K-theory of the unitary free quantum groups

Roland Vergnioux

joint work with
Christian Voigt

Université de Caen Basse-Normandie, France Westfälische Wilhelms-Universität Münster, Germany

Shanghai, 2012, July 26

Outline

- Introduction
 - The main result
 - Strategy
- Quantum groups and subgroups
 - Definitions
 - Divisible subgroups
- Free products
 - Bass-Serre Tree
 - Dirac element
 - Baum-Connes conjecture (1)
- 4 Computation of $K_*(A_u(Q))$
 - Baum-Connes conjecture (2)
 - Computation of $K_*(A_u(Q))$

The main result

Let $n \geq 2$ and $Q \in GL_n(\mathbb{C})$. Consider the following unital C^* -algebras, generated by n^2 elements u_{ij} forming a matrix u, and the relations

$$A_u(Q) = \langle u_{ij} \mid u \text{ and } Q \bar{u} Q^{-1} \text{ unitaries} \rangle,$$

 $A_o(Q) = \langle u_{ij} \mid u \text{ unitary and } u = Q \bar{u} Q^{-1} \rangle.$

They are interpreted as maximal C^* -algebras of discrete quantum groups: $A_u(Q) = C^*(\mathbb{F}U(Q))$, $A_o(Q) = C^*(\mathbb{F}O(Q))$ [Wang, Van Daele 1995].

Theorem

The discrete quantum group $\mathbb{F}U(Q)$ satisfies the strong Baum-Connes property (" $\gamma=1$ "). We have

$$K_0(A_u(Q)) = \mathbb{Z}[1]$$
 and $K_1(A_u(Q)) = \mathbb{Z}[u] \oplus \mathbb{Z}[\bar{u}].$

4 D > 4 A > 4 B > 4 B > B = 900

Strategy of proof

- If $Q\bar{Q} \in \mathbb{C}I_n$ we have $\mathbb{F}U(Q) \hookrightarrow \mathbb{Z} * \mathbb{F}O(Q)$ [Banica 1997].
- $\mathbb{F}O(Q)$ satisfies strong Baum-Connes [Voigt 2009].
- Prop.: stability of strong BC under passage to "divisible" subgroups.
- Theorem: stability of strong BC under free products.
- Case $Q\bar{Q} \notin \mathbb{C}I_n$: monoidal equivalence [Bichon-De Rijdt-Vaes 2006].
- Use strong BC to compute the *K*-groups.

Other possible approach: Haagerup's Property [Brannan 2011]?

Result on free products:

- classical case: for groups acting on trees
 [Baum-Connes-Higson 1994], [Oyono-oyono 1998], [Tu 1998]
- quantum case: uses the quantum Bass-Serre tree and the associated Julg-Valette element [V. 2004]

Strategy of proof

Result on free products:

- classical case: for groups acting on trees
 [Baum-Connes-Higson 1994], [Oyono-oyono 1998], [Tu 1998]
- quantum case: uses the quantum Bass-Serre tree and the associated Julg-Valette element [V. 2004]

Novelties:

- C^* -algebra $\mathscr P$ associated to the quantum Bass-Serre tree [Julg-Valette 1989] and [Kasparov-Skandalis 1991]
- Invertibility of the associated Dirac element without "rotation trick"
- Actions of Drinfel'd double $D(\mathbb{F}U(Q))$ in order to be able to take tensor products

Outline

- Introduction
 - The main result
 - Strategy
- Quantum groups and subgroups
 - Definitions
 - Divisible subgroups
- Free products
 - Bass-Serre Tree
 - Dirac element
 - Baum-Connes conjecture (1)
- 4 Computation of $K_*(A_u(Q))$
 - Baum-Connes conjecture (2)
 - Computation of $K_*(A_u(Q))$

Discrete quantum groups

Let Γ be a discrete group and consider the C^* -algebra $C_0(\Gamma)$. The product of Γ is reflected on $C_0(\Gamma)$ by a coproduct:

$$\Delta: C_0(\Gamma) \to M(C_0(\Gamma) \otimes C_0(\Gamma))$$

$$f \mapsto ((g, h) \to f(gh)).$$

A discrete quantum group Γ can be given by:

- a C^* -algebra $C_0(\Gamma)$ with coproduct $\Delta : C_0(\Gamma) \to M(C_0(\Gamma) \otimes C_0(\Gamma))$,
- a C^* -algebra $C^*(\mathbb{F})$ with coproduct,
- ullet a category of corepresentations $\operatorname{Corep} \mathbb F$ (semisimple, monoidal : \otimes)

Classical case: $\Gamma = \Gamma$ "real" discrete group \iff commutative $C_0(\Gamma)$. Then $\operatorname{Irr} \operatorname{Corep} \Gamma = \Gamma$ with $\otimes =$ product of Γ .

