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Introduction Universal discrete quantum groups

Universal discrete quantum groups

Consider the unital x-algebras defined by generators and relations:

Al
Aol

with 1 < j,j < n. They become Hopf *-algebras with

n) = (uj | (uj) and (uj) unitary),
n) = (uj | uy = ug, (uj) unitary),
Aluj) = 3 uix®@uyj,  S(uj) = U, e(uj) = 6.

Moreover there exists a unique positive Haar integral h: &/ — C.
We can consider the GNS construction:

H=1%(e,h), \:o — B(H), M=X\)"C B(H).

Classical counterpart: &7 = CG, H = (?(G), with G a discrete group.
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Introduction Universal discrete quantum groups

Analogies with free group algebras

@ there are natural maps <7,(I,) - CF,, 2,(l,) - C(Z/2Z)*" ;

e we have «7,(l,) — 2 for any A associated with a unimodular
discrete quantum group and some n ;

@ there is a natural correspondence between irreducible
corepresentations of .<7,(/,) and words on u, T ;

o the C*-algebras A,(/n)red: Ao(ln)rea are simple, non-nuclear, exact ;

@ the discrete quantum groups associated with <7,(/,), % (/,) have the
Property of Rapid Decay ;

o M = X\ (In))" is a full and prime I} factor.

The case n = 2 behaves differently, e.g. %7,(h) = ¢ (SU-1(2)) has
polynomial growth, and will be excluded in this talk.
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VLTSI  The Main Result

The Main result

For an ICC group G, we can take &/ = CG and consider the Hochschild
cohomology groups H(.27, \Hc) and H(<7, \M.).
These groups are moreover right M-modules and we have

3)(G) = dimy HX (o, H) = dimy H (7, M).
Recall that 6(2)( Fn) = n— 1. In the case of the orthogonal universal
discrete quantum groups we have the strongly contrasting result:

Theorem
For n > 3 we have H(y(I,), H) = HY(o(I,), M) = 0.
In particular B2 (,(1,)) = 0. On the other hand B2 (<, (1,)) # 0.
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VLTSI  The Main Result

The Main result

Theorem

For n > 3 we have HY(y(I,), H) = HY(o(I,), M) = 0.
In particular ﬂ§2)(4zfo(ln)) = 0. On the other hand ﬁ?)(du(ln)) # 0.

Remarks:

e Collins-Hartel-Thom: ﬂ ( 5(1n)) =0 for k > 4,
) (Aoln)) = B2 (Ao(1n)), and Kyed: 57 (1)) =
e Voigt: Baum-Connes and K- amenability for Ao(1n),

Ko(Ao(In)) = Ki(Ao(ln)) =

@ History : Leuven 11/2008, ArXiv vl 05/2009, ArXiv v2 03/2010
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The Strategy

More on the strategy

Strategy (for «7,):

@ Show that one particular cocycle vanishes: the path cocycle
cg 1 &/ — Kg with values in the quantum Cayley tree

@ Prove that this cocycle is “sufficiently universal” and vanishes
“sufficiently strongly” (and use Property RD)

Consider a representation 7 : &7 — L(X) on a vector space X.
A m-cocycle is a map ¢ : & — X such that

Vx,y € & c(xy) =m(x)c(y) + c(x)e(y).

It is trivial if c(x) = m(x)§ — &e(x) for some § € L and all x € &
H (o7, X) is the space of m-cocycles modulo trivial cocycles.
We put cp(x) = A(x)& — &o€e(x), where §g = A(1) € X = H.
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The Strategy
More on the strategy

Algebraic version

Assume we can “lift" ¢y to a cocycle ¢ : & — AR, ie
(m— (id®e))(cg(x)) = x — €e(x)1

Observe that the cocycle relation for ¢ : & — X reads
m(x)e(y) = c((m — id®e)(x@y))

Define m. : &/®@4/ — X by putting mc(x®y) = m(x)c(y).
We obtain ¢ = mc o ¢;.

