Intégration

Exercice 1. Les fonctions suivantes sont-elles uniformément continues?

$$\begin{split} f: x \mapsto x \text{ sur } [0,1], \text{ sur } \mathbb{R}, & g: x \mapsto \sin(x) \text{ sur } \mathbb{R}, & h: x \mapsto x \sin(x) \text{ sur } \mathbb{R}, \\ i: x \mapsto \ln(x) \text{ sur }]0,1], \text{ sur } [1,+\infty[, & j: x \mapsto x \ln(x) \text{ sur }]0,1]. \end{split}$$

Exercice 2. On fixe $A \in [0, +\infty[$ ou $A = +\infty,$ et une fonction $f : [0, A] \to \mathbb{R}$.

- a. On suppose qu'il existe $\alpha > 0$ tel que $|f(x) f(y)| \le 1$ pour tous $x, y \in [0, 1[$ tels que $|x y| \le \alpha$. Montrer par récurrence que $|f(x) f(0)| \le n$ pour tout $x \in [0, n\alpha]$.
- b. Montrer que si f est uniformément continue et $A<+\infty,$ alors f est bornée. Ce résultat est-il encore vrai pour $A=+\infty$?

Exercice 3. Soit $f:[0,+\infty[$ une fonction continue.

- a. On fixe $\epsilon > 0$ et on suppose que pour tous $x, y \ge A$ on a $|f(x) f(y)| \le \epsilon$. Montrer qu'il existe $\alpha > 0$ tel que $|f(x) - f(y)| \le \epsilon$ pour tous $x, y \ge 0$ tels que $|x - y| \le \alpha$.
- b. Montrer que si f admet une limite finie l en $+\infty$, alors f est uniformément continue.

Exercice 4. Soit I un intervalle de \mathbb{R} et $f, g: I \to \mathbb{R}$ deux fonctions.

On suppose que f et g sont bornées : il existe M > 0 tel que $|f(x)| \le M$ et $|g(x)| \le M$ pour tout $x \in I$.

- a. Montrer que $|f(x)g(x) f(y)g(y)| \le M|f(x) f(y)| + M|g(x) g(y)|$ pour tous $x, y \in I$.
- b. Montrer que si f et g sont uniformément continues, alors c'est aussi le cas de fg. Ce résultat est-il encore valable si f ou g n'est pas bornée? Que peut-on dire si I est un intervalle borné?

Exercice 5.

- a. On considère la fonction $f:[0,1]\to\mathbb{R}$ telle que f(x)=1 si $x\in\mathbb{Q}$ et f(x)=0 sinon. La fonction f est-elle intégrable au sens de Riemann? Rappeler pourquoi.
- b. On considère la fonction $g:[0,1]\to\mathbb{R}$ telle que g(x)=0 si $x\notin\mathbb{Q}$, et $g(\frac{p}{q})=\frac{1}{q}$ pour $0\leq p\leq q$ entiers premiers entre eux. On fixe un nombre premier P.
 - (i) Trouver une fonction en escalier h telle que $g(x) \le h(x)$ pour tout $x \in [0,1]$, et $h(x) \le \frac{1}{P}$ sauf pour un nombre fini de points $x \in [0,1]$.
 - (ii) Montrer que g est intégrable au sens de Riemann. Que vaut $\int_0^1 g(x) \mathrm{d} x$?

Exercice 6. Calculer les intégrales suivantes en utilisant des sommes de Riemann : $I = \int_0^1 t dt$, $J = \int_0^x e^t dt$.

Exercice 7. Calculer la limite des suites suivantes :

$$A_n = \frac{1}{n} \sum_{k=1}^n \sin\left(\frac{k\pi}{n}\right), \quad B_n = \sum_{k=1}^n \frac{k}{k^2 + n^2}, \quad C_n = \sum_{k=1}^n \frac{n}{k^2 + n^2},$$

$$D_n = \frac{1}{n^2} \sum_{k=1}^n \sqrt{k(n-k)}, \quad E_n = \sum_{k=0}^n \frac{n+1}{k^2 + n^2}, \quad F_n = \sum_{k=n}^{2n} \frac{1}{k}, \quad G_n = \prod_{k=1}^n \sqrt[n]{1 + \frac{k}{n}}.$$

Donner un équivalent de $H_n = \sum_{k=1}^n \sqrt{k}$.

Exercice 8. Soit $f:[0,1]\to\mathbb{R}$ une fonction continue. Montrer que

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(1 + \frac{1}{n} f\left(\frac{k}{n}\right) \right) = \exp \int_{0}^{1} f(x) dx.$$

On pourra utiliser l'encadrement $x - x^2 \le \ln(1+x) \le x$, valable pour tout $x \ge -\frac{1}{2}$.

Exercice 9. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et $n\in\mathbb{N}$ un entier fixé. On suppose qu'on a

$$\forall k \in \{0, \dots, n\} \quad \int_a^b x^k f(x) dx = 0.$$

On veut montrer que f s'annule au moins n+1 fois sur [a,b]. On note $a \le x_1 < \cdots < x_p \le b$ les points où f change de signe.

