
Path cocycles in quantum Cayley trees
and L2-cohomology

Roland Vergnioux
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Introduction Universal discrete quantum groups

Universal discrete quantum groups

Consider the unital ∗-algebras defined by generators and relations:

Au(In) = 〈uij | (uij) and (u∗ij) unitary〉,
Ao(In) = 〈uij | uij = u∗ij , (uij) unitary〉,

with 1 ≤ i , j ≤ n. They become Hopf ∗-algebras with

∆(uij) =
∑

uik⊗ukj , S(uij) = u∗ji , ε(uij) = δij .

Moreover there exists a unique positive Haar integral h : A → C.
We can consider the GNS construction:

H = L2(A , h), λ : A → B(H), M = λ(A )′′ ⊂ B(H).

Classical counterpart: A = CG , H = `2(G ), with G a discrete group.
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Introduction Universal discrete quantum groups

Analogies with free group algebras

there are natural maps Au(In) � CFn, Ao(In) � C(Z/2Z)∗n ;

we have Au(In) � B for any B associated with a unimodular
discrete quantum group and some n ;

there is a natural correspondence between irreducible
corepresentations of Au(In) and words on u, ū ;

the C ∗-algebras Au(In)red, Ao(In)red are simple, non-nuclear, exact ;

the discrete quantum groups associated with Au(In), Ao(In) have the
Property of Rapid Decay ;

M = λ(Ao(In))′′ is a full and prime II1 factor.

The case n = 2 behaves differently, e.g. Ao(I2) = C (SU−1(2)) has
polynomial growth, and will be excluded in this talk.
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Introduction The Main Result

The Main result

For an ICC group G , we can take A = CG and consider the Hochschild
cohomology groups H1(A , λHε) and H1(A , λMε).
These groups are moreover right M-modules and we have

β
(2)
1 (G ) = dimM H1(A ,H) = dimM H1(A ,M).

Recall that β
(2)
1 (Fn) = n − 1. In the case of the orthogonal universal

discrete quantum groups we have the strongly contrasting result:

Theorem

For n ≥ 3 we have H1(Ao(In),H) = H1(Ao(In),M) = 0.

In particular β
(2)
1 (Ao(In)) = 0. On the other hand β

(2)
1 (Au(In)) 6= 0.
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Introduction The Main Result

The Main result

Theorem

For n ≥ 3 we have H1(Ao(In),H) = H1(Ao(In),M) = 0.

In particular β
(2)
1 (Ao(In)) = 0. On the other hand β

(2)
1 (Au(In)) 6= 0.

Remarks:

Collins-Härtel-Thom: β
(2)
k (Ao(In)) = 0 for k ≥ 4,

β
(2)
k (Ao(In)) = β

(2)
4−k(Ao(In)), and Kyed: β

(2)
0 (Ao(In)) = 0.

Voigt: Baum-Connes and K -amenability for Ao(In),
K0(Ao(In)) = K1(Ao(In)) = Z

History : Leuven 11/2008, ArXiv v1 05/2009, ArXiv v2 03/2010
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Introduction The Strategy

More on the strategy

Strategy (for Ao):

Show that one particular cocycle vanishes: the path cocycle
cg : A → Kg with values in the quantum Cayley tree

Prove that this cocycle is “sufficiently universal” and vanishes
“sufficiently strongly” (and use Property RD)

Consider a representation π : A → L(X ) on a vector space X .
A π-cocycle is a map c : A → X such that

∀x , y ∈ A c(xy) = π(x)c(y) + c(x)ε(y).

It is trivial if c(x) = π(x)ξ − ξε(x) for some ξ ∈ L and all x ∈ A .
H1(A ,X ) is the space of π-cocycles modulo trivial cocycles.
We put c0(x) = λ(x)ξ0 − ξ0ε(x), where ξ0 = Λ(1) ∈ X = H.
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Introduction The Strategy

More on the strategy

Algebraic version

Assume we can “lift” c0 to a cocycle cg : A → A⊗A , ie

(m − (id⊗ε))(cg (x)) = x − ε(x)1

Observe that the cocycle relation for c : A → X reads

π(x)c(y) = c((m − id⊗ε)(x⊗y))

Define mc : A⊗A → X by putting mc(x⊗y) = π(x)c(y).
We obtain c = mc ◦ cg .

Hence if cg is trivial with fixed vector ξg ∈ A⊗A , all cocycles c are trivial
with fixed vector ξ = mc(ξg ).
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Introduction The Strategy

More on the strategy

Hilbertian version

Assume we can “lift” c0 to a cocycle cg : A → H⊗H1, ie

(m − (id⊗ε))(cg (x)) = x − ε(x)1

Observe that the cocycle relation for c : A → M reads

π(x)c(y) = c((m − id⊗ε)(x⊗y))

Define mc : H⊗H1 → X by putting mc(x⊗y) = π(x)c(y).
We obtain c = mc ◦ cg .

Hence if cg is trivial with fixed vector ξg ∈ H⊗H1, all cocycles c are trivial
with fixed vector ξ = mc(ξg ).

