Algèbre 3

Exercice 1. Calculer, s'ils existent, les produits AB et BA dans les cas suivants :

$$A_{1} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad B_{1} = \begin{pmatrix} 1 & 2 \\ -1 & 0 \\ 3 & -1 \end{pmatrix};$$

$$A_{2} = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad B_{2} = \begin{pmatrix} 1 & -1 \\ 2 & 4 \\ 0 & -1 \end{pmatrix};$$

$$A_{3} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 3 & 1 & 0 \end{pmatrix}, \quad B_{3} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ -1 & -2 & 4 \end{pmatrix};$$

$$A_{4} = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 4 & -1 \end{pmatrix}, \quad B_{4} = \begin{pmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{pmatrix};$$

$$A_{5} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & -1 \\ 3 & 1 & 0 \end{pmatrix}, \quad B_{5} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 2 \\ -1 & -2 & 0 \end{pmatrix}.$$

$$B_{1}A_{1} = \begin{pmatrix} -1 & 8 \\ -4 & 3 \end{pmatrix}, B_{2}A_{2} = \begin{pmatrix} 2 & -1 \\ -2 & -1 \\ 1 & 3 \end{pmatrix}, A_{3}B_{3} = \begin{pmatrix} -2 & -1 & 3 \\ -2 & -1 & 3 \\ 3 & 4 & -1 \end{pmatrix}, B_{3}A_{3} = \begin{pmatrix} -3 & 1 & 2 \\ 5 & 4 & 1 \\ 13 & 0 & -3 \end{pmatrix}, A_{4}B_{4} = \begin{pmatrix} 5 & 3 \\ 11 & 3 \end{pmatrix}, B_{4}A_{4} = \begin{pmatrix} 1 & 2 & 1 \\ 5 & 8 & 1 \\ 3 & 4 & -1 \end{pmatrix}, A_{5}B_{5} = \begin{pmatrix} 0 & -1 & -3 \\ 2 & 5 & 4 & -1 \\ 3 & 4 & -1 & 1 \end{pmatrix}$$

Exercice 2. Calculer le rang des matrices suivantes :

 $rk(A_1)=3,\ rk(B_1)=3,\ rk(C_1)=3,\ rk(A_2)=3,\ rk(B_2)=3,\ rk(C_2)=2,\ rk(D_2)=3,\ rk(A_3)=3,\ rk(B_3)=2$

Exercice 3. Parmi les matrices suivantes, lesquelles sont inversibles ? (On pourra calculer le rang, utiliser le déterminant...)

$$A = \begin{pmatrix} 3 & -2 \\ 4 & -3 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 2 & 1 \\ -1 & -3 & -1 \\ 2 & 8 & 3 \end{pmatrix}, \quad C = \begin{pmatrix} 4 & 5 & 3 \\ -1 & -1 & -1 \\ -3 & -5 & -2 \end{pmatrix},$$

$$D = \begin{pmatrix} -5 & 14 & 6 \\ -1 & 3 & 1 \\ -2 & 5 & 3 \end{pmatrix}, \quad E = \begin{pmatrix} -1 & 3 & 3 \\ -2 & 4 & 3 \\ 2 & -2 & -1 \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 1 & 3 \\ -1 & 1 & 1 \end{pmatrix}, \quad G = \begin{pmatrix} 1 & 2 & 1 & 2 \\ -2 & -3 & 0 & -5 \\ 4 & 9 & 6 & 7 \\ 1 & -1 & -5 & 5 \end{pmatrix}.$$

Dans le cas où les matrices sont inversibles, déterminer leur inverse à l'aide du pivot de Gauss. $|A| = -1, |B| = 0, |C| = -1, |C| = 0, |E| = -2, |F| = -12, |G| = 0; |A^{-1}| = A, |C^{-1}| = \begin{pmatrix} 3 & 5 & 2 \\ -1 & -1 & -1 \\ -2 & -5 & -1 \end{pmatrix}, |E^{-1}| = \frac{1}{2}\begin{pmatrix} -2 & 3 & 3 \\ -4 & 5 & 3 \\ 4 & -4 & -2 \end{pmatrix}, |F^{-1}| = \frac{1}{12}\begin{pmatrix} 2 & 3 & -7 \\ 4 & 0 & 4 \\ -2 & 3 & 1 \end{pmatrix}.$

Exercice 4. On considère les vecteurs :

$$u_1 = (1, 2, 1, -1), u_2 = (1, 1, 2, 0), u_3 = (0, 1, -1, -1), u_4 = (1, 0, 1, -3).$$

Quel est le rang de cette famille de vecteurs?

