Path cocycles in quantum Cayley trees and L^2 -cohomology

Roland Vergnioux

Université de Caen Basse-Normandie

Luminy, Sept. 27, 2010

3. 3

Outline

Introduction

- Universal discrete quantum groups
- The Main Result
- The Strategy

- Quantum Cayley graphs
- Path cocycles

3

Universal discrete quantum groups

Consider the unital *-algebras defined by generators and relations:

$$\mathscr{A}_u(I_n) = \langle u_{ij} \mid (u_{ij}) \text{ and } (u_{ij}^*) \text{ unitary} \rangle,$$

 $\mathscr{A}_o(I_n) = \langle u_{ij} \mid u_{ij} = u_{ij}^*, (u_{ij}) \text{ unitary} \rangle,$

with $1 \le i, j \le n$. They become Hopf *-algebras with

$$\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}, \ S(u_{ij}) = u_{ji}^*, \ \epsilon(u_{ij}) = \delta_{ij}.$$

Moreover there exists a unique positive Haar integral $h : \mathscr{A} \to \mathbb{C}$. We can consider the GNS construction:

$$H = L^2(\mathscr{A}, h), \ \lambda : \mathscr{A} \to B(H), \ M = \lambda(\mathscr{A})'' \subset B(H).$$

Classical counterpart: $\mathscr{A} = \mathbb{C}G$, $H = \ell^2(G)$, with G a discrete group.

イロン 不良 とくほう イヨン 二日

Analogies with free group algebras

- there are natural maps $\mathscr{A}_u(I_n) \twoheadrightarrow \mathbb{C}F_n$, $\mathscr{A}_o(I_n) \twoheadrightarrow \mathbb{C}(\mathbb{Z}/2\mathbb{Z})^{*n}$;
- we have A_u(I_n) → B for any B associated with a unimodular discrete quantum group and some n;
- there is a natural correspondence between irreducible corepresentations of $\mathscr{A}_u(I_n)$ and words on u, \bar{u} ;
- the C*-algebras $A_u(I_n)_{\mathrm{red}}$, $A_o(I_n)_{\mathrm{red}}$ are simple, non-nuclear, exact ;
- the discrete quantum groups associated with $\mathcal{A}_u(I_n)$, $\mathcal{A}_o(I_n)$ have the Property of Rapid Decay ;
- $M = \lambda(\mathscr{A}_o(I_n))''$ is a full and prime II_1 factor.

The case n = 2 behaves differently, e.g. $\mathscr{A}_o(I_2) = \mathscr{C}(SU_{-1}(2))$ has polynomial growth, and will be excluded in this talk.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

The Main result

For an ICC group G, we can take $\mathscr{A} = \mathbb{C}G$ and consider the Hochschild cohomology groups $H^1(\mathscr{A}, {}_{\lambda}H_{\epsilon})$ and $H^1(\mathscr{A}, {}_{\lambda}M_{\epsilon})$. These groups are moreover right M-modules and we have

$$eta_1^{(2)}(\mathcal{G}) = \dim_M H^1(\mathscr{A}, H) = \dim_M H^1(\mathscr{A}, M).$$

Recall that $\beta_1^{(2)}(F_n) = n - 1$. In the case of the orthogonal universal discrete quantum groups we have the strongly contrasting result:

Theorem

For $n \ge 3$ we have $H^1(\mathscr{A}_o(I_n), H) = H^1(\mathscr{A}_o(I_n), M) = 0$. In particular $\beta_1^{(2)}(\mathscr{A}_o(I_n)) = 0$. On the other hand $\beta_1^{(2)}(\mathscr{A}_u(I_n)) \ne 0$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

The Main result

Theorem

For $n \ge 3$ we have $H^1(\mathscr{A}_o(I_n), H) = H^1(\mathscr{A}_o(I_n), M) = 0$. In particular $\beta_1^{(2)}(\mathscr{A}_o(I_n)) = 0$. On the other hand $\beta_1^{(2)}(\mathscr{A}_u(I_n)) \ne 0$.

