ( f )(y)) = E(λ( f ∗)(x)∗y)

for x, y ∈ C[G], and this implies

εE(x∗λ( f )(y)) = εE(λ( f ∗)(x)∗y)

for all x, y ∈ C[G/H ]. We conclude in particular that λ induces ∗-homomorphisms
pαC(G/H) → L(l2(G/H)α) for all α ∈ Irr(G)/Irr(H), and taking the direct sum
of these ∗-homomorphisms yields the desired ∗-representation λ : Cb(G/H) →
L(l2(G/H)). Moreover, any element of pαC(G/H) for α ∈ Irr(G)/Irr(H) acts as a
finite rank operator because l2(G/H)α = C[G/H ]α is finite dimensional. It follows
that λ maps the elements of C0(G/H) to compact operators on l2(G/H).

To prove faithfulness, observe that λ( f ) = 0 ∈ L(l2(G/H)) implies

〈 f, x〉 = 〈 f, x(1)〉ε(x(2)) = ε(λ( f )(x)) = 0

for all x ∈ C[G/H ] ⊂ l2(G/H). Since C(G/H) identifies with the dual space of
C[G/H ] we conclude f = 0. �

Let us consider the left action of Cc(G) on Cc(G/H) given by

μ( f )(h) = f(1)hS( f(2))

for f ∈ Cc(G) and h ∈ Cc(G/H). Under the isomorphism dH : C[G/H ] →
Cc(G/H)defined above, this action identifies with the left action of Cc(G)on C[G/H ]
given by

ν( f )(x) = 〈 f(2), S(x(3))〉x(2)〈 f(1), x(1)〉.

It is straightforward to check that this induces a nondegenerate ∗-homomorphism
ν : C0(G) → L(l2(G/H)).

The G-C∗-algebra C0(G/H)becomes a D(G)-C∗-algebra with the adjoint coaction
C0(G/H) → M(C∗

r (G)⊗ C0(G/H)) given by

γ ( f ) = Ŵ ∗(1 ⊗ f )Ŵ

where we view C0(G/H) as a C∗-subalgebra of Cb(G) ⊂ L(l2(G)).

Lemma 3.8 The left regular action of C∗
f (G) and the action ν : C0(G) →

L(l2(G/H)) turn l2(G/H) into a D(G)-Hilbert space such that the ∗-representation
λ : C0(G/H) → L(l2(G/H)) is covariant.
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Proof The coaction δ : l2(G/H) → M(C0(G)⊗ l2(G/H)) corresponding to the left
action of C∗

f (G) on l2(G/H) is given by � on Cc(G/H) ⊂ l2(G/H). Using this
fact it is straightforward to check the Yetter–Drinfeld compatibility condition and that
λ : C0(G/H) → L(l2(G/H)) is covariant. �

Let H be a Hilbert space with scalar product 〈 , 〉 and let S(H) ⊂ H be a dense
linear subspace. We may view the scalar product on S(H) as a bilinear map 〈 , 〉 :
S(H)× S(H) → C where S(H) is the conjugate of S(H). That is, S(H) = S(H) is
the vector space equipped with the same addition but with the complex conjugate scalar
multiplication. We let F(H) = S(H)� S(H) be the ∗-algebra with multiplication

(x1 � y1)(x2 � y2) = x1〈y1, x2〉 � y2

and ∗-operation

(x � y)∗ = y � x .

Note that, by slight abuse of notation, F(H) depends on S(H) and not only H.
We may view F(H) as a space of kernels for certain compact operators on H,more

precisely, there is an injective ∗-homomorphism ι : F(H) → K(H) given by

ι(x � y)(ξ) = x〈y, ξ 〉.

We apply these constructions to the homogeneous space associated to a discrete quan-
tum group G and a quantum subgroup H ⊂ G. In the Hilbert space l2(G/H)we have
the dense linear subspace C[G/H ]. Let γ : C[G/H ] → C[G/H ] be the linear map
given by γ (x) = S(x)∗. It is easy to check that γ is a well-defined linear isomorphism.

We may therefore identify the algebra F(l2(G/H)) with C[G/H ] � C[G/H ].
The actions of C[G] and Cc(G) on K(l2(G/H)) induced from the Yetter–Drinfeld
structure of l2(G/H) preserve F(l2(G/H)), and correspond to the diagonal actions
on C[G/H ] � C[G/H ].

The operators in F(l2(G/H)) of the form �(x) with x ∈ C[G/H ] form a sub-
algebra, and �(C[G/H ]) ⊂ F(l2(G/H)) is closed under the the actions of C[G]
and Cc(G). It is easy to check that the closure of �(C[G/H ]) inside K(l2(G/H))
identifies with C0(G/H).

In a similar way we may consider operator kernels defining operators between
l2(G/K ) and l2(G/H) if H and K are two different quantum subgroups of G. Later
we will need in particular the following fact.

Lemma 3.9 Let G be a discrete quantum group and let H ⊂ G be a quantum sub-
group. Consider the vector space

L = �(C[G])(C[H ] � C[H ])
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inside C[G] � C[G]. If τ : C[G] → C[G/H ] denotes the canonical projection, then
the closure K of the ∗-algebra

(
L (id �τ)(L)

(τ � id)(L) (τ � τ)(L)

)

inside K(l2(G)⊕ l2(G/H)) is D(G)-equivariantly Morita equivalent to C0(G/H).

Proof It is easy to check that K is indeed closed under multiplication and taking
adjoints. Let p ∈ M(K ) be the projection onto l2(G/H). This projection is invariant
under the action of the Drinfeld double in the sense that γ (p)= 1⊗ p if γ : K →
M(C r

0(D(G))⊗K ) denotes the coaction of C r
0(D(G)) induced from l2(G)⊕l2(G/H).

Moreover, by our above remarks we know that pK p is isomorphic to C0(G/H).Hence
the claim follows from the fact that pK p is a full corner in K , that is [K pK ]= K . �

4 Divisible quantum subgroups

In this section we discuss a certain class of quantum subgroups of discrete quan-
tum groups which we call divisible. We will later make use of divisibility in some
arguments.

Let G be a discrete quantum group and let H ⊂ G be a quantum subgroup. In the
same way as we defined the C∗-algebra C0(G/H) in Sect. 3, we may construct the
homogeneous space C0(H\G) corresponding to left translations of H on G. That is,
on the algebraic level we set

C(H\G) = { f ∈ C(G) | (π � id)�( f ) = 1 � f }

where π : C(G) → C(H) is the canonical projection map, and C0(H\G) is the
completion of

Cc(H\G) =
⊕

α∈Irr(H)\Irr(G)

pαC(H\G)

inside L(l2(G)). Here Irr(H)\Irr(G) is the quotient of Irr(G) with respect to the
equivalence relation given by r ∼ s iff s ⊗ r contains an element t ∈ Irr(H), and
pα ∈ Cb(G) denotes the projection determined by the coset α.

Definition 4.1 Let G be a discrete quantum group and let H ⊂ G be a quantum sub-
group. We say that H ⊂ G is divisible if there exists an H -equivariant ∗-isomorphism

C0(G) ∼= C0(H)⊗ C0(H\G)

with respect to the restricted coaction on the left hand side and the coaction given by
comultiplication on C0(H) on the right hand side.
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Roughly speaking, the property of divisibility corresponds to the existence of a
section H\G → G of the canonical quotient map. It is clear that every inclusion
H ⊂ G of classical discrete groups is divisible.

Recall from Sect. 3 that the canonical projection C[G] → C[G/H ] is a coalgebra
homomorphism in a natural way. We define

C[H\G] = C �C[H ] C[G]

and note that C[H\G]∗ identifies with C(H\G).The coalgebra C[G] is equipped with
the antilinear involution ρ(x) = S−1(x)∗. This formula also determines involutions
on C[G/H ] and C[H\G]. We will say that a coalgebra homomorphism is involutive
if it commutes with these involutions.

The following lemma shows that divisibility is quite a strong property in the quan-
tum case, and that it is symmetric with respect to taking left or right quotients.

Lemma 4.2 Let G be a discrete quantum group and let H ⊂ G be a quantum sub-
group. Then the following conditions are equivalent.

a) H ⊂ G is divisible.
b) There exists an involutive isomorphism C[G] ∼= C[H ] � C[G\H ] of coalgebras

and left C[H ]-modules.
c) For each α ∈ Irr(H)\Irr(G) there exists a corepresentation l = l(α) ∈ α such

that s ⊗ l is irreducible for all s ∈ Irr(H).
d) For each α ∈ Irr(G)/Irr(H) there exists a corepresentation r = r(α) ∈ α such

that r ⊗ s is irreducible for all s ∈ Irr(H).
e) There exists an involutive isomorphism C[G] ∼= C[G/H ] � C[H ] of coalgebras

and right C[H ]-modules.
f) There exists a right C0(H)-colinear ∗-isomorphism

C0(G) ∼= C0(G/H)⊗ C0(H)

with respect to the restricted coaction on the left hand side and the coaction given
by comultiplication on C0(H) on the right hand side.