Donner une famille libre de vecteurs extraite de (u_1, u_2, u_3, u_4) .

Exercice 5. On considère les vecteurs :

$$u_1 = (1, 2, 0, 1), \ u_2 = (0, 0, 2, 2), \ u_3 = (2, 4, 2, 4), \ u_4 = (3, 6, 0, 3).$$

Quel est le rang de cette famille de vecteurs?

Donner une famille libre de vecteurs extraite de (u_1, u_2, u_3, u_4) .

Exercice 6. On considère la matrice $A = \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

- a. Calculer $A^2 3A + 2I_2$.
- b. En déduire que A est inversible et calculer son inverse.

$$A^{-1} = \frac{1}{2} \left(\begin{array}{cc} 4 & 2 \\ -3 & -1 \end{array} \right)$$

Exercice 7. On considère la matrice identité $I \in M_3(\mathbb{R})$ et la matrice

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).$$

Calculer A^2 en fonction de A et I. En déduire que A est inversible et déterminer A^{-1} .

 $A^2 = A + 2I$

Exercice 8. (examen 2008) On considère la matrice

$$A = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & -4 \end{array}\right).$$

Montrer que A est inversible et déterminer A^{-1} .

 $\left(\begin{array}{cccc}
5 & -7 & 3 \\
-3 & 5 & -2 \\
2 & -3 & 1
\end{array}\right)$

Exercice 9. On considère les matrices A et P suivantes :

$$A = \begin{pmatrix} 4 & -3 & 9 \\ -3 & 4 & -9 \\ -3 & 3 & -8 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 3 & 1 \\ 0 & 1 & 1 \end{pmatrix}.$$

a. Démontrer que la matrice P est inversible et calculer P^{-1} .

$$P^{-1} = \left(\begin{array}{ccc} 2 & -1 & 3 \\ -1 & 1 & -2 \\ 1 & -1 & 3 \end{array} \right)$$

D = diag(1, 1, -2)

- b. On pose $D = P^{-1}AP$. Calculer D.
- c. Pour tout entier $n \in \mathbb{N}$, calculer D^n .
- d. En déduire A^n pour tout n.

Exercice 10. Soit \mathcal{B} la base canonique de \mathbb{R}^3 .

On considère l'endomorphisme f de \mathbb{R}^3 dont la matrice dans la base \mathcal{B} est :

$$A = \left(\begin{array}{rrr} -3 & 1 & 4 \\ 0 & 2 & 0 \\ -2 & 1 & 3 \end{array}\right).$$

- a. Si u = (x, y, z), calculer f(u).
- b. Soient $v_1 = (1, 0, 1), v_2 = (1, 1, 1), v_3 = (2, 0, 1)$. Montrer que la famille $\mathcal{U} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- c. Déterminer la matrice de f dans la base \mathcal{U} . (On calculera $f(v_1), f(v_2), f(v_3)$.)

Exercice 11. Soit f l'application linéaire définie de \mathbb{R}^5 dans \mathbb{R}^2 par :

$$f(x_1, x_2, x_3, x_4, x_5) = (x_1 + x_2 - x_3 + x_4 - x_5, x_1 + x_2 - x_3 + x_4 - x_5).$$

- a. Calculer le rang de f et la dimension de Ker f.
- b. Déterminer la matrice de f par rapport aux bases canoniques de \mathbb{R}^5 et \mathbb{R}^2 .
- c. Déterminer $\operatorname{Ker} f$.