Remarks:

- Collins-Härtel-Thom: $\beta_k^{(2)}(\mathscr{A}_o(I_n)) = 0$ for $k \ge 4$, $\beta_k^{(2)}(A_o(I_n)) = \beta_{4-k}^{(2)}(A_o(I_n))$, and Kyed: $\beta_0^{(2)}(\mathscr{A}_o(I_n)) = 0$.
- Voigt: Baum-Connes and K-amenability for $A_o(I_n)$, $K_0(A_o(I_n)) = K_1(A_o(I_n)) = \mathbb{Z}$
- History : Leuven 11/2008, ArXiv v1 05/2009, ArXiv v2 03/2010

- 御下 - 西下 - 西下 - 西

Strategy (for \mathscr{A}_o):

- Show that one particular cocycle vanishes: the *path cocycle* $c_g : \mathscr{A} \to K_g$ with values in the *quantum Cayley tree*
- Prove that this cocycle is "sufficiently universal" and vanishes "sufficiently strongly" (and use Property RD)

Consider a representation $\pi : \mathscr{A} \to L(X)$ on a vector space X. A π -cocycle is a map $c : \mathscr{A} \to X$ such that

$$\forall x, y \in \mathscr{A} \quad c(xy) = \pi(x)c(y) + c(x)\epsilon(y).$$

It is trivial if $c(x) = \pi(x)\xi - \xi\epsilon(x)$ for some $\xi \in L$ and all $x \in \mathscr{A}$. $H^1(\mathscr{A}, X)$ is the space of π -cocycles modulo trivial cocycles. We put $c_0(x) = \lambda(x)\xi_0 - \xi_0\epsilon(x)$, where $\xi_0 = \Lambda(1) \in X = H$.

イロト 不得下 イヨト イヨト 二日

Algebraic version

Assume we can "lift" c_0 to a cocycle $c_g:\mathscr{A}\to\mathscr{A}{\otimes}\mathscr{A},$ ie

$$(m - (\mathrm{id} \otimes \epsilon))(c_g(x)) = x - \epsilon(x)1$$

Observe that the cocycle relation for $c:\mathscr{A} \to X$ reads

$$\pi(x)c(y) = c((m - \mathrm{id} \otimes \epsilon)(x \otimes y))$$

Define $m_c : \mathscr{A} \otimes \mathscr{A} \to X$ by putting $m_c(x \otimes y) = \pi(x)c(y)$. We obtain $c = m_c \circ c_g$.

Hence if c_g is trivial with fixed vector $\xi_g \in \mathscr{A} \otimes \mathscr{A}$, all cocycles c are trivial with fixed vector $\xi = m_c(\xi_g)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Hilbertian version

Assume we can "lift" c_0 to a cocycle $c_g : \mathscr{A} \to H \otimes H_1$, ie

$$(m - (\mathrm{id} \otimes \epsilon))(c_g(x)) = x - \epsilon(x)1$$

Observe that the cocycle relation for $c: \mathscr{A} \to M$ reads

$$\pi(x)c(y) = c((m - \mathrm{id} \otimes \epsilon)(x \otimes y))$$

Define $m_c: H \otimes H_1 \to X$ by putting $m_c(x \otimes y) = \pi(x)c(y)$. We obtain $c = m_c \circ c_g$.

Hence if c_g is trivial with fixed vector $\xi_g \in H \otimes H_1$, all cocycles c are trivial with fixed vector $\xi = m_c(\xi_g)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

7 / 16

With $H_1 \subset H$ finite-dimensional...

The correct version

Assume we can "lift" c_0 to a cocycle $c_g:\mathscr{A}\to\mathscr{K}'_g,$ ie

$$(m - (\mathrm{id} \otimes \epsilon))(c_g(x)) = x - \epsilon(x)1$$

Observe that the cocycle relation for $c : \mathscr{A} \to M$ reads

$$\pi(x)c(y) = c((m - \mathrm{id} \otimes \epsilon)(x \otimes y))$$

Define $m_c: H \otimes H_1 \to X$ by putting $m_c(x \otimes y) = \pi(x)c(y)$. We obtain $c = m_c \circ c_g$.

Hence if c_g is trivial with fixed vector $\xi_g \in M \otimes H_1$, all cocycles c are trivial with fixed vector $\xi = m_c(\xi_g)$.