Proof a) ⇒ b) Let σ : C0(G) → C0(H) ⊗ C0(H\G) be an H -equivariant
∗-isomorphism. Then every matrix block in C0(G) is mapped to finitely many
matrix blocks inside C0(H)⊗ C0(H\G). It follows that there exists an isomorphism
σ∗ : C[H ] � C[H\G] → C[G] which induces σ by dualizing in the sense that

〈σ∗(x ⊗ y), f 〉 = 〈x ⊗ y, σ ( f )〉

for all x ∈ C[H ], y ∈ C[H\G] and f ∈ C0(G). Using nondegeneracy of the canoni-
cal pairings we see that σ∗ is a left C[H ]-linear involutive coalgebra homomorphism.

b) ⇒ a) If σ : C[H ] � C[H\G] → C[G] is a C[H ]-linear involutive coalgebra
isomorphism, then dualizing yields a C[H ]-linear unital ∗-isomorphism σ̂ : C(G) =
M(Cc(G)) → M(Cc(H) � Cc(H\G)). Since both sides are direct products of
matrix algebras the map σ̂ restricts to a C0(H)-colinear ∗-isomorphism C0(G) ∼=
C0(H)⊗ C0(H\G).
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b) ⇒ c) Assume we are given an involutive C[H ]-linear coalgebra isomorphism
C[G] ∼= C[H ] � C[H\G]. Let α ∈ Irr(H)\Irr(G) and l1, . . . , lk ∈ Irr(G) be the
corepresentations corresponding to the simple coalgebras in C1 � C[H\G]α. Then
the simple coalgebras in C[G]α are of the form C[G]s⊗li with s ∈ Irr(H). Since α is
generated by a single corepresentation we must have k = 1 and may set l(α) = l1 ∈
Irr(G).

c) ⇒ b) If l(α) ∈ Irr(G) is a representative of α ∈ Irr(H)\Irr(G), then the simple
corepresentations of C[G] are of the form s ⊗l(α)with s ∈ Irr(H). The multiplication
map μ induces a left C[H ]-linear isomorphism

⊕

α∈Irr(H)\Irr(G)

C[H ] � C[G]l(α) ∼= C[G]

of coalgebras. Using ρ(xy) = S(xy)∗ = S(x)∗S(y)∗ = ρ(x)ρ(y) we see that μ is
involutive. The claim follows by observing that the canonical map

⊕

α∈Irr(H)\Irr(G)

C[G]l(α) → C[H\G]

is an involutive isomorphism of coalgebras.
c) ⇔ d) The conjugation of corepresentations induces a canonical bijection

between Irr(H)\Irr(G) and Irr(G)/Irr(H). If l = l(α) is as in c) we may set r(α) = l
and vice versa.

Finally, the proof of d) ⇔ e) ⇔ f ) is obtained in the same way as the equivalences
a) ⇔ b) ⇔ c) above. �

In order to illustrate Definition 4.1 let us discuss some examples of quantum sub-
groups and homogeneous spaces. As a first example, let us consider the even part
H = FOev(Q) of the free orthogonal quantum group G = FO(Q) with Q Q = ±1.
By definition, C[H ] is the Hopf ∗-subalgebra generated by products ui j ukl of two
generators of C[G]. In other words, if

Irr(G) = {uk | k ∈ N0}

is the usual parametrization of the irreducible corepresentations of FO(Q), then Irr(H)
corresponds to corepresentations with even index. Note that one recovers as particular
case the canonical morphisms SUq(2) → SOq(3) when Q ∈ GL2(C).

Recall that the fusion rules of FO(Q) are given by

uk ⊗ ul ∼= u|k−l| ⊕ u|k−l|+2 ⊕ · · · ⊕ uk+l−2 ⊕ uk+l , uk ∼= uk .

Hence in this case Irr(G)/Irr(H) consists of the two classes [1] = [u0] and [u] = [u1].
Clearly C[G/H ][1] ∼= C is generated by 1 ∈ C[G]. On the other hand, for r, s ∈ [u]
we have r ⊗ s ∈ Corep(H) so that 〈x, y〉 = ε(x∗y) for x, y ∈ C[G/H ][u]. As a
result we obtain C[G/H ][u] ∼= Cu11, with the coalgebra structure which makes u11 a
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group-like element. In other words, we have

C0(G/H) = Cc(G/H) ∼= C ⊕ C,

and it follows immediately that H is not a divisible subgroup.
We consider next the case of a free product G = G0 ∗ G1 of two arbitrary dis-

crete quantum groups G0,G1. It is known from [34] that the irreducible corepre-
sentations of G are obtained as alternating tensor products of nontrivial irreducible
corepresentations of G0 and G1. We identify Irr(G) with the set of alternating words
Irr(G0) ∗ Irr(G1). The fusion rules of G can be recursively derived from the ones of
G0 and G1 as follows. If the word v ends in Irr(G0) and w ∈ Irr(G) starts in Irr(G1)

then v ⊗ w is irreducible and corresponds to the concatenation vw. The same holds
with the roles of G0 and G1 reversed. If on the other hand v = v′r and w = sw′ with
r, s ∈ Irr(Gi ), then

v ⊗ w ∼=
⊕

ε �=t⊂r⊗s

v′tw′ ⊕ δr ,s(v
′ ⊗ w′),

where the sum runs over all irreducibles corepresentations t ⊂ r⊗s with multiplicities,
according to the fusion rules of Gi . It follows in particular that each Gi ⊂ G is a
divisible quantum subgroup, with the corepresentations r(α) for α ∈ Irr(G)/Irr(Gi )

corresponding to words not ending in Gi , including the empty word.
We remark that one can construct a naive Bass–Serre tree Y from these fusion

rules. The set of edges is the disjoint union Y (0) = Irr(G)/Irr(G0) ∪ Irr(G)/Irr(G1),

and the set of vertices is Y (1) = Irr(G). The natural quotient maps τ j : Irr(G) →
Irr(G)/Irr(G j ) are then interpreted as source and target maps, thus defining an oriented
graph Y. It is easy to check that this graph is a tree, and it coincides with the Bass–Serre
tree if G0,G1 are classical groups. In the quantum case, the free product G does not
act on Y in a natural way, and we will work instead with a quantum Bass–Serre tree
in Sect. 5. Still, the naive tree Y described above turns out to be useful for K -theoretic
computations, see in particular Lemma 6.4 below.

Finally, let us consider free orthogonal and unitary quantum groups. It was shown
by Banica [5] that for any Q ∈ GLn(C) such that Q Q = ±1 there is an injective
morphism ι : C[FU (Q)] → C[FO(Q)∗Z] of Hopf-∗-algebras given by ι(ui j ) = ui j z
where z ∈ C[z, z−1] = C[Z] is the generator. That is, FU (Q) ⊂ FO(Q) ∗ Z is a
quantum subgroup.

Proposition 4.3 Let Q ∈ GLn(C) such that Q Q = ±1. Then the quantum subgroup
FU (Q) ⊂ FO(Q) ∗ Z is divisible.

Proof Let us write G = FO(Q) ∗ Z and H = FU (Q) and identify Irr(H) ⊂ Irr(G).
Moreover denote by un for n ∈ N0 the irreducible corepresentations of FO(Q), and
choose a generator z of Z. By definition, Irr(H) is generated inside Irr(G) by u1z
and z−1u1. We have to study how tensor products with the generators decompose in
Irr(G).
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Let wzkunzl be an alternating word in Irr(G) with w possibly empty, k, l ∈ Z and
n > 0. According to the fusion rules explained above we have

wzkunzl ⊗ u1z = wzkunzlu1z if l �= 0

wzkun ⊗ u1z = wzkun−1z ⊕ wzkun+1z if n > 1

wzku1 ⊗ u1z = wzk+1 ⊕ wzku2z.

Similarly we have

wunzk ⊗ z−1u1 = wunzk−1u1 if k �= 1

wunz ⊗ z−1u1 = wun−1 ⊕ wun+1 if n > 1

wu1z ⊗ z−1u1 = w ⊕ wu2

for k ∈ Z, n > 0 and a possibly empty word w.
Let us describe Irr(H) inside Irr(G). Indexing irreducible corepresentations of

FO(Q) ∗ Z by words in un, zk with n ∈ N
∗, k ∈ Z

∗, as explained above, we claim
that the nontrivial irreducible corepresentations of FU (Q) correspond to the set W of
words of the form

z[ε0]−un1 zε1un2 zε2 · · · un p z[εp]+

where p ≥ 1, εi = ±1 and ni ∈ N
∗ for all i are such that εi+1 = −(−1)ni+1εi for all

0 ≤ i ≤ p − 1 where we use the notation

[−1]− = −1, [1]− = 0, [−1]+ = 0, [1]+ = 1.

Indeed, it is easy to check that u1z = z[1]−u1z[1]+ and z−1u1 = z[−1]−u1z[−1]+ ∈ W.
Moreover one verifies that W is stable under tensoring on the left or right by u1z or
z−1u1 and taking subobjects according to the fusion rules above, and that all words
of W can be obtained in this way. For the rest of proof we only need the inclusion
Irr(H) ⊂ W.

Let α ∈ Irr(G)/Irr(H) be given. According to Lemma 4.2, it suffices to find r ∈ α
such that r ⊗t is irreducible for all t ∈ Irr(H).Let us pick an element r in α of minimal
length as a word in N ∗ Z. If r has length 0 we have r = ε and α = Corep(H), in
particular the irreducibility property is clear in this case. If r = un with n > 0, then
tensoring by (uz⊗z−1u)⊗m = u⊗2m ∈ Corep(H) shows that we can assume r = u1.

Tensoring on the right by u1z shows that we can also take r = z, and the irreducibility
property is again satisfied.