Exercice 12. On considère l'endomorphisme f de \mathbb{R}^4 dont la matrice dans la base canonique est

$$A = \left(\begin{array}{rrrr} 3 & 1 & 1 & -1 \\ 1 & 3 & -1 & 1 \\ 1 & -1 & 3 & 1 \\ -1 & 1 & 1 & 3 \end{array}\right).$$

- a. Calculer f(x, y, z, t) pour tout $(x, y, z, t) \in \mathbb{R}^4$.
- b. On considère les vecteurs :

$$e'_1 = e_1 + e_2 + e_3 + e_4, \quad e'_2 = e_1 + e_2 - e_3 - e_4,$$

 $e'_3 = e_1 - e_2 + e_3 - e_4, \quad e'_4 = e_1 - e_2 - e_3 + e_4.$

- (i) Écrire la matrice de passage P de la base canonique vers $\mathcal{E}'=(e_1',e_2',e_3',e_4')$.
- (ii) Calculer P^2 et en déduire P^{-1} .

 $P^2 = 4$

- (iii) Montrer que \mathcal{E}' est une base de \mathbb{R}^4 .
- c. Déterminer la matrice de f dans la base \mathcal{E}' .

diag(4,4,4,0)

d. En déduire Ker f et Im f.

Exercice 13. Soit (e_1, e_2, e_3) une base de E et f un endomomorphisme de E caractérisé par :

$$f(e_1) = e_1 + e_2 - e_3$$
, $f(e_2) = e_1 + e_2 + 2e_3$, $f(e_1) = 2e_1 + 2e_2 + 3e_3$.

- a. Écrire la matrice de f dans la base (e_1, e_2, e_3) .
- b. En déduire f(u) où u = (x, y, z).
- c. Déterminer $\operatorname{Ker} f$ et $\operatorname{Im} f$.

Exercice 14. On considère l'application linéaire f de \mathbb{R}^3 dans \mathbb{R}^3 définie par f(x,y,z)=(x+y,2x-y+z,x+z).

- a. Écrire la matrice M de cette application linéaire dans la base canonique \mathcal{B} de \mathbb{R}^3 .
- b. Calculer f(1,2,3) de deux manières : en utilisant la définition ou en utilisant la matrice.
- c. Déterminer une base de $\operatorname{Ker} f$ et une base de $\operatorname{Im} f$.
- d. Soient $v_1 = (1, 1, 0), v_2 = (1, 2, 1), v_3 = (2, 0, 1)$. Montrer que la famille $\mathcal{U} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- e. Calculer $f(u_1)$, $f(u_2)$ et $f(u_3)$ en fonction des vecteurs de \mathcal{U} .
- f. Écrire la matrice B de f dans la base \mathcal{U} .
- g. Retrouver cette matrice en utilisant les formules de changement de base.

Exercice 15. (examen, session 1, 2011) Soit $E = \mathbb{R}^3$. On pose, pour tout $u = (x, y, z) \in E$:

$$f(u) = (x + z, 2x - y + z, -x + y - z).$$

- a. (i) Montrer que f est une application linéaire de E dans E.
 - (ii) On pose $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$, et $e_3 = (0, 0, 1)$. Quelle est la matrice de f dans la base $\mathcal{E} = (e_1, e_2, e_3)$?
- b. Montrer que l'application f est bijective. (On justifiera le résultat et on expliquera la méthode choisie.)
- c. Donner une expression de $f^{-1}(a, b, c)$.

Exercice 16. Soit $\mathcal{E} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 . On considère l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^4 définie par :

$$f(e_1) = e_1 + e_2 + e_3 + e_4,$$

$$f(e_2) = e_1 - e_2 + e_3 - e_4,$$

$$f(e_3) = -e_1 + e_2 - e_3 + e_4,$$

$$f(e_4) = e_1 + e_2 - e_3 - e_4.$$

- a. Déterminer la matrice A de f dans la base \mathcal{E} . Calculer f(x, y, z, t).
- b. f est-elle injective, surjective?
- c. Montrer que $v_1 = e_2 + e_3$ est une base de Ker f. En déduire dim Im f. Montrer que $f(e_1), f(e_3), f(e_4)$ est une base de Im f.
- d. Montrer que $\mathbb{R}^4 = \operatorname{Ker} f \oplus \operatorname{Im} f$.
- e. Montrer que les vecteurs $v_2 = f(e_1)$, $v_3 = f(e_3)$, $v_4 = f(e_4)$ forment une base de Im f.
- f. Montrer que $\mathcal{V} = (v_1, v_2, v_3, v_4)$ est une base de \mathbb{R}^4 .