4□ > 4□ > 4 = > 4 = > = 90

Discrete quantum groups

Let Γ be a discrete group and consider the C^* -algebra $C_0(\Gamma)$. The product of Γ is reflected on $C_0(\Gamma)$ by a coproduct Δ .

A discrete quantum group Γ can be given by:

- a C^* -algebra $C_0(\Gamma)$ with coproduct $\Delta: C_0(\Gamma) \to M(C_0(\Gamma) \otimes C_0(\Gamma))$,
- a C^* -algebra $C^*(\Gamma)$ with coproduct,
- ullet a category of corepresentations $\operatorname{Corep} {\mathbb F}$ (semisimple, monoidal : \otimes)

Classical case: $\Gamma = \Gamma$ "real" discrete group \iff commutative $C_0(\Gamma)$. Then $\operatorname{Irr} \operatorname{Corep} \Gamma = \Gamma$ with $\otimes =$ product of Γ .

In general $C_0(\mathbb{F})$ is a sum of matrix algebras:

$$C_0(\mathbb{F}) = \bigoplus \{L(H_r) \mid r \in \operatorname{Irr Corep} \mathbb{F}\}.$$

The interesting algebra is $C^*(\Gamma)!$ E.g. $C^*(\Gamma U(Q)) = A_u(Q)$. $C_0(\Gamma)$, $C^*(\Gamma)$ are both represented on a GNS space $\ell^2(\Gamma)$.

4□▶ 4□▶ 4□▶ 4□▶ 3□ 900

Quantum subgroups and quotients

Different ways of specifying $A \subset \Gamma$:

- bisimplifiable sub-Hopf C^* -algebra $C^*(\Lambda) \subset C^*(\Gamma)$ conditional expectation $E: C^*(\Gamma) \twoheadrightarrow C^*(\Lambda)$
- full subcategory Corep A ⊂ Corep F, containing 1, stable under ⊗ and duality [V. 2004]
- surj. morphism $\pi: C_0(\Gamma) \to C_0(\Lambda)$ compatible with coproducts [Vaes 2005] in the locally compact case

Quotient space:

- $C_b(\Gamma/\mathbb{A}) = \{ f \in M(C_0(\Gamma)) \mid (\mathrm{id} \otimes \pi) \Delta(f) = f \otimes 1 \}$ with coaction of $C_0(\Gamma)$
- $\ell^2(\Gamma/\Lambda) = \mathsf{GNS}$ construction of $\varepsilon_\Lambda \circ E : C^*(\Gamma) \to \mathbb{C}$
- Irr Corep $\mathbb{F}/\mathbb{A} = \operatorname{Irr Corep} \mathbb{F}/\sim$, where $r \sim s$ if $r \subset s \otimes t$ with $t \in \operatorname{Irr Corep} \mathbb{A}$

4□ > 4□ > 4 = > 4 = > = 90

Divisible subgroups

 $\mathbb{A} \subset \mathbb{F}$ is "divisible" if one of the following equiv. conditions is satisfied:

- There exists a Λ -equivariant isomorphism $C_0(\Gamma) \simeq C_0(\Gamma/\Lambda) \otimes C_0(\Lambda)$.
- There exists a Λ -equivariant isomorphism $C_0(\Gamma) \simeq C_0(\Lambda) \otimes C_0(\Lambda \setminus \Gamma)$.
- For all $\alpha \in \operatorname{Irr} \operatorname{Corep} \mathbb{F}/\mathbb{A}$ there exists $r = r(\alpha) \in \alpha$ such that $r \otimes t$ is irreducible for all $t \in \operatorname{Irr} \operatorname{Corep} \mathbb{A}$.

Examples:

- Every subgroup of $\Gamma = \Gamma$ is divisible.
- Proposition: $\mathbb{F}_0 \subset \mathbb{F}_0 * \mathbb{F}_1$ is divisible.
- Proposition: $\mathbb{F}U(Q) \subset \mathbb{Z} * \mathbb{F}O(Q)$ is divisible.
- $\mathbb{F}O(Q)^{ev} \subset \mathbb{F}O(Q)$ is not divisible.