Hence if ¢g is trivial with fixed vector {; € &/ ®.7, all cocycles c are trivial
with fixed vector £ = m.(&g).
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The Strategy
More on the strategy

Hilbertian version

Assume we can “lift" ¢y to a cocycle ¢z : &/ — H®HY, ie
(m— (id®e))(cg(x)) = x — €e(x)1

Observe that the cocycle relation for ¢ : & — M reads
m(x)e(y) = c((m — id®e)(xy))

Define m. : HoH; — X by putting me(x®y) = 7(x)c(y).
We obtain ¢ = mc o ¢;.

Hence if ¢z is trivial with fixed vector {g € H®@H7, all cocycles c are trivial
with fixed vector £ = m(&g).

With H; C H finite-dimensional...

Roland Vergnioux (Université de Caen) Path cocycles in quantum Cayley trees Luminy, Sept. 27, 2010 7/ 16



The Strategy
More on the strategy

The correct version

Assume we can "lift" ¢y to a cocycle ¢z 1 & — Jifg’, ie
(m — (1[d®e))(cg(x)) = x — e(x)1

Observe that the cocycle relation for ¢ : &/ — M reads
m(x)e(y) = c((m — id®e)(xy))

Define m. : HOH; — X by putting mc(x®y) = 7(x)c(y).
We obtain ¢ = m¢ o ;.

Hence if ¢ is trivial with fixed vector {; € M®H,, all cocycles c are trivial
with fixed vector £ = m.(&g).

With 7] C (/@) N Ker(m — id®e)...
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Outline

© Quantum Cayley trees

@ Quantum Cayley graphs
@ Path cocycles
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e 2By Rl
The quantum Cayley graph

Fix the following data:

@ a discrete group G,

e a finite subset S C G such that ST1 =5, e ¢ S.
The Cayley graph associated with (G, S) is given by:

@ the set of vertices G,

@ the set of edges G x S,

@ the target map t: (a,7y) — a7,

e the reversing map 0(a, ) = (ay,771).
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e 2By Rl
The quantum Cayley graph

Fix the following data:
@ a discrete group G,
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e 2By Rl
The quantum Cayley graph

Fix the following data:
@ a discrete group G,
e a finite subset S C G such that ST1 =5, e ¢ S.
The Hilbertian Cayley graph associated with (G, S) is given by:
o the space of vertices H = (?(G),
e the space of edges K = H®Hy, where Hy = (%(S),
@ the target operator T : 6,®0d3 > 0ag,

@ the reversing operator © : 0,®0y > Jay @0, 1.
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e 2By Rl
The quantum Cayley graph

Fix the following data:
@ a discrete group G,
@ a finite subset S C G such that ST =S, e ¢ S.
The Hilbertian Cayley graph associated with (G, S) is given by:
o the space of vertices H = (?(G),
e the space of edges K = H®Hy, where Hy = (%(S),
@ the target operator T : 6,®0d3 > 0ag,
e the reversing operator © : §,®0y = Gay @0, 1.

»4(G) acts on H and on the first factor of Hopy H.
T and © are intertwining operators.
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e 2By Rl
The quantum Cayley graph
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e 2By Rl
The quantum Cayley graph

Fix the following data:

@ a discrete quantum group,

o a finite subset S C Trr @ such that S =S and ¢ ¢ S.
The quantum Cayley graph associated with (¢, S) is given by:

@ the space of vertices H,

@ the space of edges K = H®H1, where H; = psH,

@ the target operator T : 6,®0d3 > 0ag,

e the reversing operator © : §,®0y = Gay @0, 1.