Écrire la matrice de f dans la base \mathcal{V} .

$\left(\begin{array}{ccccc} 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & -2 & -2 \\ 0 & 1 & 1 & -1 \end{array}\right)$

Exercice 17.

- a. Soient $u_1=(4,3,-2)$, $u_2=(4,0,-1)$, $u_3=(2,1,0)$. Montrer que (u_1,u_2,u_3) est une base de \mathbb{R}^3 . Donner la matrice de passage de la base canonique (e_1,e_2,e_3) à (u_1,u_2,u_3) ainsi que la matrice de passage de (u_1,u_2,u_3) à la base canonique.
- b. Soient $u_1 = (1,0,0)$, $u_2 = (1,-1,0)$, $u_3 = (1,1,1)$ et $v_1 = (0,1,1)$, $v_2 = (1,0,1)$, $u_3 = (1,1,0)$. Montrer que (u_1,u_2,u_3) et (v_1,v_2,v_3) sont des bases de \mathbb{R}^3 . Donner les matrices de passage d'une base à l'autre.

Exercice 18. Soit E un espace vectoriel de dimension 3 sur \mathbb{R} et soit (e_1, e_2, e_3) une base de E. Soit f l'endomorphisme de E dont la matrice dans la base (e_1, e_2, e_3) est :

$$A = \left(\begin{array}{rrr} 1 & 2 & -2 \\ 2 & 1 & -2 \\ 2 & 2 & -3 \end{array}\right).$$

- a. Montrer que A est inversible (sans calculer A^{-1}). Calculer A^2 et en déduire A^{-1} .
- b. On considère la famille (v_1, v_2, v_3) avec $v_1 = e_1 + e_2 + e_3$, $v_2 = e_1 e_2$, $v_3 = e_2 + e_3$.
 - (i) Montrer que (v_1, v_2, v_3) est une base de E.
 - (ii) Déterminer la matrice de passage P de la base (e_1, e_2, e_3) à la base (v_1, v_2, v_3) .
 - (iii) Déterminer la matrice de l'endomorphisme f dans la base (v_1, v_2, v_3)
- c. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 19. Soit $\mathcal{E} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 . On considère : $v_1 = 2e_1 + 3e_2$, $v_2 = -e_1 - e_2 + e_3$ et $v_3 = 2e_1 + 2e_2 + e_3$.

- a. Montrer que $\mathcal{B} = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 .
- b. Quelle est la matrice de passage de \mathcal{E} à \mathcal{B} ?
- c. Quelle est la matrice de passage de \mathcal{B} à \mathcal{E} ?

$$\frac{1}{3} \left(\begin{array}{cccc} -3 & 3 & 0 \\ -3 & 2 & 2 \\ 3 & -2 & 1 \end{array} \right)$$

- d. Soient $w = e_1 + 4e_2 3e_3$. Quelles sont les coordonnées de w dans la base \mathcal{E} ? dans la base \mathcal{B} ? $w = \frac{1}{3}(9v_1 v_2 8v_3)$
- e. Soit φ l'endomorphisme de \mathbb{R}^3 déterminé par $\varphi(v_1) = 2v_1$, $\varphi(v_1) = 0$, $\varphi(v_1) = -v_1$. Quelle est la matrice de φ dans la base \mathcal{B} ? dans la base \mathcal{E} ?

Quel est le rang de φ ?

$$A = \frac{1}{3} \left(\begin{array}{ccc} -18 & 16 & -2 \\ -24 & 22 & -2 \\ -3 & 2 & -1 \end{array} \right)$$

Exercice 20. On pose $E = \mathbb{R}^4$. Soit f l'application linéaire de E dans E dont la matrice dans la base canonique \mathcal{E}

$$A = \left(\begin{array}{rrrr} 2 & -4 & 8 & -6 \\ 1 & -2 & 7 & -6 \\ 1 & -2 & 5 & -4 \\ 1 & -2 & 3 & -2 \end{array}\right).$$

- a. Déterminer le rang de la matrice A.
- b. On pose $u_1 = (1, 1, 1, 1)$ et $u_3 = (1, 0, -1, -1)$ Calculer $f(u_1)$ et $f(u_3)$.

