Problème 2

- I. 1. Montrer que pour tout réel x la série numérique de terme général $\frac{1}{n}Arctan\frac{x}{n}$ est convergente. On pose : $S_n(x) = \sum_{k=1}^n \frac{1}{k}Arctan\frac{x}{k}$ et $f(x) = \sum_{k=1}^{+\infty} \frac{1}{k}Arctan\frac{x}{k}$
 - 2. Montrer que la fonction f ainsi définie est impaire et croissante.sur \mathbb{R} .
 - 3. Montrer que la fonction f est de classe C^1 sur $I\!\!R$.
 - 4. Montrer que : $\lim_{x \to +\infty} f'(x) = 0$
 - 5. Montrer que pour $n \ge 1$ $\frac{\pi}{4} \sum_{k=1}^{n} \frac{1}{k} \le S_n(n) \le f(n)$ En déduire que $\lim_{x \to +\infty} f(x) = +\infty$
- II. On considère la série de fonctions de $I\!\!R$ vers $I\!\!R$, de terme général $f_n(x)=\frac{x}{n^{\frac{3}{2}}+x^2}$ et on note $f=\sum_{n=1}^{+\infty}f_n$ la somme de la série.
 - 1.a. Montrer que cette série converge simplement sur $I\!\!R$.
 - 1.b. Montrer que cette série ne converge pas normalement sur \mathbb{R} .
 - 1.c. Montrer que pour tout réel a strictement positif, cette série converge normalement sur [-a,a].
 - 2. En déduire que f est une fonction continue sur IR.
 - 3. Montrer que f est dérivable sur IR.
- III. On considère la série entière : $\sum_{n=1}^{+\infty} n^2 x^n$.
 - 1. Quel est son rayon de convergence?
 - 2. Calculer la somme de cette série (sous forme d'une fraction rationnelle). Indication : on note f la somme de la série ; f(x) = xg(x) ; calculer le développement en série entière au voisinage de 0 de la primitive G de g, nulle en 0 ; etc. Justifier les calculs.