FEUILLE Nº 1

Exercice 1.

- a. Trouver l'intersection de la droite (D) d'équation x + y = 5 avec l'hyperbole (H) d'équation xy = 6.
- b. Trouver l'intersection des deux ensembles

$$E = \{(x, y) \in \mathbb{R}^2 \mid 3x + 2y - 1 = 0\}$$
 et $F = \{(x, y) \in \mathbb{R}^2 \mid 2x - 5y + 4 = 0\}.$

c. Montrer qu'on a $A \subset B$ pour les ensembles suivants :

$$A = \{(x, y) \in \mathbb{R}^2 \mid y = x - 1\}, \quad B = \{(x, y) \in \mathbb{R}^2 \mid (-x + 2y + 4)(3x - y + 3) > 0\}.$$

Exercice 2. Déterminer le complémentaire de A = [0, 1] dans E dans les cas suivants :

$$E = \mathbb{R}, E = \mathbb{R}^2, E = \mathbb{R}^3, E = [0, 5] \text{ et } E = [0.5, 2].$$

Exercice 3.

- a. Donner quatre éléments de $[1,2] \times [2,3]$, puis de $[0,1] \times \{4\}$.
- b. Comment s'écrit un élément de $\mathbb{R} \times [0,1]$? de $\mathbb{N} \times \mathbb{R}_+$?
- c. Représenter $[1,2] \times [3,4]$, $([1,3] \times [2,4]) \cup ([2,4] \times [1,3])$ et $([1,3] \times [2,4]) \cap ([2,4] \times [1,3])$.

Exercice 4. Rappelons que l'image directe de $A \subset E$ par $f: E \to F$ est la partie suivante de F:

$$f(A) = \{ y \in F \mid \exists x \in A \ y = f(x) \}.$$

- a. Que vaut f(A) dans le cas $E = F = \mathbb{R}, f(x) = x^2, A = [-0.5, 2]$?
- b. Soit f une application de E vers F et $A, B \subset E$. Montrer que

$$A \subset B \Longrightarrow f(A) \subset f(B), \quad f(A \cup B) = f(A) \cup f(B) \quad \text{et} \quad f(A \cap B) \subset f(A) \cap f(B).$$

c. Grâce à la fonction considérée au a, montrer que la dernière inclusion peut être stricte.

Exercice 5. Rappelons que l'image réciproque de $B \subset F$ par $f: E \to F$ est la partie suivante de E: F

$$f^{-1}(B) = \{x \in E \mid f(x) \in B\}.$$

On considère la fonction $f: \mathbb{R} \to \mathbb{R}, x \mapsto (e^x - 1)^2$.

- a. Tracer le tableau de variation, puis l'allure du graphe de f. On pourra commencer par étudier la fonction $x \mapsto (x-1)^2$
- b. Déterminer $f^{-1}(\{a\})$ pour tout $a \in \mathbb{R}$.
- c. On note I_a l'intervalle compris entre $\frac{1}{4}$ et a, ouvert en $\frac{1}{4}$ et fermé en a. Déterminer $f^{-1}(I_a)$ pour tout $a \in \mathbb{R}$.

Exercice 6. On note E(x) la partie entière de x. Démontrer que $\lim_{x\to +\infty} \frac{\sin x^2}{E(x)} = 0$.

Exercice 7. On considère la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = \sin \frac{1}{x}$ pour $x \neq 0$, et f(0) = 0.

- a. Déterminer $f^{-1}(\{\frac{1}{2}\})$.
- b. Trouver une suite $(x_n)_{n\in\mathbb{N}}$ qui décroît vers 0 et telle que $f(x_n)=\frac{1}{2}$ pour tout n.
- c. En déduire que f n'est pas continue en 0.
- d. Qu'en est-il si on pose $f(0) = \frac{1}{2}$ au lieu de 0?

Exercice 8. Dans les exemples ci-dessous, la fonction f peut-elle être prolongée par continuité en a? Si oui, précisez le prolongement obtenu.