Montrer que u_1 et u_3 forment une base de Ker f.

- c. Soit $F = \{u \in E, f(u) = 2u\}.$
 - (i) Sans déterminer F, montrer que F est un sous-espace vectoriel de E.
 - (ii) Déterminer F. On en donnera une base.
- d. On pose $u_2 = (2, 1, 1, 1)$ et $u_4 = (1, 2, 1, 0)$.
 - (i) Montrer que la famille $\mathcal{U} = (u_1, u_2, u_3, u_4)$ est une base de E. On expliquera la méthode choisie pour cette démonstration.
 - (ii) Calculer $f(u_2)$ et $f(u_4)$. En déduire que $u_2 \in \text{Im } f$ et $u_4 \in \text{Im } f$. En déduire que (u_2, u_4) est une base de Im f.
 - (iii) Déterminer la matrice B de f dans la base \mathcal{U} .

diag(0,1,0,2)

Exercice 21. On pose $E = \mathbb{R}^4$. Soit f l'application linéaire de E dans E dont la matrice dans la base canonique \mathcal{E} est

$$A = \left(\begin{array}{rrrr} 1 & 0 & -1 & 1\\ 1 & 6 & 5 & -11\\ -1 & 3 & 4 & -7\\ 0 & -3 & 3 & -6 \end{array}\right).$$

- a. Déterminer le rang de la matrice A. L'application linéaire f est-elle injective, surjective, bijective? Justifier vos réponses.
- b. On pose $u_1 = (1, 0, 2, 1)$ et $u_2 = (0, 1, 1, 1)$. Calculer $f(u_1)$ et $f(u_2)$. Que peut-on en déduire? Donner une base de Ker f.
- c. On pose $u_3 = (1, 1, -1, 0)$ et $u_4 = (0, 2, 1, 1)$.
 - (i) Montrer que la famille $\mathcal{U} = (u_1, u_2, u_3, u_4)$ est une base de E. On expliquera la méthode choisie pour cette démonstration.
 - (ii) Calculer $f(u_3)$ et $f(u_4)$. En déduire que $u_3 \in \text{Im } f$ et $u_4 \in \text{Im } f$. En déduire que (u_3, u_4) est une base de Im f.
 - (iii) Déterminer la matrice B de f dans la base \mathcal{U} .

Exercice 22. On note $\mathcal{B}_{can} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 . On considère l'endomorphisme $f : \mathbb{R}^4 \to \mathbb{R}^4$ donné par l'expression

$$f(x, y, z, t) = (3x + 3y + 6z - 3t, x - 2y + 3z + 2t, -x - y - 2z + t, x - 4y + 3z + 4t).$$

- a. Calculer $f(e_1)$, $f(e_2)$, $f(e_3)$ et $f(e_4)$. Écrire la matrice A de f dans la base \mathcal{B}_{can} .
- b. Calculer $\det A$. L'endomorphisme f est-il bijectif?

 $\det A \,=\, 0$

- c. Montrer que Ker f est une droite (c'est à dire un espace vectoriel de dimension 1) et déterminer un vecteur u_1 qui engendre Ker f.
- d. On pose $u_2=(-2,-2,1,-2), u_3=(-3,0,1,0)$ et $u_4=(-3,1,1,2)$. Montrer que $\mathcal{C}=(u_1,u_2,u_3,u_4)$ est une base de \mathbb{R}^3 .
- e. Calculer la matrice B de f dans la base C, sans utiliser la formule de changement de base. $f(u_1) = u_2$, $f(u_2) = 0$ $f(u_3) = u_3$, $f(u_4) = 2u_4$
- f. Ecrire la matrice de passage P de \mathcal{B}_{can} à \mathcal{C} . Calculer son inverse P^{-1} . $P^{-1} = \begin{pmatrix} 2 & 2 & 2 & 6 & -1 \\ 1 & 0 & 3 & 0 \\ -1 & 1 & -2 & -1 \\ 0 & -1 & 0 & 1 \end{pmatrix}$
- g. Rappeler la formule de changement de base permettant d'exprimer B en fonction de A et P. à l'aide de la formule, vérifier le calcul de la question 5.
- h. On pose $g = f \circ f$.
 - (i) Montrer sans calcul que $u_1 \in \text{Ker } g$.
 - (ii) Calculer B^2 . En déduire une base de Ker q et une base de Im q.

