ESPACES FONCTIONNELS PARTIEL DU 1^{ER} MARS 2017

Durée : 2 heures. Aucun document ni calculatrice n'est autorisé.

Les 4 exercices sont indépendants.

La notation tiendra compte de la longueur du sujet, et également de la qualité de la rédaction.

Exercice 1. On considère une série de fonctions $(\sum_{k\in\mathbb{N}^*} f_k)$ avec $f_k\in C([0,1],\mathbb{R})$ pour tout k. On suppose que la série converge simplement sur [0,1]. On note $S_n:x\mapsto\sum_{k=1}^n f_k(x)$ les sommes partielles et $S:x\mapsto\sum_{k=1}^\infty f_k(x)$ la somme de la série.

- 1. On suppose que les fonctions f_k sont à valeurs positives et que S est continue sur [0,1]. Montrer que $(S_n)_n$ converge uniformément sur [0,1].
- 2. On considère le cas où $f_k(t) = \frac{1}{k}(t^k t^{k+1})$. Calculer S et montrer que la série de fonctions $(\sum f_k)$ converge uniformément sur [0,1].
- 3. On considère le cas où $f_k(t) = -t^k \ln(t)$, f(0) = 0. La série $(\sum f_k)$ converge-t-elle uniformément sur [0,1]?

Exercice 2. Soit E un espace vectoriel normé et $T \in L'(E)$ une application linéaire continue. Pour tout nombre complexe λ on note $E_{\lambda}(T) = \{x \in E \mid T(x) = \lambda x\}$. On note $B = \{x \in E \mid ||x|| \le 1\}$ la boule unité fermée de E et $\lambda B = \{\lambda x \mid x \in B\} = \{x \in E \mid ||x|| \le |\lambda|\}$. On suppose que l'adhérence de T(B) dans E est compacte et on fixe $\lambda \in \mathbb{C} \setminus \{0\}$.

- 1. Montrer que $\lambda B \cap E_{\lambda}(T) \subset T(B)$.
- 2. Montrer que $B \cap E_{\lambda}(T)$ est compact.
- 3. Montrer que le sous-espace propre $E_{\lambda}(T)$ est de dimension finie.

Exercice 3. Soit $K \in C([0,1]^2, \mathbb{R})$. On considère l'opérateur à noyau $T : C([0,1], \mathbb{R}) \to C([0,1], \mathbb{R})$ associé à K, c'est-à-dire donné par la formule

$$T(f)(s) = \int_0^1 K(s,t)f(t)dt,$$

pour $f \in C([0,1],\mathbb{R})$ et $s \in [0,1]$. On admet que T(f) est bien un élément de $C([0,1],\mathbb{R})$. On munit [0,1] de la distance usuelle et $[0,1]^2$ de la distance $d((s,t),(s',t')) = \max(|s-s'|,|t-t'|)$. On munit $C([0,1],\mathbb{R})$ et $C([0,1]^2,\mathbb{R})$ de la norme du sup, notée $\|\cdot\|_{\infty}$.

- 1. Rappeler les théorèmes (et notamment leurs hypothèses) qui permettent d'affirmer :
 - que K est bornée sur $[0,1]^2$,
 - que K est uniformément continue sur $[0,1]^2$.
- 2. Montrer que l'application linéaire T est continue.
- 3. On fixe $\epsilon > 0$. Montrer qu'il existe $\alpha > 0$ tel qu'on ait $|T(f)(s) T(f)(s')| \le \epsilon ||f||_{\infty}$ pour toute $f \in C([0,1],\mathbb{R})$ et tous $s, s' \in [0,1]$ tels que $|s-s'| \le \alpha$.
- 4. On note $B = \{ f \in C([0,1], \mathbb{R}) \mid ||f||_{\infty} \leq 1 \}$ la boule unité fermée de $C([0,1], \mathbb{R})$. Montrer que l'adhérence de T(B) dans $C([0,1], \mathbb{R})$ est compacte. On pourra appliquer le théorème d'Ascoli.

Exercice 4. On considère l'espace $E = \ell^1(\mathbb{N}, \mathbb{R})$ muni de la norme $||x||_1 = \sum_{i=0}^{\infty} |x_i|$.

Soit $(x_k)_k$ une suite d'éléments de E: on a ainsi $x_k = (x_{k,i})_i$ pour k fixé. On suppose que $(x_k)_k$ tend faiblement vers 0, et on va montrer qu'il y a en fait convergence en norme vers 0. Pour cela on procède par l'absurde : quitte à extraire une sous-suite, cela revient à supposer que $(x_k)_k$ tend faiblement vers 0 et qu'il existe $\epsilon > 0$ tel que $||x_k||_1 > \epsilon$ pour tout k.

- 1. Montrer que pour i fixé on a $\lim_{k \to \infty} x_{k,i} = 0$.
- 2. On fixe $K, A \in \mathbb{N}$. Montrer qu'il existe k > K et $\alpha > A$ tels que $\sum_{i=0}^{A} |x_{k,i}| \le \epsilon/5$ et $\sum_{i=\alpha+1}^{\infty} |x_{k,i}| \le \epsilon/5$.

On peut donc construire par récurrence une suite $(y_l)_l$ extraite de $(x_k)_k$ et une suite strictement croissante d'indices $(\alpha_l)_l$ telles que $\sum_{i=0}^{\alpha_l} |y_{l,i}| \le \epsilon/5$ et $\sum_{i=\alpha_{l+1}+1}^{\infty} |y_{l,i}| \le \epsilon/5$. On ne demande pas de rédiger cette construction

3. Montrer que pour tout l on a $\sum_{i=\alpha_l+1}^{\alpha_{l+1}} |y_{l,i}| \ge 3\epsilon/5$.

Pour tout réel x on note $\operatorname{sgn}(x) = 1$ si $x \ge 0$, $\operatorname{sgn}(x) = -1$ si x < 0. Pour tout entier i il existe un unique indice l tel que $\alpha_l + 1 \le i \le \alpha_{l+1}$, et on note alors $s_i = \operatorname{sgn}(y_{l,i})$.

- 4. Montrer que la formule $\varphi(z) = \sum_{i=0}^{\infty} s_i z_i$ définit une forme linéaire continue sur E.
- 5. Montrer que pour tout l on a $|\varphi(y_l)| \ge \epsilon/5$. Conclure.

Les suites convergentes sont donc les mêmes pour la topologie faible et pour la topologie normique sur $\ell^1(\mathbb{N},\mathbb{R})$. C'est bien sûr une propriété très particulière à l'espace ℓ^1 . Cela n'implique pas que les deux topologies sont égales (car la seconde n'est pas métrisable).