FICHE D'EXERCICES Nº 4 Polynômes: racines, irréductibilité

On utilise les abréviations suivantes :

- DFI pour « décomposition en facteurs irréductibles » (et unitaires),
- PGCD pour « plus grand commun diviseur » (unitaire).

Exercice 1. Soit $P \in \mathbb{R}[X]$ un polynôme, et R le reste de la division euclidienne de P par $X^2 + 1$.

- a. Montrer que R(i) = P(i).
- b. En déduire que $X^2 + 1$ divise P si et seulement si i est racine de P.
- c. Pour quelles valeurs de $n \in \mathbb{N}$ le polynôme $X^n + 1$ est-il multiple de $X^2 + 1$?
- d. Le polynôme $X^2 + X + 1$ divise-t-il $X^{2004} 1$? $X^{2005} 1$?

Exercice 2. Soit $P = X^6 + X^4$ et $Q = X^{25} - X + 1$.

- a. Montrer sans calcul que les racines communes de P et Q sont exactement les racines de leur PGCD.
- b. Quelles sont les racines de P dans \mathbb{C} ?
- c. Montrer (presque) sans calcul que P et Q sont premiers entre eux.

Exercice 3. Donner la DFI dans $\mathbb{R}[X]$ des polynômes suivants :

$$-P_1 = (X^2 + 10X + 21)(X^2 + 7X + 13)$$

$$-P_2 = X^3 - 8X^2 + 13X$$

$$-P_3 = 2X^3 + X^2 - X - 2$$

$$-P_4 = X^4 + 2X^2 - 3$$

$$-P_4 = X^4 + 2X^2 - 3$$

$$-P_5 = X^4 - 6X^2 + 25$$

$$-P_5 = X^4 - 6X^2 + 25$$

- $P_6 = X^4 - 16X^2 + 100$

Exercice 4. Soit $P \in \mathbb{C}[X]$ un polynôme quelconque.

- a. Montrer que les racines complexes de P(X) X sont aussi racines de P(P(X)) X.
- b. En supposant que P(X) X n'a que des racines simples, en déduire que P(X) X / P(P(X)) X.
- c. Montrer que le polynôme $Q_1 = X^4 + 6X^2 X + 12$ est de la forme P(P(X)) X avec $P = X^2 + a$ et aun réel à déterminer. En déduire la DFI de Q_1 dans $\mathbb{R}[X]$.
- d. Montrer que le résultat de la question b. est valable sans hypothèse sur l'ordre des racines de P(X) X.
- e. Trouver la DFI de $Q_2 = X^4 + X^2/2 X + 5/16$ dans $\mathbb{R}[X]$.

Exercice 5. Soit $P = 2X^4 - 2X^3 + 3X^2 - X + 1$ et $Q = X^4 - X^3 + 3X^2 - 2X + 2$.

- a. Calculer le PGCD de P et Q.
- b. Trouver la DFI dans $\mathbb{R}[X]$ de P et Q. (Utiliser la question précédente.)

Exercice 6. Soit $P = 2X^5 + 5X^4 + 8X^3 + 7X^2 + 4X + 1$.

- a. Calculer le PGCD de P et P'.
- b. Quelles sont les racines communes à P et P'? Quelles sont les racines multiples de P dans \mathbb{C} ?
- c. Montrer que $(X^2 + X + 1)^2$ divise P.
- d. Donner la DFI de P dans $\mathbb{R}[X]$.

Exercice 7. Soit $n \in \mathbb{N}^*$ et $P = \sum_{k=0}^n \frac{X^k}{k!}$.

- a. Calculer P' P.
- b. Montrer que toutes les racines complexes de ${\cal P}$ sont simples.

Exercice 8. Soit $a, b \in \mathbb{R}$ et $P = X^4 + aX^3 + bX^2 + aX + 1$.

- a. On suppose que 1 est racine de P. Montrer que $(X-1)^2$ divise P et calculer le quotient de P par $(X-1)^2$.
- b. On suppose que -1 est racine de P. Montrer que $(X+1)^2$ divise P et calculer le quotient de P par $(X+1)^2$.

Exercice 9. On cherche à déterminer les polynômes $P \in \mathbb{R}[X]$ tels que $P(X^2 + 1) = P(X)^2 + 1$ et P(0) = 0.

- a. Combien valent P(1), P(2), P(5)?
- b. On pose $u_0 = 0$ et $u_{n+1} = u_n^2 + 1$. Montrer que $P(u_n) = u_n$ pour tout $n \in \mathbb{N}$.
- c. En déduire que P = X.

Exercice 10. On cherche à déterminer les polynômes $P \in \mathbb{R}[X]$ non nuls tels que $P(X^2) = P(X)P(X-1)$. On note j la racine troisième de l'unité de partie imaginaire strictement positive.

- a. Déterminer les solutions constantes du problème. On élimine ce cas pour la suite, et on considère une racine complexe z_0 de P.
- b. Montrer que z_0^2 et $(z_0 + 1)^2$ sont racines de P.
- c. En supposant que $|z_0| \neq 0$ et 1, montrer que P admet une infinité de racines.
- d. En déduire que si P est solution du problème on a $|z_0|=1$ ou $z_0=0$.
- e. En déduire qu'on a alors également $|z_0 + 1| = 1$ ou $z_0 + 1 = 0$.
- f. Montrer que si $z_0 = -1$ ou 0, alors 1 est racine de P, ce qui contredit le résultat de la question précédente.
- g. Finalement, quelles sont les valeurs possibles pour z_0 ? En déduire que P peut s'écrire sous la forme $\lambda(X-j)^k(X-j^2)^l$ avec $\lambda\in\mathbb{C}$ et $k,\ l\in\mathbb{N}$.
- h. En reportant dans l'équation de départ, montrer que les solutions du problème sont les polynômes $(X^2 + X + 1)^k$, avec $k \in \mathbb{N}$.

Exercice 11. Soit $P \in \mathbb{C}[X]$ un polynôme tel que XP(X-1) = (X-2)P(X).

- a. Montrer que 0 et 1 sont racines de P.
- b. On suppose que P admet une racine $x \in \mathbb{C}$ non entière.
 - Montrer que x 1 et x + 1 sont aussi racines.
 - Montrer que P admet une infinité de racines.
 - En déduire que P=0.

On suppose maintenant que P est non nul — il ne peut donc pas avoir de racine non entière.

- c. Montrer comme à la question précédente que 0 et 1 sont les seules racines de P.
- d. En déduire que P est de la forme $\alpha X^k(X-1)^l$ avec $\alpha \in \mathbb{C}$ et $k, l \in \mathbb{N}^*$.
- e. Quel est l'ensemble des polynômes $P \in \mathbb{C}[X]$ tels que XP(X-1) = (X-2)P(X)?