In the divisible case $C_0(\Gamma/\Lambda) \simeq \bigoplus \{L(H_{r(\alpha)}) \mid \alpha \in \operatorname{Irr} \operatorname{Corep} \Gamma/\Lambda\}.$

- 4 ロ ト 4 週 ト 4 速 ト 4 速 ト 3 型 - 夕 Q (P

Outline

- Introduction
 - The main result
 - Strategy
- Quantum groups and subgroups
 - Definitions
 - Divisible subgroups
- Free products
 - Bass-Serre Tree
 - Dirac element
 - Baum-Connes conjecture (1)
- 4 Computation of $K_*(A_u(Q))$
 - Baum-Connes conjecture (2)
 - Computation of $K_*(A_{II}(Q))$

The quantum Bass-Serre tree

 Γ_0 , Γ_1 discrete quantum groups: $C_0(\Gamma_i)$, $\ell^2(\Gamma_i)$, $C^*(\Gamma_i)$.

Free product: $\mathbb{F} = \mathbb{F}_0 * \mathbb{F}_1$ given by $C^*(\mathbb{F}) = C^*(\mathbb{F}_0) * C^*(\mathbb{F}_1)$. We have " $\operatorname{Irr} \operatorname{Corep} \mathbb{F} = \operatorname{Irr} \operatorname{Corep} \mathbb{F}_0 * \operatorname{Irr} \operatorname{Corep} \mathbb{F}_1$ " [Wang 1995].

The classical case $\Gamma = \Gamma$

X graph with oriented edges, one edge by pair of adjacent vertices

- → set of vertices: $X^{(0)} = (\Gamma/\Gamma_0) \sqcup (\Gamma/\Gamma_1)$
- → set of edges: $X^{(1)} = \Gamma$
- → target and source maps: $\tau_i : \Gamma \to \Gamma/\Gamma_i$ canonical surjections

The quantum Bass-Serre tree

 Γ_0 , Γ_1 discrete quantum groups: $C_0(\Gamma_i)$, $\ell^2(\Gamma_i)$, $C^*(\Gamma_i)$.

Free product: $\Gamma = \Gamma_0 * \Gamma_1$ given by $C^*(\Gamma) = C^*(\Gamma_0) * C^*(\Gamma_1)$. We have "Irr Corep $\Gamma = \operatorname{Irr Corep} \Gamma_0 * \operatorname{Irr Corep} \Gamma_1$ " [Wang 1995].

$$\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z} = \langle a, b \rangle$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 夕 Q ()

The quantum Bass-Serre tree

 Γ_0 , Γ_1 discrete quantum groups: $C_0(\Gamma_i)$, $\ell^2(\Gamma_i)$, $C^*(\Gamma_i)$.

Free product: $\Gamma = \Gamma_0 * \Gamma_1$ given by $C^*(\Gamma) = C^*(\Gamma_0) * C^*(\Gamma_1)$. We have "Irr Corep $\Gamma = \operatorname{Irr Corep} \Gamma_0 * \operatorname{Irr Corep} \Gamma_1$ " [Wang 1995].

The general case

- ⇒ space of vertices: $\ell^2(\mathbb{X}^{(0)}) = \ell^2(\mathbb{\Gamma}/\mathbb{\Gamma}_0) \oplus \ell^2(\mathbb{\Gamma}/\mathbb{\Gamma}_1)$, $C_0(\mathbb{X}^{(0)}) = C_0(\mathbb{\Gamma}/\mathbb{\Gamma}_0) \oplus C_0(\mathbb{\Gamma}/\mathbb{\Gamma}_1)$
- ightharpoonup space of edges: $\ell^2(\mathbb{X}^{(1)}) = \ell^2(\mathbb{F}), \ C_0(\mathbb{X}^{(1)}) = C_0(\mathbb{F})$
- → target and source operators: $T_i: \ell^2(\mathbb{\Gamma}) \to \ell^2(\mathbb{\Gamma}/\mathbb{\Gamma}_i)$ unbounded $T_i f$ is bounded for all $f \in C_c(\mathbb{\Gamma}) \subset K(\ell^2(\mathbb{\Gamma}))$.

The ℓ^2 spaces are endowed with natural actions of $D(\mathbb{F})$, the operators T_i are intertwiners.