With $\mathscr{K}'_g \subset (\mathscr{A} \otimes \mathscr{A}_1) \cap \overline{\mathrm{Ker}}(m - \mathrm{id} \otimes \epsilon)...$

Outline

Introduction

- Universal discrete quantum groups
- The Main Result
- The Strategy

Quantum Cayley trees

- Quantum Cayley graphs
- Path cocycles

3

- < ∃ →

-

Fix the following data:

- a discrete group G,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Cayley graph associated with (G, S) is given by:

- the set of vertices G,
- the set of edges $G \times S$,
- the target map $t:(lpha,\gamma)
 ightarrow lpha\gamma$,
- the reversing map $\theta(\alpha, \gamma) = (\alpha \gamma, \gamma^{-1}).$

- 3

A B M A B M

Fix the following data:

- a discrete group G,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the set of vertices G,
- the set of edges $G \times S$,
- the target map $t:(lpha,\gamma)
 ightarrow lpha\gamma$,
- the reversing map $\theta(\alpha, \gamma) = (\alpha \gamma, \gamma^{-1})$.

- 31

A B M A B M

Fix the following data:

- a discrete group G,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the space of vertices $H = \ell^2(G)$,
- the set of edges $G \times S$,
- the target map $t:(lpha,\gamma)
 ightarrowlpha\gamma$,
- the reversing map $\theta(\alpha, \gamma) = (\alpha \gamma, \gamma^{-1})$.

- 3

Fix the following data:

- a discrete group G,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the space of vertices $H = \ell^2(G)$,
- the space of edges $K = H \otimes H_1$, where $H_1 = \ell^2(S)$,
- the target map $t:(lpha,\gamma)
 ightarrow lpha\gamma$,
- the reversing map $\theta(\alpha, \gamma) = (\alpha \gamma, \gamma^{-1}).$

・何・ ・ヨ・ ・ヨ・ ・ヨ

Fix the following data:

- a discrete group G,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the space of vertices $H = \ell^2(G)$,
- the space of edges $K = H \otimes H_1$, where $H_1 = \ell^2(S)$,
- the target operator $T : \delta_{\alpha} \otimes \delta_{\beta} \mapsto \delta_{\alpha\beta}$,
- the reversing map $\theta(\alpha, \gamma) = (\alpha \gamma, \gamma^{-1}).$

・同下 ・ヨト ・ヨト 三日

Fix the following data:

- a discrete group G,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the space of vertices $H = \ell^2(G)$,
- the space of edges $K = H \otimes H_1$, where $H_1 = \ell^2(S)$,
- the target operator $\mathcal{T}: \delta_{\alpha} \otimes \delta_{\beta} \mapsto \delta_{\alpha\beta}$,
- the reversing operator $\Theta: \delta_{\alpha} \otimes \delta_{\gamma} \mapsto \delta_{\alpha\gamma} \otimes \delta_{\gamma^{-1}}$.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

9 / 16

Fix the following data:

- a discrete group G,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the space of vertices $H = \ell^2(G)$,
- the space of edges $K = H \otimes H_1$, where $H_1 = \ell^2(S)$,
- the target operator $\mathcal{T}: \delta_{\alpha} \otimes \delta_{\beta} \mapsto \delta_{\alpha\beta}$,
- the reversing operator $\Theta : \delta_{\alpha} \otimes \delta_{\gamma} \mapsto \delta_{\alpha\gamma} \otimes \delta_{\gamma^{-1}}$.

 $C^*_{red}(G)$ acts on H and on the first factor of $H \otimes p_1 H$. T and Θ are intertwining operators.

・ 同 ト ・ 日 ト ・ 日 ト ・ 日

Fix the following data:

- a discrete quantum group,
- a finite subset $S \subset G$ such that $S^{-1} = S$, $e \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the space of vertices $H = \ell^2(G)$,
- the space of edges $K = H \otimes H_1$, where $H_1 = \ell^2(S)$,
- the target operator $\mathcal{T}: \delta_{\alpha} \otimes \delta_{\beta} \mapsto \delta_{\alpha\beta}$,
- the reversing operator $\Theta : \delta_{\alpha} \otimes \delta_{\gamma} \mapsto \delta_{\alpha\gamma} \otimes \delta_{\gamma^{-1}}$.

 $C^*_{red}(G)$ acts on H and on the first factor of $H \otimes p_1 H$. T and Θ are intertwining operators.

・ 同 ト ・ 日 ト ・ 日 ト ・ 日

Fix the following data:

- a discrete quantum group,
- a finite subset $S \subset \operatorname{Irr} \mathscr{C}$ such that $\overline{S} = S$ and $\hat{\epsilon} \notin S$.

