Analyse Fonctionnelle Partiel du 5 mars 2021 Corrigé

Exercice 1. On definit une suite de fonctions $f_n:[0,1]\to\mathbb{R}$ en posant $f_0(x)=1$ et

$$f_{n+1}(x) = \frac{1}{2} \Big(f_n(x) + \frac{x}{f_n(x)} \Big).$$

- 1. À l'aide d'une étude de fonction, montrer qu'on a $\frac{1}{2}(t+\frac{x}{t}) \ge \sqrt{x}$ pour tous $t \in]0,1]$, $x \in [0,1]$. Fixons $x \in [0,1]$ et considérons $g(t) = \frac{1}{2}(t+\frac{x}{t})$. On a $g'(t) = \frac{1}{2}(1-\frac{x}{t^2})$, cette dérivée est positive ssi $t^2 \ge x$, on en déduit que g admet un minimum global atteint en $t = \sqrt{x}$. On a donc $g(t) \ge g(\sqrt{x}) = \sqrt{x}$ pour tout t > 0.
- 2. En déduire que, pour $x \in [0,1]$ fixé, la suite $(f_n(x))_n$ est décroissante. Une récurrence immédiate montre que $f_n(x) > 0$ pour tout n et pour tout x. En appliquant la question précédente avec $t = f_n(x)$ on trouve $f_{n+1}(x) \ge \sqrt{x}$ pour tout $n \in \mathbb{N}$. On a aussi $f_n(x) \ge \sqrt{x}$ pour n = 0 par définition. On calcule alors

$$f_{n+1}(x) - f_n(x) = \frac{1}{2} \left(\frac{x}{f_n(x)} - f_n(x) \right) = \frac{x - f_n(x)^2}{2f_n(x)} \le \frac{x - \sqrt{x^2}}{2f_n(x)} = 0,$$

car la fonction carré est croissante sur \mathbb{R}_+ .

3. Montrer que la suite de fonctions $(f_n)_n$ converge uniformément vers une fonction que l'on déterminera.

Étudions d'abord la convergence simple. Pour x > 0 fixé la suite $(f_n(x))_n$ est décroissante minorée d'après la question précédente, donc elle converge. Notons f(x) sa limite, en passant à la limite dans l'inégalité $f_n(x) \ge \sqrt{x}$ on voit que $f(x) \ge \sqrt{x} > 0$, puis en passant à la limite dans la relation de récurrence on obtient, grâce à la continuité de la fonction inverse sur \mathbb{R}_+^* : $f(x) = \frac{1}{2}(f(x) + x/f(x))$. La seule solution dans \mathbb{R}_+^* est $f(x) = \sqrt{x}$. Pour x = 0 l'équation de récurrence s'écrit $f_{n+1}(0) = \frac{1}{2}f_n(0)$, $(f_n(0))_n$ est une suite géométrique qui converge vers $f(0) = 0 = \sqrt{0}$.

On applique maintenant le théorème de Dini sur l'intervalle [0,1] qui est compact. Par une récurrence immédiate, les fonctions f_n sont continues. La limite simple $f: x \mapsto \sqrt{x}$ est également continue. Enfin pour tout $x \in [0,1]$ la suite $(f_n(x))_n$ est décroissante. Le théorème s'applique donc et montre que la suite converge uniformément.

Exercice 2.

Soit $K \in C([-1,1]^2,\mathbb{R})$. On considère l'opérateur à noyau $T:C([-1,1],\mathbb{R}) \to C([-1,1],\mathbb{R})$ associé à K, c'est-à-dire donné par la formule suivante, pour $f \in C([-1,1],\mathbb{R})$ et $s \in [-1,1]$:

$$T(f)(s) = \int_{-1}^{1} K(s,t)f(t)dt.$$

On munit [-1,1] de la distance usuelle et $[-1,1]^2$ de la distance d((s,t),(s',t')) = |s-s'| + |t-t'|. On munit $C([-1,1],\mathbb{R})$ et $C([-1,1]^2,\mathbb{R})$ de la norme du sup, notée $\|\cdot\|_{\infty}$.

- 1. Rappeler les théorèmes (et notamment leurs hypothèses) qui permettent d'affirmer :
 - que K est bornée $sur [-1,1]^2$: Il s'agit du théorème des bornes : une fonction réelle continue sur un compact est bornée et atteint ses bornes.

— que K est uniformément continue sur $[-1,1]^2$: Il s'agit du théorème de Heine : une fonction continue sur un compact est uniformément continue.

Rappeler la définition de la continuité uniforme de K sur $[-1,1]^2$. Cette définition s'écrit : $\forall \epsilon > 0 \ \exists \alpha > 0 \ \forall (s,t), (s',t') \in [-1,1]^2 \ d((s,t),(s',t')) \leq \alpha \Rightarrow |K(s,t)-K(s',t')| \leq \epsilon$. Les deux dernières inégalités peuvent être strictes ou larges.