Exercice 23. (examen, session 2, 2012) On note $\mathcal{B}_{can}=(e_1,e_2,e_3,e_4)$ la base canonique de \mathbb{R}^4 . On considère l'endomorphisme $f:\mathbb{R}^4\to\mathbb{R}^4$ donné par sa matrice dans la base canonique :

$$A = \operatorname{Mat}(f; \mathcal{B}_{can}, \mathcal{B}_{can}) = \begin{pmatrix} 1 & 0 & -1 & 0 \\ -1 & -2 & -1 & -2 \\ 0 & -2 & -3 & -2 \\ 1 & 6 & 7 & 6 \end{pmatrix}.$$

- a. Donner l'expression de f(x, y, z, t) en fonction de x, y, z et t.
- b. Calculer le déterminant de A. L'endomorphisme f est-il bijectif?
- c. On pose $u_1 = (0, 1, 0, -1)$.

Montrer que Kerf est engendré par u_1 et déterminer le rang de f.

- d. On pose $u_2 = (2, 3, 2, -6)$, $u_3 = (2, 0, 1, -2)$ et $u_4 = (1, -1, 0, 1)$. Montrer que $\mathcal{C} = (u_1, u_2, u_3, u_4)$ est une base de \mathbb{R}^4 .
- e. Calculer la matrice B de f dans la base C, sans utiliser la formule de changement de base.
- f. Ecrire la matrice de passage P de \mathcal{B}_{can} à \mathcal{C} . Calculer son inverse P^{-1} . Rappeler la formule permettant d'exprimer B en fonction de A et P. On ne demande pas de vérifier la validité de la formule dans ce cas.
- g. Calculer la matrice $B^2 2B + 1$.
- h. Sans nouveau calcul, en déduire une base de $Ker((f-id) \circ (f-id))$.

Exercice 24. Soit f l'application linéaire de \mathbb{R}^4 dans \mathbb{R}^4 dont la matrice dans la base canonique est

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -1 & 5 \\ 1 & -1 & 7 & -7 \\ 1 & 5 & -7 & 13 \end{pmatrix}.$$

- a. Déterminer le rang de A.
- b. L'application linéaire f est-elle injective, surjective, bijective? Justifier vos réponses.
- c. Que peut-on dire de $\operatorname{Im} f$ et de $\operatorname{Ker} f$? On donnera la dimension de $\operatorname{Im} f$ et de $\operatorname{Ker} f$.

Exercice 25. Soit $E = \mathbb{R}^4$. On pose, pour tout $u = (x, y, z, t) \in E$, f(u) = (x + 2y, 2x + y, z + 2t, 2z + t).

- a. (i) Montrer que f est une application linéaire de E dans E.
 - (ii) On pose $e_1 = (1, 0, 0, 0)$, $e_2 = (0, 1, 0, 0)$, $e_3 = (0, 0, 1, 0)$ et $e_4 = (0, 0, 0, 1)$. Quelle est la matrice de f dans la base $\mathcal{E} = (e_1, e_2, e_3, e_4)$?
- b. L'application f est-elle bijective? On justifiera le résultat et on expliquera la méthode choisie.
- c. On pose $u_1 = (1, -1, 0, 0), u_2 = (0, 0, 1, -1), u_3 = (1, 1, 0, 0)$ et $u_4 = (0, 0, 1, 1)$.
 - (i) Montrer que le système $\mathcal{U} = (u_1, u_2, u_3, u_4)$ est une base de E.
 - (ii) Déterminer la matrice B de l'application f dans la base \mathcal{U} .
- d. On désigne par P la matrice de passage de la base \mathcal{E} à la base \mathcal{U} .
 - (i) Déterminer P.
 - (ii) Déterminer P^{-1} .
 - (iii) Quelle relation y-a-t-il entre les matrices A, B, P et P^{-1} ?
 - (iv) En déduire A^n pour tout $n \in \mathbb{N}$.

