SUITES DE FONCTIONS

Exercice 1. Déterminer la limite simple de la suite des fonctions suivantes : g(x) = 1 sur

$$g(x) = 1 \text{ sur } [-1, 1], g(-1) = 0, g(x) = x \text{ sinon}$$

$$f_n: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1 + x^{2n+1}}{1 + x^{2n}}.$$

La limite est-elle uniforme?

Exercice 2. Déterminer la limite simple de la suite des fonctions suivantes :

g(x) = x

$$f_n: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{2x + n^2 x^3}{1 + n^2 x^2}.$$

La limite est-elle uniforme?

 $\|f_n\,-\,g\|\,=\,1/2n$

Exercice 3. On considère les fonctions

$$f_n: \mathbb{R}_+ \to \mathbb{R}, \quad x \mapsto \frac{nx}{1 + n^2 x^2}.$$

- a. Déterminer la limite simple g de la suite de fonctions $(f_n)_n$.
- b. Montrer que pour tout n et tout x > 0 on a $|f_n(x)| \le 1/nx$.
- c. On fixe un réel a > 0. Montrer que la suite $(f_n)_n$ converge uniformément vers g sur $[a, +\infty[$.
- d. La suite de fonctions $(f_n)_n$ converge-t-elle uniformément vers g sur \mathbb{R}_+ ?

 $f_n(1/n) = 1/2$

Exercice 4. Soit $f: \mathbb{R}_+ \to \mathbb{R}_+$ une fonction continue, non identiquement nulle, telle que f(0) = 0 et $\lim_{x \to +\infty} f(x) = 0$. Pour tout $x \ge 0$ et tout $n \in \mathbb{N}^*$ on pose $f_n(x) = f(nx)$ et $g_n(x) = f(x/n)$.

- a. Montrer que les suites de fonctions $(f_n)_n$ et $(g_n)_n$ convergent simplement vers la fonction nulle.
- b. Les convergences de la question précédente sont-elles uniformes? Montrer qu'on a convergence uniforme sur tout intervalle de la forme $[a,b] \subset \mathbb{R}_+^*$.
- c. On suppose que $I=\int_0^{+\infty}f(x)\mathrm{d}x$ converge. Déterminer $\lim_{n\infty}\int_0^{+\infty}f_n(x)\mathrm{d}x$ et $\lim_{n\infty}\int_0^{+\infty}g_n(x)\mathrm{d}x$.

Exercice 5. On considère les fonctions

$$f_n: \mathbb{R}_+ \to \mathbb{R}, \quad x \mapsto \frac{n(x^3 + x)e^{-x}}{nx + 1}.$$

a. Déterminer la limite simple g de la suite $(f_n)_n$.

 $(x^2+1)e^{-x}$ sauf g(0)=0

- b. La convergence est-elle uniforme?
- c. Montrer que $f_n(x) g(x) = g(x)/(nx+1)$.
- d. On fixe A > 0. Montrer que $(f_n)_n$ converge uniformément vers g sur l'intervalle $[A, +\infty[$.

Exercice 6. On considère les fonctions

$$f_n: \mathbb{R} \to \mathbb{R}, \quad x \mapsto \frac{1}{1 + (x+n)^2}.$$

- a. Déterminer la limite simple g de la suite de fonctions $(f_n)_n$.
- b. Représenter les graphes de f_0 , f_1 , f_2 . La convergence de la question précédente est-elle uniforme?
- c. Soit A un réel fixé. Montrer que la suite de fonction $(f_n)_n$ converge uniformément vers g sur l'intervalle $[A, +\infty[$.

Exercice 7. On considère la suite de fonctions $f_n:[0,1]\to\mathbb{R}$ définie par $f_0(x)=0$ et $f_{n+1}(x)=f_n(x)+\frac{1}{2}(x-f_n(x)^2)$.

- a. Montrer qu'on a $0 \le f_n(x) \le f_{n+1}(x) \le \sqrt{x}$ pour tout $x \in [0,1]$.
- b. Déterminer la limite simple r de la suite de fonctions $(f_n)_n$.
- c. (i) Soit $\epsilon \in]0,1]$ fixé. Montrer que pour tout $x \in [0,\epsilon^2]$ et pour tout n on a $|f_n(x) \sqrt{x}| \le \epsilon$.
 - (ii) Montrer que pour tout $x \in [\epsilon^2, 1]$ on a $\sqrt{x} f_{n+1}(x) \le (1 \epsilon)(\sqrt{x} f_n(x))$.
 - (iii) Montrer qu'il existe $N \in \mathbb{N}^*$ tel que $(1 \epsilon)^n \le \epsilon$ pour tout $n \ge N$.
 - (iv) Montrer que la suite de fonctions $(f_n)_n$ converge uniformément vers r.
- d. Montrer que la fonction « racine carrée » est limite uniforme sur [0,1] d'une suite de polynômes. Montrer qu'il existe une suite de polynômes qui converge uniformément vers la fonction « valeur absolue » sur [-1,1].