Now assume that r is of length at least 2. If r ends by un with n > 0, then we can
achieve n = 1 as above, and tensoring by u1z yields a word of strictly smaller length
in α.Hence r must be of the formwunzk with k ∈ Z

∗, n ∈ N
∗. In fact k �= 1, because

otherwise we find again a strictly shorter word in α by tensoring with z−1u. Now it is
clear from the fusion rules and the description of Irr(H) above that the tensor products
r ⊗ t with t ∈ Irr(H) are irreducible. �
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5 The Dirac and dual Dirac elements

In this section we define the Bass–Serre quantum tree and the Dirac and dual Dirac
elements associated to a free product of discrete quantum groups. We shall essentially
follow Kasparov and Skandalis [14], in addition we take into account the natural
Yetter–Drinfeld structures in the quantum setting. In the sequel we assume that the
reader is familiar with equivariant K K -theory for quantum groups, our notation will
follow [21,33].

Let G0 and G1 be discrete quantum groups and let G = G0 ∗ G1 be their free
product. We write τ j : C[G] → C[G/G j ] for the canonical projections. On the level
of Hilbert spaces, we define an associated tree for G by

l2(X) = l2(X (0))⊕ l2(X (1))

where

l2(X (0)) = l2(G/G0)⊕ l2(G/G1), l2(X (1)) = l2(G).

Heuristically, this Hilbert space can be viewed as the space of l2-summable functions
on the simplices of the quantum tree X associated to the free product G. However,
we point out that X itself has no meaning here, it is only the Hilbert space l2(X)
with further structure which will be used in the sequel. Observe that l2(X) contains a
natural dense linear subspace S(l2(X)) = C[X ] given by

C[X ] = C[X (0)] ⊕ C[X (1)] = C[G/G0] ⊕ C[G/G1] ⊕ C[G].

We will work with compact operators on l2(X) obtained from kernels in C[X ]�C[X ]
as explained in Sect. 3.

Let

E = {(t0, t1) ∈ R
2|t0 + t1 = 1}

be the one-dimensional affine space and let

�1 = {(t0, t1) ∈ E |t0 ≥ 0, t1 ≥ 0} ⊂ E

be the standard 1-simplex. As in [14] we denote by q : E → �1 the projection to the
nearest point. For a subset f ⊂ {0, 1} define

F f = {(t0, t1) ∈ �1|t j = 0 for j ∈ {0, 1}\ f }.

Note that F{0,1} = �1 and F∅ = ∅. Moreover define the open set � f ⊂ E as the
interior in E of q−1(F f ). Observe that �{0,1} = E and �∅ = ∅. For the one-element
subset { j} ⊂ {0, 1} we shall abbreviate �{ j} = � j .
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Let Cl1 be the one-dimensional Clifford algebra and write

Cτ (U ) = C0(U )⊗ Cl1

if U ⊂ E is an open subset. Our first aim is to define a graded C∗-algebra

AX ⊂ Cτ (E)⊗̂K̂(l2(X)) = C0(E, K̂(l
2(X)))⊗̂Cl1

where Cτ (E) carries the grading induced from the Clifford algebra, ⊗̂ denotes the
graded tensor product and K̂(l2(X)) is the algebra K(l2(X)) of compact operators on
l2(X) with the grading obtained by viewing l2(X) = l2(X (0))⊕ l2(X (1)) as a graded
Hilbert space. In the case of classical groups, the algebra AX is defined by specifying
support conditions in terms of matrix elements for K(l2(X)). In the quantum case we
have to proceed more indirectly, we shall assemble AX by putting together the pieces
corresponding to the different regions � f for f ⊂ {0, 1}.

Firstly, let us consider �{0,1} = E . Here we take the linear subspace

Cτ (E)��(C[G]) ⊂ Cτ (E)� F(l2(X)).

As explained in Sect. 3, the closure of this space inside Cτ (E)⊗̂K̂(l2(X)) is iso-
morphic to Cτ (E)⊗C0(G).Heuristically, this contribution corresponds to the matrix
elements for σ, η ∈ X (1) such that σ = η.

Consider next the regions �{ j} = � j for j = 0, 1. Heuristically, we have a contri-
bution coming from all simplices which intersect in the vertices corresponding to the
homogeneous space G/G j . For a pair of simplices in X (1) this leads to the space

Cτ (� j )��(C[G])(C[G j ] � C[G j ])

inside Cτ (E)�F(l2(X (1))). For a pair of one simplex in X (1) and one simplex in X (0)

we have

Cτ (� j )� (τ j � id)�(C[G])

inside Cτ (E,F(l2(X (0)), l2(X (1))) and symmetrically

Cτ (� j )� (id �τ j )�(C[G])

inside Cτ (E,F(l2(X (1)), l2(X (0))). Finally, there is a contribution coming from a pair
of vertices in X (0) which gives

Cτ (� j )� (τ j � τ j )�(C[G])

inside C0(E,F(l2(X (0))).
We letAX be the closure of the sum of the above subspaces inside Cτ (E)⊗̂K̂(l2(X)).

It is straightforward to check that AX becomes a D(G)-C∗-algebra in a natural way.

123



Free quantum groups

Definition 5.1 Let G0,G1 be discrete quantum groups and let G = G0 ∗G1 their free
product. The Dirac element D ∈ K K D(G)(AX ,C) is the composition of the canonical
inclusion AX → Cτ (E)⊗̂K̂(l2(X)) with the Bott periodicity isomorphism and the
equivariant Morita equivalence K̂(l2(X)) ∼M C.

Note that l2(X) is a graded D(G)-Hilbert space, so that K̂(l2(X)) is in fact D(G)-
equivariantly Morita equivalent to C.

The D(G)-C∗-algebra AX is K K D(G)-equivalent to an ungraded D(G)-C∗-algebra.
More precisely, let BX ⊂ C0(E)⊗ K(l2(X)) be the ungraded C∗-algebra defined by
the same procedure as above, but replacing Cτ (U ) by C0(U ) in all steps. Then P =
C0(R)⊗BX = �BX is isomorphic to AX in K K D(G). Indeed, the grading on K̂(l2(X))
is even and hence Cτ (E)⊗̂K̂(l2(X)) is isomorphic to C0(E)⊗Cl1 ⊗K(l2(X)),where
Cl1 ⊗ K(l2(X)) carries the standard odd grading, see corollary 14.5.3 in [9]. This
isomorphism identifies AX with Cl1 ⊗BX . Since Cl1 is K K -equivalent to C0(R) this
yields the claim.

In order to analyze the structure of P it is useful to consider the projection P →
�C(�1,C0(G)) obtained from restriction of functions in BX to �1 ⊂ E . We otain
an extension

0 �� I0 ⊕ I1 �� P �� �C(�1,C0(G)) �� 0

of D(G)-C∗-algebras, where I j ⊂ P is the ideal corresponding to the open sets � j .

One checks easily that this extension has a D(G)-equivariant completely positive split-
ting. Moreover, it follows from Lemma 3.9 that I j is K K D(G)-equivalent to C0(G/G j )

for j = 0, 1.
Next we shall define the γ -element for G, compare [13,30], using some stan-

dard constructions for free products, see for instance the first section of [32]. If H
is a quantum group let us write C[H\{e}] for the subspace of C[H ] spanned by
the matrix coefficients of all nontrivial corepresentations of H. Similarly, we write
l2(H\{e}) ⊂ l2(H) for the orthogonal complement of C1. That is, we have a direct
sum decomposition

l2(H) = C1 ⊕ l2(H\{e})

of the Hilbert space l2(H).With this notation, the underlying vector space of the Hopf
algebra C[G] for the free product G = G0 ∗ G1 decomposes as

C[G] = C1 ⊕
∞⊕

n=1

⊕

(i1,...,in)∈In

C[Gi1\{e}] � · · · � C[Gin \{e}]

where

In = {(i1, . . . , in) ∈ {0, 1}n|ik �= ik+1 for all k}.
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Similarly, we obtain an orthogonal decomposition

l2(G) = C1 ⊕
∞⊕

n=1

⊕

(i1,...,in)∈In

l2(Gi1\{e})⊗ · · · ⊗ l2(Gin \{e})

of the Hilbert space l2(G). Let us write C[G\{e}]( j) ⊂ C[G\{e}] for the subspace
corresponding to tuples (i1, . . . , in) ∈ In such that in �= j, and similarly write
l2(G\{e})( j) ⊂ l2(G\{e}) for the corresponding closed subspace. Note that we have

C[G\{e}] ∼= C[G\{e}]( j) � C[G j ]

and an analogous isomorphism for the Hilbert spaces. For j = 0, 1 consider the linear
map Tj : C[G\{e}]( j) → C[G/G j ] given by Tj (x) = x � 1 where we recall that
C[G/G j ] = C[G] �C[G j ] C. Note that

C[G/G j ] ∼= C1 ⊕
∞⊕

n=1

⊕

(i1,...,in)∈I ( j)
n

C[Gi1\{e}] � · · · � C[Gin \{e}]

where

I ( j)
n = {(i1, . . . , in) ∈ {0, 1}n|ik �= ik+1 for all k and in �= j}.

The map Tj is a linear isomorphism onto the space C[G/G j\{eG j }]. By the latter we
mean the direct sum of all summands in the above decomposition of C[G/H ] except
for the subspace C1 which represents the identity coset. Using analogous notation,
this map extends to a unitary l2(G)( j) → l2(G/G j\{eG j }) which we denote again
by Tj .