Dirac element

We put $\ell^2(X) = \ell^2(X^{(0)}) \oplus \ell^2(X^{(1)})$ and we consider the affine line

Kasparov-Skandalis algebra $\mathscr{P} \subset C_0(E) \otimes K(\ell^2(\mathbb{X}))$

Closed subspace generated by $C_c(\mathbb{F})$, $C_c(\mathbb{F}/\mathbb{F}_0)$, $C_c(\mathbb{F}/\mathbb{F}_1)$, T_0 and T_1 , with support conditions over E:

- $C_c(E) \otimes C_c(\Gamma)$, $C_c(\Omega_i) \otimes C_c(\Gamma/\Gamma_i)$,
- $C_c(\Omega_i) \otimes (T_i C_c(\mathbb{F})), C_c(\Omega_i) \otimes (T_i C_c(\mathbb{F}))^*, C_c(\Omega_i) \otimes (T_i C_c(\mathbb{F}))(T_i C_c(\mathbb{F}))^*.$

Proposition

The natural action of $D(\mathbb{F})$ on $C_0(E) \otimes K(\ell^2(\mathbb{X}))$ restricts to \mathscr{P} .

Dirac element

Kasparov-Skandalis algebra $\mathscr{P} \subset C_0(E) \otimes K(\ell^2(\mathbb{X}))$

Proposition

The natural action of $D(\mathbb{F})$ on $C_0(E) \otimes K(\ell^2(\mathbb{X}))$ restricts to \mathscr{P} .

The inclusion $\Sigma \mathscr{P} \subset \Sigma C_0(E) \otimes K(\ell^2(\mathbb{X}))$, composed with Bott isomorphism and the equivariant Morita equivalence $K(\ell^2(\mathbb{X})) \sim_M \mathbb{C}$, defines the Dirac element $D \in KK^{D(\mathbb{F})}(\Sigma \mathscr{P}, \mathbb{C})$.

Proposition

The element D admits a left inverse $\eta \in KK^{D(\mathbb{F})}(\mathbb{C}, \Sigma \mathscr{P})$.

The dual-Dirac element η is constructed using $\mathscr P$ and the Julg-Valette operator $F\in B(\ell^2(\mathbb X))$ from [V. 2004], so that $\eta\otimes_{\Sigma\mathscr P}D=[F]=:\gamma$. It was already known that $\gamma=1$ in $KK^{\mathbb F}$.

4 D > 4 A > 4 B > 4 B > B = 900

Baum-Connes conjecture (1)

Category $KK^{\mathbb{F}}$: \mathbb{F} - C^* -algebras + morphisms $KK^{\mathbb{F}}(A, B)$ It is "triangulated":

Class of "triangles": diagrams $\Sigma Q \to K \to E \to Q$ isomorphic to cone diagrams $\Sigma B \to C_f \to A \to B$ Example: Q = E/K with equivariant CP section Motivation: yield exacts sequences via $KK(\cdot, X)$, $K(\cdot \rtimes \Gamma)$, ...

Two subcategories:

$$\mathit{TI}_{\mathbb{\Gamma}} = \{ \mathrm{ind}_{\mathit{E}}^{\mathbb{\Gamma}}(A) \mid A \in \mathit{KK} \}, \quad \mathit{TC}_{\mathbb{\Gamma}} = \{ A \in \mathit{KK}^{\mathbb{\Gamma}} \mid \mathrm{res}_{\mathit{E}}^{\mathbb{\Gamma}}(A) \simeq 0 \text{ in } \mathit{KK} \}.$$

 $\langle TI_{\mathbb{F}} \rangle$: localizing subcategory generated by $TI_{\mathbb{F}}$, i.e. smallest stable under suspensions, K-equivalences, cones, countable direct sums.

Classical case : $\Gamma = \Gamma$ torsion-free. Γ - C^* -algebras in TI_{Γ} are proper, all proper Γ - C^* -algebras are in $\langle TI_{\Gamma} \rangle$.

Baum-Connes conjecture (1)

Category KK^{Γ} : Γ - C^* -algebras + morphisms $KK^{\Gamma}(A,B)$

Two subcategories:

$$\mathit{TI}_{\mathbb{\Gamma}} = \{ \mathrm{ind}_{\mathit{E}}^{\mathbb{\Gamma}}(A) \mid A \in \mathit{KK} \}, \quad \mathit{TC}_{\mathbb{\Gamma}} = \{ A \in \mathit{KK}^{\mathbb{\Gamma}} \mid \mathrm{res}_{\mathit{E}}^{\mathbb{\Gamma}}(A) \simeq 0 \text{ in } \mathit{KK} \}.$$

 $\langle TI_{\mathbb{F}} \rangle$: localizing subcategory generated by $TI_{\mathbb{F}}$, i.e. smallest stable under suspensions, K-equivalences, cones, countable direct sums.