oui, précisez le prolongement obtenu.
$$f_1: \mathbb{R} \setminus \{-1\} \to \mathbb{R}, \quad x \mapsto \frac{1+x^3}{1+x} \quad \text{en} \quad a = -1, \qquad f_2: \mathbb{R} \setminus \{-2,2\} \to \mathbb{R}, \quad x \mapsto \frac{\sqrt{7+x}-3}{x^2-4} \quad \text{en} \quad a = 2,$$

$$f_3: \mathbb{R}^* \to \mathbb{R}, \quad x \mapsto \frac{\tan x}{x} \quad \text{en} \quad a = 0, \qquad \qquad f_4: \mathbb{R}^* \to \mathbb{R}, \quad x \mapsto \frac{1-\cos 2x}{3x^2} \quad \text{en} \quad a = 0,$$

$$f_5: \left] \frac{1}{2}, +\infty \right[\to \mathbb{R}, \quad x \mapsto \frac{\cos(\pi x)}{2x-1} \quad \text{en} \quad a = \frac{1}{2}, \qquad f_6: \mathbb{R}^* \to \mathbb{R}, \quad x \mapsto \frac{\sin x}{x^2} \quad \text{en} \quad a = 0,$$

$$f_7: \mathbb{R}^* \to \mathbb{R}, \quad x \mapsto \frac{x^2+|x|}{x} \quad \text{en} \quad a = 0, \qquad \qquad f_8: \mathbb{R} \setminus \{-3,2\} \to \mathbb{R}, \quad x \mapsto \frac{(x-2)^2}{x^2+x-6} \quad \text{en} \quad a = 2,$$

$$f_9: \mathbb{R} \setminus \{3\} \to \mathbb{R}, \quad x \mapsto \begin{cases} x^2 & \sin x < 3 \\ 2x+3 & \sin x > 3 \end{cases} \quad \text{en} \quad a = 3.$$

Exercice 9. Soit a, b deux réels et f la fonction définie par $f(x) = \begin{cases} x^2 + ax & \text{si} & x \in]-\infty, -1] \\ 2x - 1 & \text{si} & x \in]-1, 1[\\ b(x^2 - 1) & \text{si} & x \in [1, +\infty[$

- a. Peut-on trouver une valeur de a pour laquelle f est continue sur $]-\infty,1[?]$
- b. Peut-on trouver une valeur de b pour laquelle f est continue sur $]-1,+\infty[$?

Exercice 10. Étudier la convergence quand $n \to \infty$ des suites suivantes :

$$x_n = \frac{(-1)^{n-1}}{n}, \quad y_n = \sqrt{n+1} - \sqrt{n}, \quad z_n = \frac{n\sin(n!)}{n^2 + 1},$$
$$u_n = \frac{n^5 + n^3}{n^5 + n^2 + 1}, \quad v_n = \frac{(-1)^n + 4}{2^n}, \quad w_n = (a^n + b^n)^{\frac{1}{n}}.$$

Dans le dernier cas on discutera selon la valeur des réels positifs a, b.

Exercice 11. Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ de terme général $u_n=n$ sin $\left(\frac{1}{n^2}\right)$. On pourra utiliser l'inégalité $|\sin(x)| \le |x|$.

Exercice 12. Soit $u_0 \in]-2, +\infty[$. On pose $u_{n+1} = \sqrt{2 + u_n}$ pour tout $n \in \mathbb{N}$.

- a. Étudier, suivant la valeur de u_0 , la monotonie de la suite (u_n) .
- b. Montrer que dans tous les cas, elle converge, et expliciter sa limite.

Exercice 13. La suite suivante de nombres réels converge-t-elle? Si oui, quelle est sa limite?

$$\sqrt{2}$$
, $\sqrt{2\sqrt{2}}$, $\sqrt{2\sqrt{2\sqrt{2}}}$, ...

Exercice 14. Soit $u_0 \in \mathbb{R}_+^*$. On pose $u_{n+1} = u_n - \frac{u_n}{1 + u_n}$ pour tout $n \in \mathbb{N}$.

- a. Montrer que, pour tout $n \in \mathbb{N}$, u_n est bien défini et $0 < u_{n+1} < u_n$
- b. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers 0.
- b. Montrer que la série de terme général $\frac{u_n}{1+u_n}$ est convergente.
- d. Montrer que, pour tout $n \in \mathbb{N}$, on a :

$$\frac{u_n}{1+u_0} \le \frac{u_n}{1+u_n}.$$

En déduire que la série de terme général u_n est convergente.

Exercice 15. On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et $u_{n+1}=\frac{1}{2}u_n+\frac{14}{2}u_n$

- a. Calculer u_1, u_2, u_3, u_4 .
- b. Démontrer par récurrence que cette suite est croissante, majorée.
- c. En déduire qu'elle converge vers une limite réelle ℓ et calculer ℓ .
- d. Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ définie par $v_n=u_n-\ell$ est géométrique. En déduire explicitement v_n puis u_n .
- e. Déterminer le plus petit $n_0 \in \mathbb{N}$ tel que $n \geq n_0 \Longrightarrow |u_n 7| \leq 10^{-3}$.

Procéder à la même étude pour la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et $u_{n+1}=\frac{1}{2}u_n+\frac{5}{2}$