Exercice 26. (devoir 2003) On considère l'application f définie de \mathbb{R}^3 dans \mathbb{R}^3 par

$$f(x, y, z) = (x - 15y - 9z, -2x - 6y - 6z, 3x + 15y + 13z).$$

- a. Montrer que f est une application linéaire.
- b. Écrire la matrice A de f dans la base canonique de \mathbb{R}^3 .
- c. Calculer det A. En déduire que Ker $f \neq \{0\}$ et que Im $f \neq \mathbb{R}^3$.
- d. Montrer de deux façons différentes que $f \circ f = 4f$. En déduire que si $v \in \text{Im } f$ alors f(v) = 4v.
- e. Montrer que $\operatorname{Ker} f \cap \operatorname{Im} f = \{0\}.$

En déduire que Ker f et Im f sont des sous-espaces supplémentaires de \mathbb{R}^3 .

f. Montrer qu'il existe une base dans laquelle la matrice de f est diagonale avec soit des 0 soit des 4 sur la diagonale.

Exercice 27. On considère l'application f définie de \mathbb{R}^4 dans \mathbb{R}^4 par :

$$f(x_1, x_2, x_3, x_4) = (x_1 + x_2 + x_3 + x_4, 3x_1 - x_2 + x_3 + x_4, 3x_1 - x_2 + x_3 + x_4, 3x_1 - x_2 - x_3 + 3x_4).$$

- a. Montrer que f est linéaire.
- b. Soit $\mathcal{E} = (e_1, e_2, e_3, e_4)$ la base canonique de \mathbb{R}^4 . Déterminer la matrice A de f dans la base canonique.
- c. Calculer le rang de f. L'application f est-elle surjective?
- d. Calculer $\dim \operatorname{Ker} f$.
- e. Soit $\mathcal{B} = (u_1, u_2, u_3, u_4)$ la famille de vecteurs définie par :

$$u_1 = e_1 + e_2 + e_3 + e_4$$
, $u_2 = e_1 + e_2 + e_3 - e_4$, $u_3 = e_1 + e_2 - e_3 - e_4$, $u_4 = e_1 - e_2 - e_3 - e_4$.

Montrer que \mathcal{B} est une base de \mathbb{R}^4 . Quelle est la matrice de passage P de la base \mathcal{E} à la base \mathcal{B} ?

- f. Écrire les vecteurs (e_1, e_2, e_3, e_4) en fonction des vecteurs (u_1, u_2, u_3, u_4) . En déduire P^{-1} .
- g. Déterminer la matrice de f dans la base \mathcal{B} .
- h. Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 28. Soit f l'application linéaire définie de \mathbb{R}^3 dans \mathbb{R}^3 par f(x,y,z)=(5x-y+2z,-x+5y+2z,2x+2y+2z). (On admettra que f est une application linéaire.)

- a Déterminer $f(e_1), f(e_2), f(e_3)$.
 - Donner la matrice A de f dans la base canonique.
- b. Calculer det A. L'application f est-elle bijective?
- Déterminer $\operatorname{Ker} f$: on en donnera une base et on vérifiera que $\dim \operatorname{Ker} f = 1$.
- c. Quelle est la dimension de $\operatorname{Im} f$?
 - On pose $v_1 = (5, -1, 2)$ et $v_2 = (2, 2, 2)$. Montrer que v_1 et v_2 forment une base de Im f.
- d. On pose u = (1, 1, -2), v = (1, 1, 1), w = (2, 0, 1).
 - Montrer que $\mathcal{U} = (u, v, w)$ est une base de \mathbb{R}^3 .
 - Donner la matrice de passage P de la base canonique à la base \mathcal{U} . Calculer P^{-1} .
 - Calculer la matrice A' de f dans la base \mathcal{U} .