- a. Quelle conclusion veut-on obtenir dans le cas n=0? Le résultat est-il vrai dans ce cas?
- b. Montrer qu'on a $\int_a^b P(x)f(x)dx = 0$ pour tout polynôme P de degré inférieur ou égal à n.
- c. Posons $P = \prod_{i=1}^{p} (X x_i)$. En supposant que $p \le n$, montrer qu'on a P(x)f(x) = 0 pour tout $x \in [a, b]$.
- d. Conclure.

Exercice 10. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue. Montrer qu'on a $\int_a^b |f| = |\int_a^b f|$ si et seulement si f est positive sur [a,b] ou négative sur [a,b]. Indication. Pour la réciproque on distinguera les deux cas $\int_a^b f \ge 0$, $\int_a^b f \le 0$. On remarquera également qu'on a $|y| - y \ge 0$ et $|y| + y \ge 0$ pour tout $y \in \mathbb{R}$.

Exercice 11. Soit $f:[a,b]\to\mathbb{R}$ une fonction continue telle que $\int_a^b f(x)^2 dx + \int_a^b f(x)^4 dx = 2 \int_a^b f(x)^3 dx$. Montrer que f est constante sur [a,b], égale à 0 ou à 1. Indication : factoriser le polynôme $X^4 - 2X^3 + X^2$

Exercice 12. Pour chaque $n \in \mathbb{N}$ on définit une fonction $f_n : \left[0, \frac{\pi}{2}\right] \to \mathbb{R}, \ x \mapsto (n+1)(\cos x)^n \sin x$.

- a. Calculer $\int_0^{\frac{\pi}{2}} f_n(x) dx$ pour tout n.
- b. On fixe $x \in [0, \frac{\pi}{2}]$. Déterminer la limite de la suite $(f_n(x))_n$, que l'on notera f(x). On dit que la suite de fonctions $(f_n)_n$ converge *simplement* (ou point par point) vers la fonction f.
- c. A-t-on $\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} f_n(x) dx = \int_0^{\frac{\pi}{2}} f(x) dx$?

Exercice 13. Pour chaque $n \in \mathbb{N}$ on considère la fonction $f_n : [1, e] \to \mathbb{R}, \ x \mapsto x^2 (\ln x)^n$. On pose $I_n = \int_1^e f_n(x) dx$.

- a. Justifier l'intégrabilité de f_n sur [1, e].
- b. Déterminer la limite $f(x) = \lim_{n \to \infty} f_n(x)$, pour tout $x \in [1, e]$. La fonction f est elle-continue sur [1, e]? est-elle intégrable?
- c. Montrer que la suite $(I_n)_n$ est décroissante et en déduire qu'elle converge.
- d. En majorant x^3 par e^3 sur [1, e], donner un majorant de f_n sur [1, e], et en déduire un majorant de I_n .
- e. Quelle est la limite de la suite $(I_n)_n$? A-t-on $\lim_{n \to \infty} \int_1^e f_n(x) dx = \int_1^e f(x) dx$?

Exercice 14. Pour chaque $n \in \mathbb{N}$ on étudie la fonction $f_n : [0,1] \to \mathbb{R}, \ x \mapsto x^n - x^{n+1}$.

- a. Déterminer la limite $f(x) = \lim_{n \to \infty} f_n(x)$, pour tout $x \in [0, 1]$. On a ainsi $|f(x) - f_n(x)| \to 0$ pour tout x.
- b. Étudier la fonction f_n sur [0,1], pour tout n.
- c. Montrer qu'il existe une suite $(a_n)_n$ qui tend vers 0 et telle que $|f(x) f_n(x)| \le a_n$ pour tout $x \in [0,1]$. On dit que la suite de fonctions $(f_n)_n$ converge uniformément vers la fonction f.
- d. On pose $I_n = \int_0^1 f_n(x) dx$. Montrer sans calcul supplémentaire que $(I_n)_n$ converge, et déterminer sa limite.

Exercice 15. Pour chaque n on définit une fonction $f_n:[0,1]\to\mathbb{R}, x\mapsto\frac{1}{1+x^n}$. On pose $I_n=\int_0^1f_n(x)\mathrm{d}x$.

- a. Déterminer la limite (simple) f de la suite de fonctions $(f_n)_n$.
- b. Montrer que la suite $(I_n)_n$ est croissante. Converge-t-elle?
- c. Montrer que $1 f_n(x)$ est majoré par x^n pour tout $x \in [0, 1]$. En déduire la limite de la suite $(I_n)_n$.
- d. A-t-on $\lim_{n\infty} \int_0^1 f_n(x) dx = \int_0^1 f(x) dx$? La convergence de la suite de fonctions $(f_n)_n$ vers f est-elle uniforme?
- e. Justifier l'identité suivante :

$$1 - I_n = \frac{\ln 2}{n} - \frac{1}{n} \int_0^1 \ln(1 + x^n) dx.$$

f. En déduire le développement asymptotique $I_n = 1 - \frac{\ln 2}{n} + o(\frac{1}{n})$.