Definition (Meyer-Nest)

Strong Baum-Connes property with respect to $TI: \langle TI_{\mathbb{F}} \rangle = KK^{\mathbb{F}}$.

Implies K-amenability. If $\Gamma = \Gamma$ without torsion: corresponds to the existence of a γ element with $\gamma = 1$.

4□ > 4□ > 4 = > 4 = > = 99

Stability under free products

Theorem

If Γ_0 , Γ_1 satisfy the strong Baum-Connes property with respect to TI, so does $\Gamma = \Gamma_0 * \Gamma_1$.

 \mathscr{P} is in $\langle TI_{\mathbb{F}} \rangle$ because we have the semi-split extension

$$\begin{array}{ccc} 0 & \longrightarrow & I_0 \oplus I_1 & \longrightarrow & \mathscr{P} & \longrightarrow & C(\Delta, C_0(\mathbb{F})) & \longrightarrow & 0 \\ & & & & & & & | \\ \Sigma \operatorname{ind}_{\mathbb{F}_1}^{\mathbb{F}}(\mathbb{C}) \oplus \Sigma \operatorname{ind}_{\mathbb{F}_0}^{\mathbb{F}}(\mathbb{C}) & & \operatorname{ind}_{E}^{\mathbb{F}}(\mathbb{C}) \end{array}$$

and by hypothesis $\mathbb{C} \in KK^{\Gamma_i}$ is in $\langle TI_{\Gamma_i} \rangle$.

Stability under free products

Theorem

If Γ_0 , Γ_1 satisfy the strong Baum-Connes property with respect to TI, so does $\Gamma = \Gamma_0 * \Gamma_1$.

Since \mathscr{P} is in $\langle TI_{\mathbb{F}} \rangle$ and $KK^{\mathbb{F}}(\operatorname{ind}_{E}^{\mathbb{F}}A, B) \simeq KK(A, \operatorname{res}_{E}^{\mathbb{F}}B)$, one can reduce the "right invertibility" of $D \in KK^{\mathbb{F}}(\Sigma\mathscr{P}, \mathbb{C})$ to its "right invertibility" in $KK(\Sigma\mathscr{P}, \mathbb{C})$.

The invertibility in KK follows from a computation: $K_*(\Sigma \mathscr{P}) = K_*(\mathbb{C})$.

Conclusion: $\Sigma \mathscr{P} \simeq \mathbb{C}$ in $KK^{\mathbb{F}}$, hence $\mathbb{C} \in \langle TI_{\mathbb{F}} \rangle$. Taking tensor products $\Sigma \mathscr{P} \boxtimes A$ yields $\langle TI_{\mathbb{F}} \rangle = KK^{\mathbb{F}}$, but one has to consider actions of the Drinfel'd double $D\mathbb{F}$.

- 4 ロ ト 4 個 ト 4 速 ト 4 速 ト 9 年 9 9 (で

Outline

- Introduction
 - The main result
 - Strategy
- Quantum groups and subgroups
 - Definitions
 - Divisible subgroups
- Free products
 - Bass-Serre Tree
 - Dirac element
 - Baum-Connes conjecture (1)
- 4 Computation of $K_*(A_u(Q))$
 - Baum-Connes conjecture (2)
 - Computation of $K_*(A_u(Q))$

Each $A \in KK^{\mathbb{F}}$ has an "approximation" $\tilde{A} \to A$ with $\tilde{A} \in \langle TI_{\mathbb{F}} \rangle$, functorial and unique up to isomorphism, which fits in a triangle $\Sigma N \to \tilde{A} \to A \to N$

with $N \in TC_{\Gamma}$ [Meyer-Nest].

T-projective resolution of $A \in KK^{\Gamma}$: complex

$$\cdots \longrightarrow \textit{C}_2 \longrightarrow \textit{C}_1 \longrightarrow \textit{C}_0 \longrightarrow \textit{A} \longrightarrow 0$$

with C_i directs summands of elements of $\mathcal{T}I_{\mathbb{F}}$, and such that

$$\cdots \longrightarrow KK(X,C_1) \longrightarrow KK(X,C_0) \longrightarrow KK(X,A) \longrightarrow 0$$

is exact for all X.