Exercice 29. Soit \mathbb{R}^4 muni de sa base canonique $\mathcal{E} = (e_1, e_2, e_3, e_4)$ où $e_1 = (1, 0, 0, 0), e_2 = (0, 1, 0, 0), e_3 = (0, 0, 1, 0), e_4 = (0, 0, 0, 1)$. Soit $f : \mathbb{R}^4 \to \mathbb{R}^4$ l'application linéaire dont la matrice dans la base canonique est :

$$A = \left(\begin{array}{cccc} 2 & 1 & -4 & -1 \\ 0 & 4 & 0 & 0 \\ -1 & \frac{1}{2} & 2 & 2 \\ 0 & 0 & 0 & 3 \end{array}\right).$$

- a. Soit $x \in \mathbb{R}^4$ un vecteur dont les coordonnées dans la base \mathcal{E} sont (x_1, x_2, x_3, x_4) . En utilisant la matrice A, déterminer les coordonnées de f(x) dans la base \mathcal{E} .
- b. Déterminer le rang r de f et la dimension de Ker f.
- c. L'application f est-elle injective? surjective? bijective?
- d. Déterminer une base de $\operatorname{Ker} f$.
- e. Donner une famille génératrice de $\operatorname{Im} f$ et en déduire une base.
- f. On considère la famille de vecteurs (u_1, u_2, u_3, u_4) où :

$$u_1 = (2, 0, -1, 0), \quad u_2 = (0, 4, 1, 0),$$

 $u_3 = (3, 0, -1, 1), \quad u_4 = (2, 0, 1, 0).$

- (i) Calculer $f(u_1)$, $f(u_2)$, $f(u_3)$ et $f(u_4)$.
- (ii) Montrer que $\mathcal{E}' = (u_1, u_2, u_3, u_4)$ forme une base de \mathbb{R}^4 .
- (iii) Donner la matrice de passage P de la base \mathcal{E} à la base \mathcal{E}' .
- (iv) Donner la matrice A' de f dans la base \mathcal{E}' .

Exercice 30. Calculer le déterminant des matrices suivantes. En déduire lesquelles sont inversibles. |A| = -2, |B| = -3, |C| = |D| = |F| = 0, $|E| = a^2c - a^2b - ab^2 + b^2c + abc - c^3$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ -1 & 1 & -1 \\ 1 & -1 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & -1 & -2 \\ -1 & 1 & 2 \\ 2 & 1 & 1 \end{pmatrix},$$

$$D = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad E = \begin{pmatrix} a & b & c \\ b & c & b \\ c & a & a \end{pmatrix}, \quad F = \begin{pmatrix} 1 & 0 & 2 & 4 \\ 1 & 1 & -1 & 1 \\ -1 & 1 & 3 & 1 \\ 1 & 2 & 1 & 3 \end{pmatrix}.$$

Exercice 31. On considère l'endomorphisme $f: \mathbb{R}^3 \to \mathbb{R}^3$ donné par la matrice suivante dans la base canonique :

$$A = \left(\begin{array}{rrr} -5 & 9 & -8 \\ 2 & -3 & 3 \\ 5 & -9 & 8 \end{array} \right).$$

a. Montrer que les vecteurs suivants forment une base de \mathbb{R}^3 :

$$u_1 = (3, -1, -3), \quad u_2 = (1, 0, -1), \quad u_3 = (0, -1, 1).$$

- b. Écrire la matrice B de f dans la base (u_1, u_2, u_3) .
- c. Calculer B^2 et B^3 .
- d. Montrer qu'on a $A^n = 0$ pour tout $n \ge 3$.

Exercice 32. On considère l'endomorphisme $f: \mathbb{R}^3 \to \mathbb{R}^3$ donné par

$$f(x,y,z) = (4x + 4y + z, -3x - 3y - z, -3x - 4y).$$

On admet que les vecteurs suivants forment une base de \mathbb{R}^3 :

$$u_1 = (-3, 2, 1), \quad u_2 = (-2, 1, 1), \quad u_3 = (-3, 2, 2).$$

- a. Écrire la matrice A de f dans la base canonique.
- b. Écrire la matrice B de f dans la base (u_1, u_2, u_3) .
- c. Calculer B^2 . Que peut-on en déduire pour A^2 ?
- d. L'endomorphisme f est-il bijectif?
- e. Sans nouveau calcul, donner l'expression de A^n pour tout n. On pourra distinguer deux cas.

lignes: 0, 1, -6; 0, 0, 1; 0, 0, 0

 $B^3 = 0$

lignes : 1, 0, 0; 0, 0, 1; 0, 1, 0

 $B^2 = ...$