With H1 ⊂ H finite-dimensional...
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Introduction The Strategy

More on the strategy

The correct version

Assume we can “lift” c0 to a cocycle cg : A → K ′
g , ie

(m − (id⊗ε))(cg (x)) = x − ε(x)1

Observe that the cocycle relation for c : A → M reads

π(x)c(y) = c((m − id⊗ε)(x⊗y))

Define mc : H⊗H1 → X by putting mc(x⊗y) = π(x)c(y).
We obtain c = mc ◦ cg .

Hence if cg is trivial with fixed vector ξg ∈ M⊗H1, all cocycles c are trivial
with fixed vector ξ = mc(ξg ).

With K ′
g ⊂ (A⊗A1) ∩Ker(m − id⊗ε)...
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph

Fix the following data:

a discrete group G ,

a finite subset S ⊂ G such that S−1 = S , e /∈ S .

The Cayley graph associated with (G , S) is given by:

the set of vertices G ,

the set of edges G × S ,

the target map t : (α, γ)→ αγ,

the reversing map θ(α, γ) = (αγ, γ−1).
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Quantum Cayley trees Quantum Cayley graphs

The quantum Cayley graph
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Quantum Cayley trees Quantum Cayley graphs

Classical subgraphs

Quasi-classical subgraph Q0K ⊂ K : maximal subspace on which Θ2 = id.
Classical subgraph q0K ⊂ Q0K : fixed points for the adjoint repr. of Â.

When A = CG , q0K = Q0K = K .
When A = Ao(In), q0K = Q0K 6= K .
When A = Au(In), q0K 6= Q0K 6= K .

The classical and quasi-classical subgraphs are the hilbertian counterparts
of “real” graphs as follows:

vertices are elements of Irr C ,

edges depend on the fusions rules in Irr C ,

target operator with weights depending on the quantum dimensions,

q0H, Q0H are not stable under the action of A .
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Quantum Cayley trees Quantum Cayley graphs

Classical subgraphs

In the case of Au(In) we have a “classical” binary tree and a
“quasiclassical” union of half lines:
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Quantum Cayley trees Path cocycles

Path cocycles

We look for cocycles with values in the space of geometric, or
antisymmetric, edges Kg = Ker(Θ + id).
Recall that T = m = (id⊗ε)Θ, so that m − id⊗ε = 2T on Kg .

Definition

A path cocycle is a cocycle cg : A → Kg such that T ◦ cg = c0.

Example: in the Cayley tree of Fn, denote by cg (g) ∈ Kg the sum of the
antisymmetric edges on the path from the origin to g .

T
+1

+1

−1

−1

+1

e

g

−1

g

e
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Roland Vergnioux (Université de Caen) Path cocycles in quantum Cayley trees Luminy, Sept. 27, 2010 12 / 16



Quantum Cayley trees Path cocycles

Some general results

We consider a free product of Ao ’s and Au’s with n ≥ 3.
We denote K ′

g the orthogonal projection of A⊗A onto Kg .

Proposition

If T is injective on K ′
g , then there exists a unique path cocycle

cg : A → K ′
g .

In the case of Fn we have K ′
g = Kg ∩ (A⊗A ) and T is injective only on

this dense subspace. On the “purely quantum part” of our quantum trees
we have the much stronger property:

Theorem

T is injective with closed range on (1− Q0)Kg .
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Quantum Cayley trees Path cocycles

The orthogonal case

Proposition

In the case of Ao(Q), with Q ∈ GL(n,C), QQ̄ ∈ CIn, n ≥ 3, the target
operator T : Kg → H is invertible. As a result there exists a unique path
cocycle cg : A → Kg , and it is trivial.

The main reason is that q0Kg = Q0Kg comes from the half-line:

(0,1) (1,2) (2,3) (3,4) (4,5) (5,6)

We can even compute the fixed vector ξg = T−1ξ0 for cg :

ξg =
∑
n≥0

ξ(αn,αn+1) − ξ(αn+1,αn)√
dimq αn dimq αn+1 dimq α1

.

By property RD it lies in M⊗H1. =⇒ β
(2)
1 (Ao(In)) = 0 �
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Quantum Cayley trees Path cocycles

The unitary case

The quasiclassical subgraph is a union of trees ⇒ T injective on K ′
g .

Hence we have a unique path cocycle cg : A → K ′
g .

Let γ ∈ Mn⊗A be the fundamental corepresentation of Au(In).
We consider αk = γk and βk = γγ̄γ · · · .

Proposition

We have ‖(id⊗cg )(αk)‖ ≥ C
√

k and ‖(id⊗cg )(βk)‖ ≤ D for all k and
constants C , D > 0.

As a result cg is neither trivial (bounded) nor proper.

Au(In) non-amenable =⇒ β
(2)
1 (Au(In)) 6= 0 �
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Quantum Cayley trees Path cocycles

The unitary case

Heuristically, the Proposition holds because there is no multiplicity above
the zigzag path (βk), and a lot of multiplicity above the straight line (αk):
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