We define a bounded operator V ∗
j : l2(G) → l2(G/G0)⊕ l2(G/G1) for j = 0, 1

by V ∗
j = Tk on l2(G\{e})(k) for k = 0, 1 and V ∗

j (1) = 1 ∈ l2(G/G1− j ). That is, V ∗
0

differs from V ∗
1 only on the one-dimensional subspace C1 ⊂ l2(G) corresponding the

trivial corepresentation. The operator V ∗
j is an isometry with cokernel im(V ∗

j )
⊥ =

C1 ⊂ l2(G/G j ), and we define the Julg–Valette operator Vj to be the adjoint of V ∗
j .

Geometrically, the operator V ∗
j maps an edge to the endpoint furthest from the base

point given by the identity coset in G/G j .

Now consider the odd operator � j ∈ L(l2(X)) given by

� j =
(

0 V ∗
j

V j 0

)

with respect to the canonical decomposition l2(X) = l2(X (0))⊕ l2(X (1)). It is clear
by construction that � j ∈ L(l2(X)) is self-adjoint and satisfies 1 − �2

j ∈ K(l2(X)).

Let us write λ : l2(X) → M(C r
0(D(G)) ⊗ l2(X)) for the action of the Drinfeld

double D(G) on l2(X) and adλ : K(l2(X)) → M(C r
0(D(G)) ⊗ K(l2(X)) for the
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associated adjoint coaction, compare [21]. The operator � j almost commutes with the
coaction λ on l2(X) in the following sense.

Lemma 5.2 With the notation as above, we have

(C r
0(D(G))⊗ 1)(1 ⊗ � j − adλ(� j )) ∈ C r

0(D(G))⊗ K(l2(X))

for j = 0, 1.

Proof The coaction λ corresponds to coactions α : l2(X) → M(C0(G) ⊗ l2(X))
and ν : l2(X) → M(C∗

r (G) ⊗ l2(X)) satisfying the Yetter–Drinfeld compatibility
condition, see Sect. 2. To check the assertion it suffices to show that � j almost com-
mutes with α and ν separately. The coaction α corresponds to the canonical unital
∗-representation of C∗

f (G) = C∗
f (G0) ∗ C∗

f (G1) on l2(X). This in turn corresponds
to a pair of unital ∗-representations of C∗

f (G0) and C∗
f (G1) on l2(X). It is easy to see

that � j commutes with the action of C∗
f (G j ). Since �0 and �1 only differ by a finite

rank operator, it follows that� j commutes with the action of C∗
f (G1− j ) up to compact

operators. This yields the claim for α. It is straightforward to check that � j commutes
strictly with the ∗-representation of C0(G) on l2(X) induced by ν, and this yields the
claim for ν. �

We conclude that the operator � j together with the action of C on l2(X) by scalar
multiplication defines a class γ ∈ K K D(G)(C,C). Note that this class is independent
of j since �1 − �0 is a finite rank operator.

Lemma 5.3 We have γ = 1 in K K D(G)(C,C).

Proof Let us use the operator �0 to represent γ. Then γ − 1 is represented by the
graded Hilbert space

H = H0 ⊕ H1 = l2(X (0))⊕ (l2(X (1))⊕ C),

the action of C by scalar multiplication and the self-adjoint odd unitary F0 given as
follows. We decompose H into the direct sum K ⊕ K⊥ where

K = K0 ⊕ K1 = (C1 ⊕ C1)⊕ (C1 ⊕ C) ⊂ H0 ⊕ H1

and C1 denotes the subspaces corresponding to the trivial corepresentation inside
l2(G/G0), l2(G/G1) and l2(G), respectively. The operator F0 preserves the decom-
positionH = K⊕K⊥, it agrees with�0 onK⊥, and onK it interchanges 1 ∈ l2(G/G0)

with 1 ∈ C and 1 ∈ l2(G/G1) with 1 ∈ l2(G).
As in Lemma 5.2 we study the D(G)-action on H in terms of the corresponding

∗-representations of C∗
f (G0),C∗

f (G1) and C0(G). It is obvious that F0 commutes
with the actions of C∗

f (G0) and C0(G). Performing a symmetric construction with �1
instead of �0, we obtain an operator F1 which commutes with the actions of C∗

f (G1)

and C0(G). Moreover F0 = F1u where u is the self-adjoint unitary which is equal
to the identity on K⊥, interchanges 1 ∈ l2(G/G0) with 1 ∈ l2(G/G1) and fixes
1 ∈ l2(G) and 1 ∈ C. If we conjugate the action of C∗

f (G1) by u and leave the action
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of C∗
f (G0) fixed, we thus obtain an action of C∗

f (G)which commutes strictly with F0.

Choosing a path of unitaries in L(K0) connecting u and id on K0 yields a homotopy
between our cycle and a degenerate cycle. This shows γ − 1 = 0 as claimed. �

Our next aim is to define the dual-Dirac element η ∈ K K D(G)(C,AX ). For a given
λ ∈ E consider the operator

βλ(μ) = c(μ− λ)

sup(|μ− λ|, 1/3)

in L(Cτ (E)) = M(Cτ (E)) where c denotes Clifford multiplication. By construction,
the function 1 − β2

λ is supported on the ball B1/3(λ) around λ. The operator βλ
represents the Bott element in K K (C,Cτ (E)), we view it as an element [βλ] in
K K D(G)(C,Cτ (E)) by considering the trivial action of D(G) on all ingredients of the
corresponding cycle. Note that the class [βλ] is independent of λ.

Let us fix b = (1/2, 1/2) ∈ E and write β = βb. Since the action on Cτ (E) is
trivial, we obtain an element τCτ (E)(γ ) ∈ K K D(G)(Cτ (E),Cτ (E)) by tensoring γ
with Cτ (E) in the standard way. The Kasparov product

γ ⊗C [β] = [β] ⊗Cτ (E) τCτ (E)(γ )

is an element in K K D(G)(C,Cτ (E)) which can be represented easily using the Julg–
Valette operator�0 from above. More precisely, the underlying Hilbert Cτ (E)-module
is Cτ (E)⊗̂l2(X), the action of C is by scalar multiplication, and the operator is given
by

F0 = β⊗̂1 + ((1 − β2)1/2⊗̂1)(1⊗̂�0),

see Proposition 18.10.1 in [9]. Using equivariant Morita invariance, we obtain a corre-
sponding element in K K D(G)(C,Cτ (E)⊗̂K̂(l2(X))) with underlying Hilbert module
Cτ (E)⊗̂K̂(l2(X)), the tautological left action of C, and the operator given by the
same formula as F0.

Let x0, x1 ∈ E be the points

x0 = (3/2,−1/2), x1 = (−1/2, 3/2),

and let p j ∈ M(C0(G)) ⊂ L(l2(G)) for j = 0, 1 be the projection onto l2(G\{e})( j).

Note that p0, p1 ∈ M(C0(G)) are central elements. For t ∈ [0, 1] we define β t ∈
L(Cτ (E)⊗̂l2(X)) = M(Cτ (E)⊗̂K̂(l2(X))) by

β t = βt x0+(1−t)b⊗̂(p0 ⊕ id ⊕0)

+βt x1+(1−t)b⊗̂((p1 + (1 ⊗ 1))⊕ 0 ⊕ id)

where we use the decomposition l2(X) = l2(G)⊕l2(G/G0)⊕l2(G/G1), and 1�1 ∈
F(l2(G)) ⊂ K(l2(G)) is the orthogonal projection onto C1 ⊂ l2(G). In addition, we
define Ft ∈ L(Cτ (E)⊗̂l2(X)) for t ∈ [0, 1] by
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Ft = β t + (1 − (β t )2)1/2(1⊗̂�0),

for t = 0 this is of course compatible with our notation above. It is straightforward
to check that (β t )2 commutes with 1⊗̂�0, and this implies Ft = F∗

t . Moreover one
verifies 1 − F2

t ∈ K(Cτ (E)⊗̂l2(X)) for all t ∈ [0, 1] using that 1 − β2
λ is contained

in Cτ (E) for all λ ∈ E and 1 −�2
0 ∈ K(l2(X)). As in the proof of Lemma 5.2 we see

that Ft is almost invariant under the action of D(G), that is

(C r
0(D(G))⊗ 1)(1 ⊗ Ft − adλ(Ft )) ∈ C r

0(D(G))⊗ K(Cτ (E)⊗̂l2(X))

for all t ∈ [0, 1], where we write again λ for the coaction on Cτ (E)⊗ l2(X) obtained
from the coaction on l2(X).

Let us now define the dual Dirac element η.

Proposition 5.4 The operator F1 is contained in the multiplier algebra M(AX ) inside
L(Cτ (E)⊗̂l2(X)) and defines an element η ∈ K K D(G)(C,AX ) in a canonical way.

Proof Note that the canonical inclusion AX → L(Cτ (E)⊗̂l2(X)) is nondegenerate,
so that M(AX ) is indeed naturally a subalgebra of L(Cτ (E)⊗̂l2(X)).

To check that F1 is a multiplier of AX , it is convenient to write the operator in matrix
form with respect to the decomposition l2(X) = l2(G/G0)⊕ l2(G/G1)⊕ l2(G). In
a similar way one can represent the different linear subspaces of Cτ (E)⊗̂K̂(l2(X))
in the definition of AX . This reduces the argument to a number of straightforward
verifications, the crucial point being that 1 − β2

x j
is supported on � j for j = 0, 1.