Exercice 8. Pour tout x > 1 on pose

$$\zeta(x) = \sum_{k=1}^{\infty} \frac{1}{k^x}, \quad f(x) = \int_1^{+\infty} \frac{\mathrm{d}t}{t^x} \quad \text{et} \quad d_n(x) = \sum_{k=1}^n \frac{1}{k^x} - \int_1^{n+1} \frac{\mathrm{d}t}{t^x}.$$

- a. Justifier le fait que $\zeta(x)$ et f(x) sont bien définies pour x > 1. Calculer f(x).

 Montrer que la suite de fonction $(d_n)_n$ converge simplement sur $]1, +\infty[$ vers une fonction d à déterminer.
- b. Montrer que pour tout $k \in \mathbb{N}^*$ et tout x > 1 on a

$$0 \le \frac{1}{k^x} - \int_k^{k+1} \frac{\mathrm{d}t}{t^x} \le \frac{1}{k^x} - \frac{1}{(k+1)^x}.$$

En déduire un encadrement de $d(x) - d_n(x)$.

$$0 \le d(x) - d_n(x) \le (n+1)^{-x} \le 1/(n+1)$$

- c. Montrer que la suite de fonctions $(d_n)_n$ converge uniformément vers d.
- d. Soit $H_n = \sum_{k=1}^n \frac{1}{k}$ les sommes partielles de la série harmonique. On rappelle qu'il existe une constante $\gamma \in \mathbb{R}$ telle que $H_n = \ln(n) + \gamma + o(1)$. Montrer qu'on a $\zeta(x) = \frac{1}{x-1} + \gamma + o(1)$ lorsque $x \to 1$.

Exercice 9. On considère les fonctions $f_n:[0,1]\to\mathbb{R},\ x\mapsto n^{\alpha}x(1-x)^n$, où $\alpha\in\mathbb{R}_+$ est un paramètre fixé. On pose $I_n=\int_0^1 f_n(x)\mathrm{d}x$.

- a. Déterminer la limite simple g de la suite de fonctions $(f_n)_n$.
- b. Dresser le tableau de variations de f_n sur [0,1].

 $max \ en \ 1/(n+1)$

c. Pour quelles valeurs de α la suite $(f_n)_n$ converge-t-elle uniformément vers g?

 $\alpha < 1$

- d. Montrer que $\lim I_n = 0$ lorsque $\alpha < 1$. Montrer que $\lim I_n = 0$ lorsque $\alpha = 1$.
- e. Montrer que $x^{\alpha-1}f_n(x)$ est bornée sur [0,1]. En déduire que $\lim I_n = 0$ lorsque $\alpha < 2$.
- f. Calculer I_n pour tout n. Pour quelles valeurs de α a-t-on $\lim I_n = 0$?

 $I_n = n^{\alpha}/(n+1)(n+2)$

Exercice 10. On considère les fonctions $f_n : \mathbb{R}_+ \to \mathbb{R}$, $x \mapsto \frac{1}{n!} x^n e^{-x}$.

- a. Déterminer la limite simple g de la suite de fonctions $(f_n)_n$.
- b. Étudier la fonction f_n sur \mathbb{R}_+ .

max en n

- c. Montrer que la suite de fonctions $(f_n)_n$ converge uniformément vers g.
- d. A-t-on $\lim_{n \infty} \int_0^{+\infty} f_n(x) dx = \int_0^{+\infty} g(x) dx$? Calculer $\lim_{n \infty} \int_0^{+\infty} f_n(x) dx$ pour tout n. On pourra procéder par récurrence.

Exercice 11. Déterminer les limites des suites suivantes en justifiant l'interversion :

$$I_n = \int_0^1 \sqrt{1 + x^n} dx, \quad J_n = \int_0^1 \frac{\cos(\frac{x}{n})}{1 + x^n} dx, \quad K_n = \int_0^1 \frac{x^n}{\sqrt{1 - x^3}} dx,$$

$$L_n = \int_1^{+\infty} \frac{\ln x \ e^{-\frac{x}{n}}}{\sqrt{1 + x^n}} dx, \quad M_n = \int_0^{+\infty} \frac{e^{-\frac{x}{n}}}{1 + x^2} dx, \quad N_n = \int_0^{+\infty} \frac{(\sin x)^n}{x^2} dx.$$