A T-projective resolution induces a spectral sequence which "computes" $K_*(\tilde{A} \rtimes \mathbb{F})$. If strong BC is satisfied, one can take $\tilde{A} = A!$

4□▶ 4□▶ 4□▶ 4□▶ □ ♥90€

Baum-Connes conjecture (2)

T-projective resolution of $A \in KK^{\mathbb{\Gamma}}$: complex $\cdots \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow A \longrightarrow 0$ with C_i directs summands of elements of $TI_{\mathbb{\Gamma}}$, and such that $\cdots \longrightarrow KK(X,C_1) \longrightarrow KK(X,C_0) \longrightarrow KK(X,A) \longrightarrow 0$ is exact for all X.

A T-projective resolution induces a spectral sequence which "computes" $K_*(\tilde{A} \rtimes \mathbb{F})$. If strong BC is satisfied, one can take $\tilde{A} = A$. In the length 1 case, one gets simply a cyclic exact sequence:

$$K_0(C_0 \rtimes \mathbb{F}) \to K_0(\tilde{A} \rtimes \mathbb{F}) \to K_1(C_1 \rtimes \mathbb{F})$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_0(C_1 \rtimes \mathbb{F}) \leftarrow K_1(\tilde{A} \rtimes \mathbb{F}) \leftarrow K_0(C_0 \rtimes \mathbb{F}).$$

→□▶ →□▶ → □▶ → □ ● の○○

Proposition

We have $K_0(A_u(Q)) \simeq \mathbb{Z}$ and $K_1(A_u(Q)) \simeq \mathbb{Z}^2$.

One constructs in $KK^{\mathbb{F}}$ a resolution of \mathbb{C} of the form

$$0 \longrightarrow_{\mathbb{L}} C_0(\mathbb{L})^2 \longrightarrow C_0(\mathbb{L}) \longrightarrow \mathbb{C} \longrightarrow 0.$$

 $C_0(\Gamma) = \operatorname{ind}_{E}^{\Gamma}(\mathbb{C})$ lies in TI_{Γ} .

One has $K_*(C_0(\Gamma)) = \bigoplus \mathbb{Z}[r] = R(\Gamma)$, ring of corepresentations of Γ .

Induced sequence in K-theory:

$$0 \longrightarrow R(\mathbb{F})^2 \stackrel{b}{\longrightarrow} R(\mathbb{F}) \stackrel{d}{\longrightarrow} \mathbb{Z} \longrightarrow 0,$$

exact for $b(v, w) = v(\overline{u} - n) + w(u - n)$ and $d(v) = \dim v$.

b and d lift to $KK^{\Gamma} \rightarrow T$ -projective resolution.

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣り(で

Proposition

We have $K_0(A_u(Q)) \simeq \mathbb{Z}$ and $K_1(A_u(Q)) \simeq \mathbb{Z}^2$.

We obtain the following cyclic exact sequence:

$$\begin{array}{cccc} \mathcal{K}_0(C_0(\mathbb{\Gamma}) \rtimes \mathbb{\Gamma}) \; \to \; \mathcal{K}_0(\tilde{\mathbb{C}} \rtimes \mathbb{\Gamma}) \; \to \; \mathcal{K}_1(C_0(\mathbb{\Gamma})^2 \rtimes \mathbb{\Gamma}) \\ & \uparrow & \downarrow \\ \mathcal{K}_0(C_0(\mathbb{\Gamma})^2 \rtimes \mathbb{\Gamma}) \; \leftarrow \; \mathcal{K}_1(\tilde{\mathbb{C}} \rtimes \mathbb{\Gamma}) \; \leftarrow \; \mathcal{K}_1(C_0(\mathbb{\Gamma}) \rtimes \mathbb{\Gamma}). \end{array}$$

But $C_0(\Gamma) \rtimes \Gamma \simeq K(\ell^2(\Gamma))$, and $\tilde{\mathbb{C}} \rtimes \Gamma \simeq C^*(\Gamma)$ by strong BC.

Computation of $K_*(A_u(Q))$

Proposition

We have $K_0(A_u(Q)) \simeq \mathbb{Z}$ and $K_1(A_u(Q)) \simeq \mathbb{Z}^2$.

We obtain the following cyclic exact sequence:

$$\begin{array}{cccc} \mathbb{Z} & \to & \mathcal{K}_0(\mathit{C}^*(\mathbb{\Gamma})) & \to & 0 \\ \uparrow & & & \downarrow \\ \mathbb{Z}^2 & \leftarrow & \mathcal{K}_1(\mathit{C}^*(\mathbb{\Gamma})) & \leftarrow & 0. \end{array}$$