Since this is completely analogous to the classical case treated in [14] we omit these
verifications here.

We obtain the elementη ∈ K K D(G)(C,AX ) by considering AX as a Hilbert module
over itself together with the operator F1 ∈ L(AX ) = M(AX ) and the left action of C

by scalar multiplication. We have already seen above that F1 is self-adjoint. To check
the remaining properties of a Kasparov module, observe that

K(Cτ (E)⊗̂l2(X)) ∩ M(AX ) ⊂ AX = K(AX )

since AX acts nondegenerately on Cτ (E)⊗̂l2(X). Hence our previous considerations
about the operators Ft ∈ L(Cτ (E)⊗̂l2(X)) show that 1 − F2

1 ∈ K(AX ) and that
F1 ∈ L(AX ) is almost invariant under the action of D(G). �

Let us compute the product η ⊗AX D.

Theorem 5.5 Let D ∈ K K D(G)(AX ,C) and η ∈ K K D(G)(C,AX ) be the Dirac and
dual Dirac elements defined above. Then

η ⊗AX D = id

in K K D(G)(C,C).

Proof Let i : AX → Cτ (E)⊗̂K̂(l2(X)) be the canonical embedding and denote
by [i] ∈ K K D(G)(AX ,Cτ (E)) the corresponding class. Almost by construction, the
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operators Ft ∈ L(Cτ (E)⊗̂l2(X)) for t ∈ [0, 1] define a homotopy between η⊗AX [i]
and γ ⊗C [β]. Hence if [β̂] ∈ K K D(G)(Cτ (E),C) denotes the inverse of the Bott
element, then we obtain

η ⊗AX D = η ⊗AX [i] ⊗Cτ (E) [β̂] = γ ⊗C [β] ⊗Cτ (E) [β̂] = [β] ⊗Cτ (E) [β̂] = id

using Lemma 5.3 and Bott periodicity. �

6 The Baum–Connes conjecture and discrete quantum groups

In this section we first recall some elements of the categorical approach to the Baum–
Connes conjecture developed by Meyer and Nest [18–20]. In particular, we discuss
the formulation of an analogue of the Baum–Connes conjecture for a certain class of
discrete quantum groups proposed in [18]. Using the results obtained in Sect. 5 and
[33] we will then show that free quantum groups satisfy this conjecture.

Let G be a discrete quantum group. The equivariant Kasparov category K K G has as
objects all separable G-C∗-algebras, and K K G(A, B) as the set of morphisms between
two objects A and B.Composition of morphisms is given by the Kasparov product. The
category K K G is triangulated with translation automorphism � : K K G → K K G

given by the suspension �A = C0(R, A) of a G-C∗-algebra A. Every G-equivariant
∗-homomorphism f : A → B induces a diagram of the form

�B �� C f �� A
f �� B

where C f denotes the mapping cone of f. Such diagrams are called mapping cone
triangles. By definition, an exact triangle is a diagram in K K G of the form �Q →
K → E → Q which is isomorphic to a mapping cone triangle.

Associated with the inclusion of the trivial quantum subgroup E ⊂ G we have the
obvious restriction functor resG

E : K K G → K K E = K K and an induction functor
indG

E : K K → K K G . Explicitly, indG
E (A) = C0(G)⊗ A for A ∈ K K with coaction

given by comultiplication on the copy of C0(G).
We consider the following full subcategories of K K G,

T CG = {A ∈ K K G |resG
E (A) = 0 ∈ K K }

T IG = {indG
E (A)|A ∈ K K },

and refer to their objects as trivially contractible and trivially induced G-C∗-algebras,
respectively. If there is no risk of confusion we will write T C and T I instead of T CG

and T IG .

The subcategory T C is localising, and we denote by 〈T I〉 the localising subcategory
generated by T I. It follows from Theorem 3.21 in [18] that the pair of localising
subcategories (〈T I〉, T C) in K K G is complementary. That is, K K G(P, N ) = 0 for
all P ∈ 〈T I〉 and N ∈ T C, and every object A ∈ K K G fits into an exact triangle
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�N �� Ã �� A �� N

with Ã ∈ 〈T I〉 and N ∈ T C.Such a triangle is uniquely determined up to isomorphism
and depends functorially on A. We will call the morphism Ã → A a Dirac element
for A.

The localisation LF of a homological functor F on K K G at T C is given by

LF(A) = F( Ã)

where Ã → A is a Dirac element for A. By construction, there is an obvious map
μA : LF(A) → F(A) for every A ∈ K K G .

In the sequel we write G �f A and G �r A for the full and reduced crossed products
of a G-C∗-algebra A.

Definition 6.1 Let G be a discrete quantum group and consider the functor F(A) =
K∗(G �r A) on K K G . We say that G satisfies the T I-Baum–Connes property with
coefficients in A if the assembly map

μA : LF(A) → F(A)

is an isomorphism. We say that G satisfies the T I-strong Baum–Connes property if
〈T I〉 = K K G .

Clearly the T I-strong Baum–Connes property implies the T I-Baum–Connes
property with coefficients in A for every G-C∗-algebra A. We refer to [19] for the
comparison of Definition 6.1 with the usual formulation of the Baum–Connes conjec-
ture in the case that G is a torsion-free discrete group. The T I-strong Baum–Connes
property is equivalent to the assertion that G has a γ -element and γ = 1 in this case.

In order to obtain the correct formulation of the Baum–Connes conjecture for an
arbitrary discrete group G one has to replace the category T I by the full subcategory
CI ⊂ K K G of compactly induced G-C∗-algebras. Our results below show that for a
free quantum group G the category T I is already sufficient to generate K K G . It is
natural to expect that all free quantum groups are torsion-free in the sense of [18]. For
free orthogonal quantum groups this is verified in [33], but we have not checked the
general case.

Let us briefly discuss some facts from [18,20] that will be needed in the sequel. We
write J for the homological ideal in K K G consisting of all f ∈ K K G(A, B) such
that resG

E ( f ) = 0 ∈ K K (A, B). By definition, J is the kernel of the exact functor
resG

E : K K G → K K . The ideal J is compatible with countable direct sums and has
enough projective objects. The J-projective objects in K K G are precisely the retracts
of trivially induced G-C∗-algebras.

A chain complex

· · · �� Cn+1
dn+1 �� Cn

dn �� Cn−1 �� · · ·

in K K G is J-exact if

123



R. Vergnioux, C. Voigt

· · · �� K K (A,Cn+1)
(dn+1)∗�� K K (A,Cn)

(dn)∗ �� K K (A,Cn−1) �� · · ·

is exact for every A ∈ K K .
A J-projective resolution of A ∈ K K G is a chain complex

· · · �� Pn+1
dn+1 �� Pn

dn �� Pn−1 �� · · · d2 �� P1
d1 �� P0

of J-projective objects in K K G , augmented by a map P0 → A such that the augmented
chain complex is J-exact.

Recall that we will denote by Ĝ the dual compact quantum group of the discrete
quantum group G determined by C r(Ĝ) = C∗

r (G)
cop. Note that this amounts to

switching the comultiplication in the conventions of Kustermans and Vaes [17]. By

definition, the representation ring of Ĝ is the ring R(Ĝ) = K K Ĝ(C,C) with multi-
plication given by Kasparov product. Note that R(Ĝ) has an additive basis indexed
by the irreducible corepresentations of G. For every B ∈ K K G there is a natural
R(Ĝ)-module structure on

K (B) ∼= K (KG ⊗ B) ∼= K K Ĝ(C,G �r B)

induced by Kasparov product.
Let us next record a basic result on induction and restriction for discrete quantum

groups.

Proposition 6.2 Let G be a discrete quantum group and let H ⊂ G be a quantum
subgroup. Then

K K G(indG
H (A), B) ∼= K K H (A, resG

H (B))

for every H-C∗-algebra A and every G-C∗-algebra B.

Proof We describe the unit and counit of this adjunction, using the explicit descrip-
tion of the induced algebra indG

H (A) from Sect. 3. We have an H -equivariant ∗-
homomorphism ηA : A → indG

H (A) given by ηA(a) = α(a) ∈ M(C0(H) ⊗ A) ⊂
M(C0(G)⊗ A). This defines the unit ηA : A → resG

H indG
H (A) of the adjunction.

The counit κB : indG
H resG

H (B)
∼= C0(G/H)� B → B of the adjunction is induced

from the embedding C0(G/H) ⊂ K(l2(G/H)) followed by the D(G)-equivariant
Morita equivalence between K(l2(G/H)) and C. One checks that

indG
H (A)

ind(ηA)�� indG
H resG

H indG
H (A)

κind(A) �� indG
H (A)

is equal to the identity in K K G for any H -C∗-algebra A, using that x ∈ indG
H (A)

is mapped to p[ε] ⊗ x ∈ K(l2(G/H)) ⊗ indG
H (A) under these maps. Similarly the

composition
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resG
H (B)

η(resB )�� resG
H indG

H resG
H (B)

resκ(B) �� resG
H (B)

is the identity in K K H for every G-C∗-algebra B since the minimal projection p[ε] ∈
K(l2(G/H)) is H -invariant and invariant under the adjoint coaction. This yields the
claim. �

Finally, we need a description of the crossed product of homogeneous spaces for
divisible quantum subgroups with respect to the conjugation coaction. Recall that
the conjugation coaction γ : C0(G) → M(C∗

r (G) ⊗ C0(G)) is given by γ ( f ) =
Ŵ ∗(1 ⊗ f )Ŵ where Ŵ = �W ∗� ∈ M(C∗

r (G)⊗ C0(G)).