On admet que T(f) est bien un élément de C([-1,1], ℝ) pour toute f ∈ C([-1,1], ℝ).
 Montrer que l'application linéaire T est continue.
 Montrons que T est une application linéaire bornée. Pour f ∈ C([-1,1], ℝ) on a d'après l'inégalité triangulaire pour les intégrales :

$$|T(f)(s)| \le \int_{-1}^{1} |K(s,t)f(t)| dt \le \int_{-1}^{1} ||K||_{\infty} ||f||_{\infty} dt = 2||K||_{\infty} ||f||_{\infty}.$$

La norme $||K||_{\infty}$ est bien définie d'après la question 1. En passant au sup sur s on obtient l'inégalité $||T(f)||_{\infty} \le 2||K||_{\infty}||f||_{\infty}$, qui montre que T est bornée avec $||T|| \le 2||K||_{\infty}$.

3. On fixe $\epsilon > 0$. Montrer qu'il existe $\alpha > 0$ tel qu'on ait $|T(f)(s) - T(f)(s')| \le 2\epsilon ||f||_{\infty}$ pour toute $f \in C([-1,1],\mathbb{R})$ et tous $s, s' \in [-1,1]$ tels que $|s-s'| \le \alpha$. On applique la continuité uniforme de K sur $[-1,1]^2$, justifiée à la question 1, avec le $\epsilon > 0$. Notons $\alpha > 0$ le réel obtenu. Alors pour tous $s, s' \in [-1,1]$ tels que $|s-s'| \le \alpha$ et pour tout $t \in [-1,1]$ on a $d((s,t),(s',t)) = |s-s'| \le \alpha$ donc $|K(s,t) - K(s',t)| \le \epsilon$. Pour toute $f \in C([-1,1],\mathbb{R})$ on peut alors écrire :

$$|T(f)(s) - T(f)(s')| = \left| \int_{-1}^{1} (K(s,t) - K(s',t))f(t)dt \right|$$

$$\leq \int_{-1}^{1} |K(s,t) - K(s',t)| \times |f(t)|dt \leq \int_{-1}^{1} \epsilon ||f||_{\infty} dt = 2\epsilon ||f||_{\infty}.$$

4. On note $B = \{f \in C([-1,1],\mathbb{R}) \mid \|f\|_{\infty} \leq 1\}$ la boule unité fermée de $C([-1,1],\mathbb{R})$. Montrer que l'adhérence de T(B) dans $C([-1,1],\mathbb{R})$ est compacte. Il suffit d'appliquer le théorème d'Ascoli à C = T(B). Notons tout d'abord que [-1,1] est bien compact. Fixons $s \in [-1,1]$ et montrons l'équicontinuité de C en s. Pour $\epsilon > 0$ fixé, on applique la question précédente à $\frac{\epsilon}{2}$. Le réel $\alpha > 0$ obtenu convient : en effet, pour toute fonction $g \in C$ on peut écrire g = T(f) avec $\|f\|_{\infty} \leq 1$ et on a alors, pour tout $s' \in [-1,1]$ tel que $|s-s'| \leq \alpha$, $|g(s) - g(s')| \leq 2\frac{\epsilon}{2}\|f\|_{\infty} = \epsilon$. Enfin, d'après la question 2 on a $\|g\|_{\infty} \leq 2\|K\|_{\infty}$ pour toute $g \in C$, donc pour tout $s \in [-1,1]$ l'ensemble $C_s := \{g(s) \mid g \in C\}$ est borné, donc d'adhérence compacte dans \mathbb{R} .

Exercice 3. On considère l'espace $E = c_0(\mathbb{N}, \mathbb{C})$ des suites complexes $u = (u_n)_n$ telles que $\lim u_n = 0$, muni de la norme du sup. Pour $u \in E$ et r > 0 on note B(u,r) la boule ouverte de centre u et de rayon r dans E. Le but de cet exercice est de donner une caractérisation des parties compactes de E. On note $G_n = \{u \in E \mid \forall k \geq n \ u_k = 0\} \subset E$ le sous-espace des suites nulles à partir du rang n. On considère l'application $P_n : E \to G_n$ donnée par $P_n(u) = (u_0, u_1, \ldots, u_{n-1}, 0, 0, \ldots)$.

- 1. Montrer que les applications P_n et $Q_n = \operatorname{Id} P_n$ sont continues. L'application P_n est clairement linéaire, de plus on a $\|P_n(u)\| = \sup_{k < n} |u_k| \le \sup_{k \in \mathbb{N}} |u_k| = \|u\|$ donc elle est bornée et continue. Alors Q_n est continue comme différence de deux applications continues.
- 2. Montrer que $B(0,r) = \{v \in E \mid \forall k \mid v_k \mid < r\}$. L'inclusion \subset est claire : si $v \in B(0,r)$ alors $\sup |v_k| < r$ donc $|v_k| < r$ pour tout k. Pour \supset , fixons $v \in E$ telle que $|v_k| < r$ pour tout k. Comme $\lim v_k = 0$, il existe un rang N à partir duquel on a $|v_k| < r/2$. Notons alors $M = \max_{k < N} |v_k|$, il existe un indice l tel que $M = |v_l|$ donc M < r. Pour tout $k \in \mathbb{N}$ on a alors $|v_k| \le \max(M, r/2)$ donc $||v|| \le \max(M, r/2) < r$ et $v \in B(0, r)$.
- 3. Soit $A \subset E$ une partie compacte. On fixe $\epsilon > 0$ et on considère $U_n = \{u \in E \mid \forall k \geq n \mid u_k \mid < \epsilon\}$.