The Hilbertian Cayley graph associated with (G, S) is given by:

- the space of vertices $H = \ell^2(G)$,
- the space of edges $K = H \otimes H_1$, where $H_1 = \ell^2(S)$,
- the target operator $\mathcal{T}: \delta_{\alpha} \otimes \delta_{\beta} \mapsto \delta_{\alpha\beta}$,
- the reversing operator $\Theta : \delta_{\alpha} \otimes \delta_{\gamma} \mapsto \delta_{\alpha\gamma} \otimes \delta_{\gamma^{-1}}$.

 $C^*_{red}(G)$ acts on H and on the first factor of $H \otimes p_1 H$. T and Θ are intertwining operators.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Fix the following data:

- a discrete quantum group,
- a finite subset $S \subset \operatorname{Irr} \mathscr{C}$ such that $\overline{S} = S$ and $\hat{\epsilon} \notin S$.

The quantum Cayley graph associated with (\mathcal{C}, S) is given by:

- the space of vertices H,
- the space of edges $K = H \otimes H_1$, where $H_1 = p_S H$,
- the target operator $T : \delta_{\alpha} \otimes \delta_{\beta} \mapsto \delta_{\alpha\beta}$,
- the reversing operator $\Theta : \delta_{\alpha} \otimes \delta_{\gamma} \mapsto \delta_{\alpha\gamma} \otimes \delta_{\gamma^{-1}}$.

 $C^*_{red}(G)$ acts on H and on the first factor of $H \otimes p_1 H$. T and Θ are intertwining operators.

- 3

A B F A B F

Fix the following data:

- a discrete quantum group,
- a finite subset $S \subset \operatorname{Irr} \mathscr{C}$ such that $\overline{S} = S$ and $\hat{\epsilon} \notin S$.

The quantum Cayley graph associated with (\mathscr{C}, S) is given by:

- the space of vertices H,
- the space of edges $K = H \otimes H_1$, where $H_1 = p_S H$,
- the target operator $T = m : K \to H$,
- the reversing operator $\Theta = \cdots$, such that $T\Theta = id \otimes \epsilon$.

 $C^*_{red}(G)$ acts on H and on the first factor of $H \otimes p_1 H$. T and Θ are intertwining operators.

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Fix the following data:

- a discrete quantum group,
- a finite subset $S \subset \operatorname{Irr} \mathscr{C}$ such that $\overline{S} = S$ and $\hat{\epsilon} \notin S$.

The quantum Cayley graph associated with (\mathscr{C}, S) is given by:

- the space of vertices H,
- the space of edges $K = H \otimes H_1$, where $H_1 = p_S H$,
- the target operator $T = m : K \to H$,
- the reversing operator $\Theta = \cdots$, such that $T\Theta = id \otimes \epsilon$.

 A_{red} acts on H and on the first factor of $H \otimes p_1 H$. T and Θ are intertwining operators.

- 31

・ 同 ト ・ ヨ ト ・ ヨ ト

Quasi-classical subgraph $Q_0 K \subset K$: maximal subspace on which $\Theta^2 = id$. Classical subgraph $q_0 K \subset Q_0 K$: fixed points for the adjoint repr. of \hat{A} .

When $\mathscr{A} = \mathbb{C}G$, $q_0K = Q_0K = K$. When $\mathscr{A} = \mathscr{A}_o(I_n)$, $q_0K = Q_0K \neq K$. When $\mathscr{A} = \mathscr{A}_u(I_n)$, $q_0K \neq Q_0K \neq K$.

The classical and quasi-classical subgraphs are the hilbertian counterparts of "real" graphs as follows:

- vertices are elements of $\operatorname{Irr} \mathscr{C}$,
- \bullet edges depend on the fusions rules in $\operatorname{Irr} {\mathscr C}$,
- target operator with weights depending on the quantum dimensions,
- q_0H , Q_0H are not stable under the action of \mathscr{A} .

In the case of $A_u(I_n)$ we have a "classical" binary tree and a "quasiclassical" union of half lines:

11 / 16

In the case of $A_u(I_n)$ we have a "classical" binary tree and a "quasiclassical" union of half lines:

In the case of $A_u(I_n)$ we have a "classical" binary tree and a "quasiclassical" union of half lines:

11 / 16

In the case of $A_u(I_n)$ we have a "classical" binary tree and a "quasiclassical" union of half lines:

11 / 16

Path cocycles

We look for cocycles with values in the space of *geometric*, or antisymmetric, edges $K_g = \text{Ker}(\Theta + \text{id})$. Recall that $T = m = (\text{id} \otimes \epsilon)\Theta$, so that $m - \text{id} \otimes \epsilon = 2T$ on K_g .