Lemma 6.3 Let G be a discrete quantum group and let H ⊂ G be a divisible quantum
subgroup. Then there exists a C0(G)cop-colinear ∗-isomorphism

C0(G)
cop

�r C0(G/H) ∼= C0(G)
cop ⊗ C0(G/H)

where the crossed product C0(G)cop
�r C0(G/H) for the conjugation coaction is

equipped with the dual coaction, and on C0(G)cop ⊗ C0(G/H) we consider the
comultiplication on the first tensor factor.

Proof Since we assume H to be divisible we find a central projection p ∈ M(C0(G))
such that multiplication by p yields a ∗-isomorphism from C0(G/H) ⊂ Cb(G) to
pC0(G). Given an H -equivariant ∗-isomorphism C0(G) ∼= C0(G/H)⊗ C0(H), the
projection p corresponds to 1 ⊗ p[ε] where ε ∈ Irr(H) is the trivial corepresenta-
tion. Since p is central, the isomorphism C0(G/H) ∼= pC0(G) commutes with the
conjugation coaction.

We obtain

C0(G)
cop

�r C0(G/H) ∼= [(C0(G)⊗ 1)Ŵ ∗(1 ⊗ C0(G)p)Ŵ ]
∼= [Ŵ (C0(G)⊗ 1)Ŵ ∗(1 ⊗ C0(G)p)]
∼= [�W ∗(1 ⊗ C0(G))W�(1 ⊗ C0(G)p)]
= [�cop(C0(G))(1 ⊗ C0(G)p)]
= [C0(G)⊗ C0(G)p]
∼= C0(G)

cop ⊗ C0(G/H).

It is straightforward to check that these identifications are compatible with the dual
coaction on C0(G)cop

�r C0(G/H) and comultiplication on the first tensor factor in
C0(G)cop ⊗ C0(G/H), respectively. �

Now let G0 and G1 be discrete quantum groups and let G = G0 ∗ G1. In Sect. 5
we constructed the Dirac element D ∈ K K D(G)(AX ,C) using the C∗-algebra AX of
the quantum tree associated to G. It was also shown that AX is K K D(G)-equivalent
to a certain ungraded D(G)-C∗-algebra P. By slight abuse of notation, we will view
D as an element in K K D(G)(P,C) in the sequel.

Lemma 6.4 Let G0,G1 be discrete quantum groups and let G = G0 ∗ G1 be their
free product. The Dirac element D ∈ K K (P,C) is invertible.
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Proof By the definition of P we have an extension

0 �� I0 ⊕ I1 �� P �� �C(�1,C0(G)) �� 0

and using the K K -equivalences between I j and C0(G/G j ) for j = 0, 1 we obtain an
exact sequence

0 ��
�� K1(P) �� K0(C0(G))

∂

��
0 �� K0(P) �� K0(C0(G/G0))⊕ K0(C0(G/G1))

in K -theory.
Using Lemma 3.9 it is easy to check that the morphisms in K K (C0(G),C0(G/G j ))

corresponding to the boundary map ∂ are, up to a sign, induced from the inclusion
homomorphisms C0(G) ∼= C0(G/G j )⊗ C0(G j ) → C0(G/G j )⊗ K(l2(G j )). Here
the first isomorphism is the canonical identification corresponding to the free product
decomposition of G.

Let us write [r ] for the class in K0(C0(G)) corresponding to the irreducible corep-
resentation r ∈ Irr(G) and [τ j (r)] for the class associated to τ j (r) ∈ Irr(G)/Irr(G j )

in K0(C0(G/G j )). Inspecting the definition of the boundary map yields the formula

∂([r ]) =
(

− dim(r)

dim(τ0(r))
[τ0(r)], dim(r)

dim(τ1(r))
[τ1(r)]

)

where dim(τ j (r)) is the size of the matrix block in C0(G/G j ) associated to τ j (r).
In other words, the boundary map ∂ coincides, up to rescaling by dimensions, with
the combinatorial boundary map of the classical Bass–Serre tree Y associated to G,
compare the discussion in Sect. 4.

Using the above formula one checks that ∂ is injective and that the cokernel of ∂
is a free abelian group of rank 1 generated by the class of ([τ0(ε)], 0). Geometrically
this corresponds to the fact that the classical Bass–Serre tree Y has no loops and is
connected, respectively.

As a consequence we obtain K0(P) = Z and K1(P) = 0. Together with The-
orem 5.5 it follows that D induces an isomorphism in K -theory. According to the
universal coefficient theorem this yields the claim. �

The previous lemma can be strengthened by taking into account the action of the
compact dual of G obtained by restriction from the coaction of the Drinfeld double
C r

0(D(G)). In the following lemma we use Baaj–Skandalis duality for S = C0(G)cop

and Ŝ = C∗
r (G). In other words, we work with K K S = K K Gop

and K K Ŝ = K K Ĝop
,

respectively. For information on the Baaj–Skandalis duality isomorphism we refer
to [1,2].

Lemma 6.5 Let G = G0 ∗ G1 be a free product of discrete quantum groups and set

Ŝ = C∗
r (G). Then the Dirac element D ∈ K K Ŝ(P,C) is invertible.
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Proof By Baaj–Skandalis duality the assertion is equivalent to saying that S �r D ∈
K K S(S�r P, S�r C) is invertible where S = C0(G)cop.According to Theorem 5.5 it
suffices in fact to show that the map K K S(S �r P, S �r P) → K K S(S �r P, S �r C)

induced by D is an isomorphism. We have an extension

0 �� S �r (I0 ⊕ I1) �� S �r P �� S �r �C(�1,C0(G)) �� 0

of S-C∗-algebras with equivariant completely positive splitting, and inserting this
extension into the first variable yields a 6-term exact sequence in K K S . According
to Lemma 6.3 we see that S �r I j and S �r �C(�1,C0(G)) are S-equivariantly
isomorphic to algebras of the form S ⊗ B where B ∈ K K is in the bootstrap class.
Due to Proposition 6.2 it therefore suffices to show that S�r D ∈ K K (S�r P, S�r C)

induces an isomorphism in K -theory.
Using Lemma 6.3 we obtain a diagram

S �r (I0 ⊕ I1) ��

∼=
��

S �r P �� S �r �C(�1,C0(G)) ��

∼=
��

�(S �r (I0 ⊕ I1))

∼=
��

S ⊗ (I0 ⊕ I1) �� S ⊗ P �� S ⊗�C(�1,C0(G)) �� �(S ⊗ (I0 ⊕ I1))

in K K S such that the right hand square is commutative and the rows are exact triangles.
Since the category K K S is triangulated there exists an invertible morphism S �r P →
S ⊗ P in K K S completing the above diagram to a morphism of exact triangles. In
particular we obtain a diagram

K0(S �r P) S�r D ��

∼=
��

K0(S �r C)

∼=
��

K0(S ⊗ P) S⊗D �� K0(S ⊗ C)

where the lower horizontal arrow is an isomorphism according to Lemma 6.4. To check
commutativity of this diagram recall that we have a natural R(Ĝ)-module structure on

the K -groups K (S �r B) for any B,where R(Ĝ) ∼= K K Ĝ(C,C) is the representation
ring of Ĝ.A generator of the R(Ĝ)-module K0(S⊗P) is represented by the projection
pε⊗i(pτ0(ε), 0)where pε ∈ S and pτ0(ε) ∈ C0(G/G0) are the projections correspond-
ing to the trivial corepresentation and i : C0(G/G0)⊕ C0(G/G1) → I0 ⊕ I1 → P
is the canonical morphism. Since pτ0(ε) is invariant under the conjugation action
of Cc(G) one finds that the corresponding element pε � i(pτ0(ε), 0) is a gener-
ator of the R(Ĝ)-module K0(S �r P). Under S �r D this element is mapped to
pε ∈ K0(S) = K0(S �r C). Since all maps in the above diagram are R(Ĝ)-linear this
finishes the proof. �

We shall now show that the T I-strong Baum–Connes property is inherited by free
products, compare [22,25].

123



R. Vergnioux, C. Voigt

Theorem 6.6 Let G0 and G1 be discrete quantum groups satisfying the T I-strong
Baum–Connes property and let G = G0 ∗ G1 be their free product. Then G satisfies
the T I-strong Baum–Connes property as well.

Proof Let A ∈ K K G be an arbitrary G-algebra. Using theorem 3.6 in [21] we see
that the braided tensor product P � A is an extension of G-C∗-algebras induced from
G0,G1 and the trivial quantum subgroup. Therefore the T I-strong Baum–Connes
property for G0 and G1 implies that P � A is contained in 〈T IG〉.

It remains to prove that D � A ∈ K K G(P � A, A) is an isomorphism. Due to
Theorem 5.5 it is enough to show that the map K K G(P � A,P � A) → K K G(P �
A, A) induced by D � A is an isomorphism.