»4(G) acts on H and on the first factor of Hopy H.
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The quantum Cayley graph

Fix the following data:

@ a discrete quantum group,

o a finite subset S C Trr @ such that S =S and ¢ ¢ S.
The quantum Cayley graph associated with (¢, S) is given by:

@ the space of vertices H,
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(QIELVIT NGV ST Quantum Cayley graphs

Classical subgraphs

Quasi-classical subgraph QoK C K: maximal subspace on which @2 = id.
Classical subgraph qoK C QoK: fixed points for the adjoint repr. of A.

When & = CG, qoK = QoK = K.
When o = o/5(1,), oK = QK # K.
When o = o7,(I5), oK # QK # K.

The classical and quasi-classical subgraphs are the hilbertian counterparts
of “real” graphs as follows:

@ vertices are elements of Irr ¢,

@ edges depend on the fusions rules in Irr €,

@ target operator with weights depending on the quantum dimensions,
@ goH, QoH are not stable under the action of 7.
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(ONEVIT NEEV SR Quantum Cayley graphs

Classical subgraphs

In the case of A,(/,) we have a “classical” binary tree and a
“quasiclassical” union of half lines:
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(OUETVTNEEVWEVRICII  Path cocycles

Path cocycles

We look for cocycles with values in the space of geometric, or
antisymmetric, edges Ky = Ker(© +id).
Recall that T = m = (id®e)O, so that m — id®e = 2T on K.

Definition

A path cocycle is a cocycle ¢, : &/ — Kz such that T o ¢; = ¢p. J
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Path cocycles

We look for cocycles with values in the space of geometric, or
antisymmetric, edges Ky = Ker(© +id).

Recall that T = m = (id®e)O, so that m — id®e = 2T on K.

Definition

A path cocycle is a cocycle ¢, : &/ — Kz such that T o ¢; = ¢p. J

Example: in the Cayley tree of F,,, denote by cz(g) € Kg the sum of the
antisymmetric edges on the path from the origin to g.

€ 'l—l (&
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(OUETVTNEEVWEVRICII  Path cocycles

Some general results

We consider a free product of A,'s and A,'s with n > 3.
We denote Ji’g’ the orthogonal projection of & ®.27 onto Kj.

Proposition

If T is injective on ¢, then there exists a unique path cocycle
g — K.

In the case of F, we have %, = Ky N (/®.4/) and T is injective only on
this dense subspace. On the “purely quantum part” of our quantum trees
we have the much stronger property:

Theorem
T is injective with closed range on (1 — Qo)Kj. J
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(OUETVTNEEVWEVRICII  Path cocycles

The orthogonal case

Proposition

In the case of A,(Q), with Q € GL(n,C), QQ € Cl,, n > 3, the target
operator T : Kg — H is invertible. As a result there exists a unique path
cocycle cg : &/ — Kg, and it is trivial.

The main reason is that qoK; = QoKg comes from the half-line:

o1 (1,2 23) G4 45 (6.6

We can even compute the fixed vector {; = T for Cg:

Z é.(OényoénJrl) - f(Oanrlyoén)
\/Cll

Mg op dimg g1 dimg ag

By property RD it lies in M®H;. = ﬂ(z)( o(ln)) =0 N
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(OUETVTNEEVWEVRICII  Path cocycles

The unitary case

The quasiclassical subgraph is a union of trees = T injective on Ji/g’.
Hence we have a unique path cocycle ¢; : &7 — Ji/g’.

Let v € M,®.4/ be the fundamental corepresentation of .27,(/,).
We consider ax = v¥ and B = 437y ---.
Proposition

We have ||(id@c;)(ak)|| > Cvk and ||(id®cg)(Bk)|| < D for all k and
constants C, D > 0.

As a result ¢4 is neither trivial (bounded) nor proper.

,(I,) non-amenable =—> ﬂgz)(%u(ln)) #0 N1
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(OUETVTNEEVWEVRICII  Path cocycles

The unitary case

Heuristically, the Proposition holds because there is no multiplicity above
the zigzag path (k), and a lot of multiplicity above the straight line (a):
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