FEUILLE No 3

Exercice 1. Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . Soit f l'endomorphisme de \mathbb{R}^3 représenté dans \mathcal{B} par

$$A = \left(\begin{array}{ccc} 4 & 0 & 0 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{array}\right).$$

- a. On pose $e_1'=e_2+e_3,\ e_2'=e_1+e_3,\ e_3'=e_1+e_2.$ Écrire la matrice A' de f dans la base \mathcal{B}' .
- b. Calculer A'^n pour tout n.
- c. Écrire la matrice de passage P de \mathcal{B} à \mathcal{B}' et donner une formule pour A^n en fonction de P.
- d. Calculer les coordonnées dans \mathcal{B}' du vecteur $u = e_1 + e_2 + e_3$.
- e. Calculer les coordonnées dans la base canonique du vecteur $f^n(u)$.
- f. Question subsidiaire: Calculer P^{-1} , puis A^n pour tout n.

Exercice 2. Soit f l'endomorphisme de \mathbb{C}^3 dont la matrice dans la base canonique est

$$\left(\begin{array}{ccc}
4 & -5 & 7 \\
1 & -4 & 9 \\
-4 & 0 & 5
\end{array}\right).$$

- a. Calculer le polynôme caractéristique de f.
- b. Montrer que l'endomorphisme f est diagonalisable.

Exercice 3. Considérons la matrice

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}\right).$$

- a. Calculer les valeurs propres de A dans \mathbb{C} .
- b. Montrer sans calcul que $A^4 = I_4$.
- c. Calculer A^n pour tout n.

Exercice 4. Soit $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$. On se propose de chercher les matrices $B \in M_3(\mathbb{R})$ telles que $B^2 = A$.

- a. Déterminer les valeurs propres de A et une matrice P telle que $P^{-1}AP$ soit diagonale.
- b. Soit f l'endomorphisme de \mathbb{R}^3 dont A est la matrice dans la base canonique, et $g \in L(\mathbb{R}^3)$ tel que $g^2 = f$.
 - (i) Montrer que $g \circ f = f \circ g$.
 - (ii) En déduire que les vecteurs propres de f sont aussi des vecteurs propres pour g.
 - (iii) Quelles possibilités a-t-on pour les valeurs propres associées?
- c. Combien l'équation $B^2=A$ a-t-elle de solutions dans $M_3(\mathbb{R})$? Donner ces solutions.

Exercice 5. On considère deux suites (u_n) , (v_n) définies par les valeurs $u_0 = 7$, $v_0 = 4$ et le système de récurrence suivant :

$$\left\{ \begin{array}{lll} u_{n+1} & = & 11u_n - 18v_n \\ v_{n+1} & = & 6u_n - 10v_n. \end{array} \right.$$

On pose $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ pour tout $n \in \mathbb{N}$.

- a. Trouver une matrice $A \in M_2(\mathbb{R})$ telle que le système ci-dessus s'écrive $X_{n+1} = AX_n$.
- b. Trouver une matrice $P \in GL_2(\mathbb{R})$ et une matrice diagonale $D \in M_2(\mathbb{R})$ telles que $A = PDP^{-1}$.

On pose $Y_n = P^{-1}X_n$ et on appelle w_n , x_n ses composantes : $Y_n = P^{-1}X_n = {w_n \choose x_n}$. Dans cet exercice on n'a pas besoin de calculer P^{-1} .

- c. Déterminer w_0 et x_0 en résolvant un système linéaire.
- d. Montrer que la suite (Y_n) vérifie l'équation de récurrence $Y_{n+1} = DY_n$. En déduire deux équations de récurrence simples vérifiées par w_n et x_n .
- e. Calculer u_n et v_n pour tout n.

Exercice 6. Déterminer les suites (u_n) , (v_n) , (w_n) données par $u_0=-3$, $v_0=1$, $w_0=0$ et

$$\begin{cases} u_{n+1} &= -u_n \\ v_{n+1} &= u_n - v_n + w_n \\ w_{n+1} &= 3u_n + 2w_n. \end{cases}$$