By construction of P we have an extension

0 �� I0 � A ⊕ I1 � A �� P � A �� �C(�1,C0(G))� A �� 0

of G-C∗-algebras with equivariant completely positive splitting. Using the six-term
exact sequence in K K -theory and Proposition 6.2 we may thus reduce the problem to
showing that the maps K K G j (B,P � A) → K K G j (B, A) and K K (B,P � A) →
K K (B, A) are isomorphisms for all B in K K G j and K K , respectively. Since G j

satisfies the T I-strong Baum–Connes property, every B ∈ K K G j is contained in
〈T IG j 〉. Hence it is in fact enough to show that K K (B,P � A) → K K (B, A) is
an isomorphism for all B ∈ K K , or equivalently that D � A ∈ K K (P � A, A) is
invertible. However, this follows from Lemma 6.5 and the functorial properties of the
braided tensor product, compare [21]. �
Lemma 6.7 Let G be a discrete quantum group satisfying the T I-strong Baum–
Connes property. If H ⊂ G is a divisible quantum subgroup, then H satisfies the
T I-strong Baum–Connes property as well.

Proof Let A ∈ K K H be given. Since G satisfies the T I-strong Baum–Connes
property we have indG

H (A) ∈ 〈T IG〉 in K K G . The category T IG is generated by
G − C∗-algebras of the form C0(G) ⊗ B for B ∈ K K with coaction given by the
comultiplication of C0(G). Since by assumption H ⊂ G is divisible we have C0(G) =
C0(H)⊗ C0(H\G) as H -C∗-algebras. This implies resG

H (〈T IG〉) ⊂ 〈T IH 〉 and in
particular resG

H indG
H (A) ∈ 〈T I H 〉 in K K H . Using the explicit description of induced

C∗-algebras in Sect. 3 we see that the H -C∗-algebra A is a retract of resG
H indG

H (A).
That is, there are morphisms A → resG

H indG
H (A) and resG

H indG
H (A) → A which com-

pose to the identity on A. Since 〈T I H 〉 is closed under retracts this shows A ∈ 〈T IH 〉
and yields the claim. �

We are now ready to prove the main results of this paper.

Theorem 6.8 Let n > 1 and Q ∈ GLn(C). Then the free unitary quantum group
FU (Q) satisfies the T I-strong Baum–Connes property.

Proof We consider first the case Q ∈ GL2(C), and without loss of generality we may
assume that Q is positive. Then Q can be written in the form

Q = r

(
q 0
0 q−1

)
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for some positive real number r and q ∈ (0, 1], and FU (Q) is isomorphic to FU (P)
where

P =
(

0 q1/2

−q−1/2 0

)

satisfies P P = −1. We remark that the free orthogonal quantum group FO(P) is
isomorphic to the dual of SUq(2).

It is well-known that Z satisfies the T I-strong Baum–Connes property [12], and
according to [33] the same is true for FO(P). Hence due to Theorem 6.6 the free
product FO(P) ∗ Z satisfies the T I-strong Baum–Connes property as well. Using
Proposition 4.3 and Lemma 6.7 we conclude that FU (P) satisfies the T I-strong
Baum–Connes property. This yields the assertion for Q ∈ GL2(C).

Now let Q ∈ GLn(C) be arbitrary. According to Corollary 6.3 in [8] the dual
of FU (Q) is monoidally equivalent to the dual of FU (R) for a suitable matrix R ∈
GL2(C).Hence the claim follows from the invariance of the T I-strong Baum–Connes
property under monoidal equivalence, see Theorem 8.6 in [33]. �

Combining this with Theorem 6.6 and the results in [33] we obtain the following
theorem.

Theorem 6.9 Let G be a free quantum group of the form

G = FU (P1) ∗ · · · ∗ FU (Pk) ∗ FO(Q1) ∗ · · · ∗ FO(Ql)

for matrices Pj ∈ GLmi (C) with mi > 1 for all i and matrices Q j ∈ GLn j (C) with

n j > 2 such that Q j Q j = ±1 for all j. Then G satisfies the T I-strong Baum–Connes
property.

7 K -theory for free quantum groups

In this section we discuss the main applications of our results. We shall establish
an analogue of the Pimsner–Voiculescu exact sequence for free quantum groups and
compute their K -theory. In addition we discuss some consequences concerning idem-
potents in reduced C∗-algebras of free quantum groups and the γ -element studied
in [31].

Let G be a discrete quantum group and let B be a G-C∗-algebra. For s ∈ Irr(G)
we define s∗ ∈ K K (B, B) as the composition

B
β �� C(G)s ⊗ B

� �� B

where the first arrow is obtained by composing the coaction β : B → M(C0(G)⊗ B)
with the projection onto the matrix block corresponding to s inside C0(G).The second
arrow is induced by the Morita equivalence C(G)s ∼= L(Hs) ∼M C. In this way we
obtain a ring homomorphism R(Ĝ) → K K (B, B), where we recall that R(Ĝ) =
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K K Ĝ(C,C) denotes the representation ring of the dual compact quantum group Ĝ.
In particular, the representation ring acts on the K -theory of B, and this action on
K (B) agrees with the action defined in Sect. 6.

We shall now formulate the Pimsner–Voiculescu exact sequence for free quantum
groups.

Theorem 7.1 Let G be a free quantum group of the form

G = FU (P1) ∗ · · · ∗ FU (Pk) ∗ FO(Q1) ∗ · · · ∗ FO(Ql)

for matrices Pj ∈ GLmi (C) with mi > 1 for all i and matrices Q j ∈ GLn j (C) with

n j > 2 such that Q j Q j = ±1 for all j.
Then G is K -amenable, and therefore the natural map

K∗(G �f A) → K∗(G �r A)

is an isomorphism for every G-C∗-algebra A. Moreover there is an exact sequence

⊕2k+l
j=1 K0(A)

σ ��
��

K0(A)
ι∗ �� K0(G �f A)

��
K1(G �f A) �� ι∗

K1(A) �� σ ⊕2k+l
j=1 K1(A)

for the K -theory of the crossed product. Here σ is the map

σ =
k⊕

i=1

((ui )∗ − mi )⊕ ((ui )∗ − mi )⊕
l⊕

j=1

(v j )∗ − n j

where we write ui and v j for the fundamental corepresentations of FU (Pi ) and
FO(Q j ), respectively. In addition ι : A → G �f A denotes the canonical inclu-
sion.

Proof Since full and reduced crossed products agree for trivially induced actions,
Theorem 6.9 implies that G �f A → G �r A induces an isomorphism in K K for every
G-C∗-algebra A, compare [33]. This means that G is K -amenable.

Consider the homological ideal J in K K G given by the kernel of the restriction
functor resG

E : K K G → K K . We shall now construct a J-projective resolution of
length 1 for every G-C∗-algebra A.

Note first that the representation ring R(Ĝ) = K K Ĝ(C,C) can be identified with
the free algebra Z〈u1, u1, . . . , uk, uk, v1, . . . , vl〉 generated by the fundamental corep-
resentations ui of FU (Pi ), their conjugates, and the fundamental corepresentations
v j of FO(Q j ). We may also view R(Ĝ) as the tensor algebra T V over

V =
k⊕

i=1

(Zui ⊕ Zui )⊕
l⊕

j=1

Zv j .
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Note that for B = C0(G) the R(Ĝ)-module structure on K (B) ∼= R(Ĝ) is given
by multiplication, and for B = C this module structure is induced from the homo-
morphism ε : T V → Z given by ε(ui ) = mi = ε(ui ) and ε(v j ) = n j .

For r ∈ Irr(G) we define an element Tr ∈ K K D(G)(C0(G),C0(G)) by

C0(G)
� �� C0(G)⊗ C(G)r

� �� C0(G)

where the first arrow is given by composition of the comultiplication of C0(G) with
the projection onto the matrix block C(G)r ∼= K(Hr ) corresponding to r. The second
morphism is given by the canonical D(G)-equivariant Morita equivalence between
C0(G) ⊗ K(Hr ) ∼= K(C0(G) ⊗ Hr ) and C0(G). It is straightforward to check that
the induced map Tr : K0(C0(G)) → K0(C0(G)) identifies with right multiplication
with r under the identification K0(C0(G)) ∼= R(Ĝ).

Let us consider the diagram

0 �� P1
δ �� P0

λ ��
C

�� 0

in K K D(G) where

P1 =
2k+l⊕

j=1

C0(G), P0 = C0(G)

and the morphisms are defined as follows. The arrow λ : C0(G) → KG � C is given
by the regular representation. Moreover

δ =
k⊕

i=1

(Tui − mi id)⊕ (Tui − mi id)⊕
l⊕

j=1

(Tv j − n j id)

where Tr for r ∈ Irr(G) are the morphisms defined above.
By applying K -theory to the above diagram we obtain the sequence of T V -modules

0 �� T V ⊗ V
d �� T V

ε ��
Z

�� 0

where ε is the augmentation homomorphism from above, and d is given by

d(1 ⊗ ui ) = ui − mi , d(1 ⊗ ui ) = ui − mi , d(1 ⊗ v j ) = v j − n j

on the canonical T V -basis of T V ⊗ V . It is easy to write down a Z-linear contracting

homotopy for this complex. Moreover this homotopy can be lifted to K K Ŝ where
Ŝ = C∗

r (G) since the conjugation coaction is diagonal with respect to the canonical
direct sum decomposition of C0(G), and each matrix block C(G)r for r ∈ Irr(G) is
Ŝ-equivariantly Morita equivalent to C.
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Now let A be a G-C∗-algebra. Then taking braided tensor products yields a sequence

0 �� P1 � A
δ�id �� P0 � A

λ�id ��
C � A �� 0

in K K G which is split exact in K K .Taking into account that C0(G)� A ∼= C0(G)⊗ A
is J-projective and C � A ∼= A, we conclude that the above sequence defines a J-
projective resolution of A. We have thus shown that every object of K K G has a
projective resolution of length 1. Moreover K K G(A, B) = 0 for every A ∈ K K G

and all J-contractible objects B. Indeed, this relation holds for A ∈ T I due to Propo-
sition 6.2, and hence for all objects in K K G = 〈T I〉 according to Theorem 6.9.