Definition

A path cocycle is a cocycle $c_g : \mathscr{A} \to K_g$ such that $T \circ c_g = c_0$.

- 本間 と えき と えき とうき

Path cocycles

We look for cocycles with values in the space of *geometric*, or antisymmetric, edges $K_g = \text{Ker}(\Theta + \text{id})$. Recall that $T = m = (\text{id} \otimes \epsilon)\Theta$, so that $m - \text{id} \otimes \epsilon = 2T$ on K_g .

Definition

A path cocycle is a cocycle $c_g : \mathscr{A} \to K_g$ such that $T \circ c_g = c_0$.

Example: in the Cayley tree of F_n , denote by $c_g(g) \in K_g$ the sum of the antisymmetric edges on the path from the origin to g.

Some general results

We consider a free product of A_o 's and A_u 's with $n \ge 3$. We denote \mathscr{K}'_g the orthogonal projection of $\mathscr{A} \otimes \mathscr{A}$ onto K_g .

Proposition

If T is injective on \mathscr{K}'_g , then there exists a unique path cocycle $c_g: \mathscr{A} \to \mathscr{K}'_g$.

In the case of F_n we have $\mathscr{K}'_g = K_g \cap (\mathscr{A} \otimes \mathscr{A})$ and T is injective only on this dense subspace. On the "purely quantum part" of our quantum trees we have the much stronger property:

Theorem

T is injective with closed range on $(1 - Q_0)K_g$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

The orthogonal case

Proposition

In the case of $A_o(Q)$, with $Q \in GL(n, \mathbb{C})$, $Q\bar{Q} \in \mathbb{C}I_n$, $n \ge 3$, the target operator $T : K_g \to H$ is invertible. As a result there exists a unique path cocycle $c_g : \mathscr{A} \to K_g$, and it is trivial.

The main reason is that $q_0K_g = Q_0K_g$ comes from the half-line:

We can even compute the fixed vector $\xi_g = T^{-1}\xi_0$ for c_g :

$$\xi_{g} = \sum_{n \ge 0} \frac{\xi_{(\alpha_{n}, \alpha_{n+1})} - \xi_{(\alpha_{n+1}, \alpha_{n})}}{\sqrt{\dim_{q} \alpha_{n} \dim_{q} \alpha_{n+1} \dim_{q} \alpha_{1}}}.$$

By property RD it lies in $M \otimes H_1$.

$$\Rightarrow \quad \beta_1^{(2)}(\mathscr{A}_o(I_n)) = 0 \quad \blacksquare$$

The quasiclassical subgraph is a union of trees $\Rightarrow T$ injective on \mathscr{K}'_g . Hence we have a unique path cocycle $c_g : \mathscr{A} \to \mathscr{K}'_g$.

Let $\gamma \in M_n \otimes \mathscr{A}$ be the fundamental corepresentation of $\mathscr{A}_u(I_n)$. We consider $\alpha_k = \gamma^k$ and $\beta_k = \gamma \overline{\gamma} \gamma \cdots$.

Proposition

We have $\|(\mathrm{id} \otimes c_g)(\alpha_k)\| \ge C\sqrt{k}$ and $\|(\mathrm{id} \otimes c_g)(\beta_k)\| \le D$ for all k and constants C, D > 0.

As a result c_g is neither trivial (bounded) nor proper.

$$\mathscr{A}_{u}(I_{n})$$
 non-amenable $\implies \beta_{1}^{(2)}(\mathscr{A}_{u}(I_{n})) \neq 0$

・何・ ・ヨ・ ・ヨ・ ・ヨ

15 / 16

Heuristically, the Proposition holds because there is no multiplicity above the zigzag path (β_k), and a lot of multiplicity above the straight line (α_k):

Heuristically, the Proposition holds because there is no multiplicity above the zigzag path (β_k), and a lot of multiplicity above the straight line (α_k):

Heuristically, the Proposition holds because there is no multiplicity above the zigzag path (β_k), and a lot of multiplicity above the straight line (α_k):

16 / 16

Heuristically, the Proposition holds because there is no multiplicity above the zigzag path (β_k), and a lot of multiplicity above the straight line (α_k):

16 / 16