- (a) Montrer que U_n est un ouvert de E pour tout n. Montrer que les U_n recouvrent E. D'après la question 2 on a $U_n = Q_n^{-1}(B(0,\epsilon))$. Comme Q_n est continue et qu'une boule ouverte est un ouvert, U_n est un ouvert. Si u est un élément quelconque de E, la condition $\lim u_k = 0$ montre qu'il existe $n \in \mathbb{N}$ tel que $|u_k| < \epsilon$ pour tout $k \ge n$. On a alors $u \in U_n$ et cela montre que les U_n recouvrent E.
- (b) Montrer qu'il existe $N \in \mathbb{N}$ tel qu'on ait, pour tout $k \geq N$ et toute suite $u \in A : |u_k| < \epsilon$. D'après la question précédente, les U_n forment un recouvrement ouvert du compact A (plus précisément, les $U_n \cap A$ forment un recouvrement de A par des ouverts de A), donc on peut en extraire un sous-recouvrement fini. Il existe donc des indices n_1, \ldots, n_p tels que $A \subset U_{n_1} \cup \cdots \cup U_{n_p}$. Notons $N = \max(n_1, \ldots, n_p)$. Soit $u \in A$. Il existe i tel que $u \in U_{n_i}$. Pour $k \geq N$ on a alors $k \geq n_i$ donc $|u_k| < \epsilon$ par définition de U_{n_i} .
- (c) On pose $v_k = \sup\{|u_k| \mid u \in A\}$. Montrer que $\lim v_k = 0$. On garde l'indice N de la question précédente. Pour tout $k \geq N$ et $u \in A$ on a $|u_k| < \epsilon$. En passant au sup sur $u \in A$ on obtient $v_k \leq \epsilon$, pour tout $k \geq N$. Comme on peut trouver un tel N pour tout $\epsilon > 0$, on a bien montré que $\lim v_k = 0$.
- 4. Soit $A \subset E$. On suppose qu'il existe une suite $v \in E$ telle que $|u_k| \le v_k$ pour tout $k \in \mathbb{N}$ et toute suite $u \in A$.
 - (a) On fixe ε > 0 et n ∈ N. Montrer qu'il existe un ensemble fini B ⊂ G_n tel que les boules B(u, ε) avec u ∈ B recouvrent P_n(A).
 L'hypothèse faite sur A implique que A est bornée : ||u|| ≤ ||v|| pour tout u ∈ A. Comme P_n est une application linéaire bornée, cela implique que P_n(A) est une partie bornée de G_n. Comme G_n est de dimension finie, l'adhérence P_n(A) est compacte. En particulier elle est précompacte, on peut donc la recouvrir par un nombre fini de boules de rayon ε, et on prend pour B l'ensemble fini des centres de ces boules.
 - (b) Montrer que, si on choisit bien l'indice n, les boules B(u, ε), u ∈ B, de la question précédente recouvrent A.
 On choisit n de telle manière que v_k < ε pour tout k > n. Soit alors w ∈ A. Il existe u ∈ B tel que P_n(w) ∈ B(u, ε), autrement dit, |w_k u_k| < ε pour tout k ≤ n. Pour k > n on a u_k = 0 car u ∈ B ⊂ G_n, et |w_k| ≤ v_k < ε, donc également |w_k u_k| < ε. D'après la question 2, cela montre que w ∈ B(u, ε). Donc les boules de la question précédentes recouvrent A.</p>
 - (c) Montrer que A est précompact. Pour tout rayon $\epsilon > 0$, on a réussi à recouvrir A par des boules ouvertes de rayon ϵ : c'est la définition de la précompacité. Si on est tatillon, on peut noter que les centres de ces boules ne sont pas forcément dans A. Pour y remédier, on peut sélectionner les $u \in B$ tels que $B(u, \epsilon)$ rencontre effectivement A, choisir un point $u' \in B(u, \epsilon) \cap A$, on a alors $B(u, \epsilon) \subset B(u', 2\epsilon)$ et les ensembles $B(u', 2\epsilon) \cap A$ sont donc des boules ouvertes de(A), en nombre fini, de rayon 2ϵ , qui recouvrent A.
- 5. Montrer qu'une partie A ⊂ E est compacte si et seulement si elle est fermée et il existe une suite v ∈ E telle que |u_k| ≤ v_k pour tout k ∈ N et toute suite u ∈ A.
 Comme tout compact est fermé, l'implication ⇒ résulte immédiatement de la question 3. Pour la réciproque, on a montré à la question 4 que A est précompacte. Comme elle est fermée dans E qui est complet, elle est complète. Or une partie précompacte et complète est compacte.