Consider the homological functor F defined on K K G with values in abelian groups
given by F(A) = K (G �f A). According to Theorem 4.4 in [20] we obtain a short
exact sequence

0 �� L0 F∗(A) �� K∗(G �f A) �� L1 F∗−1(A) �� 0

for all n. Moreover we have

L0 F∗(A) = coker(F∗(δ) : K∗(A) → K∗(A))
L1 F∗(A) = ker(F∗(δ) : K∗(A) → K∗(A)).

It is easy to check that F∗(δ) identifies with the map σ. We can thus splice the above
short exact sequences together to obtain the desired six-term exact sequence. Finally,
it is straightforward to identify the map K∗(A) → K∗(G �f A) in this sequence with
the map induced by the inclusion. �

Using Theorem 7.1 we may compute the K -groups of free quantum groups. Let us
first explicitly state the result in the unitary case.

Theorem 7.2 Let n > 1 and Q ∈ GLn(C). Then the natural homomorphism
C∗

f (FU (Q)) → C∗
r (FU (Q)) induces an isomorphism in K -theory and

K0(C
∗
f (FU (Q))) = Z, K1(C

∗
f (FU (Q))) = Z ⊕ Z.

These groups are generated by the class of 1 in the even case and the classes of u and
u in the odd case.

Proof Let us abbreviate G = FU (Q). According to Theorem 7.1 the natural map
K∗(C∗

f (G)) → K∗(C∗
r (G)) is an isomorphism. To compute these groups we consider

the projective resolution constructed in the Proof of Theorem 7.1. The resulting long
exact sequence in K -theory takes the form

Z
��

�� K0(C∗
f (G)) �� 0

��
Z

2 �� K1(C∗
f (G)) �� 0
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which yields

K0(C
∗
f (G)) = Z, K1(C

∗
f (G)) = Z ⊕ Z.

Indeed, the Hopf-C∗-algebra C∗
f (G) has a counit, and therefore the upper left hori-

zontal map in the above diagram is an isomorphism. We conclude in particular that
the even K -group K0(C∗

f (G)) is generated by the class of 1.
It remains to determine the generators of K1(C∗

f (G)) = K1(C∗
f (FU (Q))).Assume

first Q Q = ±1 and consider the automorphism τ of C∗
f (G) determined by τ(u) =

QuQ−1. Note that

τ(QuQ−1) = Qτ(u)Q−1 = Q QuQ
−1

Q−1 = u

so that τ is a well-defined ∗-homomorphism such that τ 2 = id . Moreover τ is com-
patible with the comultiplication.

Using τ we obtain for any G-C∗-algebra A a new G-C∗-algebra Aτ̂ by considering
A = Aτ̂ with the coaction ατ̂ (x) = (τ̂ ⊗ id)α(x), where τ̂ is the automorphism of
C0(G)dual to τ.This automorphism can be viewed as an equivariant∗-homomorphism
τ̂ : C0(G) → C0(G)τ̂ . On the level of K -theory we obtain a commutative diagram

0 �� K1(C∗
r (G)) ��

τ∗
��

Z ⊕ Z ��

σ

��

Z
��

id

��

K0(C∗
r (G)) ��

τ∗
��

0

0 �� K1(C∗
r (G)) �� Z ⊕ Z ��

Z
�� K0(C∗

r (G)) �� 0

where σ(k, l) = (l, k) is the flip map. It follows in particular that the elements in
Z ⊕ Z corresponding to u and u are obtained from each other by applying σ, that is,

[u] = (p, q), [u] = (q, p)

for some p, q ∈ Z.

Note that C∗
f (FU (Q)) = C∗

f (FU (|Q|)) where |Q| = (Q∗Q)1/2 is the absolute
value of Q.Using this identification we obtain a ∗-homomorphismρ : C∗

f (FU (Q)) →
C∗

f (Z) by choosing a suitable corner of the generating matrix. More precisely, if u is
the generating matrix of C∗

f (FU (|Q|)) then we may set ρ(u11) = z and ρ(ui j ) = δi j

else. On the level of K1 the map ρ sends [u] to 1 ∈ Z = K1(C∗
f (Z)) and [u] to −1.

Under the canonical projection C∗
f (FU (Q)) → C∗

f (FO(Q)) the classes [u] and [u]
are both mapped to 1 ∈ Z = K1(C∗

f (FO(Q))).
Consider the ∗-homomorphism ρ ⊕ π : C∗

f (FU (Q)) → C∗
f (Z) ⊕ C∗

f (FO(Q)).
The map induced by ρ ⊕ π on the level of K1 may be written as a matrix

A =
(

a b
c d

)
∈ M2(Z).
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If we set

U =
(

p q
q p

)
, M =

(
1 −1
1 1

)

then our above argument shows

AU = M.

In particular det(U ) = p2 − q2 = (p + q)(p − q) divides 2 = det(M).We conclude
that det(U ) = ±1 or det(U ) = ±2. The latter is impossible since either p + q and
p − q are both divisible by two, or none of the factors is. Hence det(U ) = ±1,
and this implies that u and u generate K1(C∗

f (FU (Q)). This yields the claim for Q
satisfying Q Q = ±1, and hence our assertion holds for all quantum groups FU (Q)
with Q ∈ GL2(C).

Now let Q ∈ GLn(C) be an arbitrary matrix. Without loss of generality we may
assume that Q is positive. Then we find P ∈ GL2n(C) satisfying P P ∈ R such that Q
is contained as a matrix block inside P, and an associated surjective ∗-homomorphism
α : C∗

f (P) → C∗
f (Q). Similarly we find a ∗-homomorphism β : C∗

f (FU (Q)) →
C∗

f (FU (R)) where R ∈ M2(C) is a matrix block contained in Q.
By our above results we know that K1(C∗

f (FU (P)) and K1(C∗
f (FU (R))) are gen-

erated by the fundamental unitaries and their conjugates. Moreover, on the level of K1
these generators are preserved under the composition β∗α∗.Hence β∗α∗ = id, and we
conclude that both α∗ and β∗ are invertible. It follows that K1(C∗

f (Q)) is generated
by the fundamental unitary and its conjugate as well. �

Combining Theorem 7.2 with the results in [33] yields the following theorem.

Theorem 7.3 Let G be a free quantum group of the form

G = FU (P1) ∗ · · · ∗ FU (Pk) ∗ FO(Q1) ∗ · · · ∗ FO(Ql)

for matrices Pi ∈ GLmi (C) with mi > 1 for all i and Q j ∈ GLn j (C) with n j > 2
for all j such that Q j Q j = ±1.

Then the K -theory K∗(C∗
f (G)) = K∗(C∗

r (G)) of G is given by

K0(C
∗
f (G)) = Z, K1(C

∗
f (G)) = Z

2k ⊕ Z
l ,

and these groups are generated by the class of 1 in the even case and the canonical
unitaries in the odd case.

Proof We may either proceed as in Theorem 7.2, or apply the K -theory exact sequence
for free products, using induction on the number of factors in G. The case of a single
factor is treated in Theorem 7.2 and [33], respectively. For the induction step we
observe

K0(C
∗
f (H) ∗ C∗

f (K )) = (K0(C
∗
f (H))⊕ K0(C

∗
f (K ))/〈([1],−[1])〉
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and

K1(C
∗
f (H) ∗ C∗

f (K )) = K1(C
∗
f (H))⊕ K1(C

∗
f (K ))

for arbitrary discrete quantum groups H and K , see [10]. The claim on the generators
follows from these identifications and the above mentioned results. �

We shall write FU (n) = FU (1n) and FO(n) = FO(1n) if 1n ∈ GLn(C) is the
identity matrix. As a consequence of Theorem 7.3 we obtain the following result
concerning idempotents in the reduced group C∗-algebras of free quantum groups.
The proof is the same as in the classical case of free groups, see also [33].

Corollary 7.4 Let G be a free quantum group of the form

G = FU (m1) ∗ · · · ∗ FU (mk) ∗ FO(n1) ∗ · · · ∗ FO(nl)

for some integers mi , n j with n j > 2 for all j. Then C∗
r (G) does not contain nontrivial

idempotents.

In [31] an analogue of the Julg–Valette element for free quantum groups is con-
structed. Our results imply that this element is homotopic to the identity, see the
argument in [33].

Corollary 7.5 Let G be a free quantum group of the form

G = FU (P1) ∗ · · · ∗ FU (Pk) ∗ FO(Q1) ∗ · · · ∗ FO(Ql)

for matrices Pi ∈ GLmi (C) and Q j ∈ GLn j (C) with n j > 2 for all j such that

Q j Q j = ±1. Then the Julg–Valette element for G is equal to 1 in K K G(C,C).
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