Cocycles on free quantum groups

Roland Vergnioux

University of Normandy (France)

Roma, June 20th, 2014

Outline

- Cocycles on discrete quantum groups
 - Definitions
 - Analytical properties
- Path cocycles on free quantum groups
 - Path cocycles
 - Vanishing of L^2 -cocycles
- - Construction of the cocycle
 - Applications

Cocycles

Discrete quantum group Γ : given by a full Woronowicz C^* -algebra $(C^*(\Gamma), \Delta)$. Example: $\Delta(g) = g \otimes g$ on $C^*(\Gamma)$, Γ usual discrete group.

- unitary repr: unital *-hom $\pi: C^*(\mathbb{F}) \to B(H)$
- regular repr: GNS $(\ell^2(\mathbb{F}), \xi_0, \lambda)$ of Haar state h
- ullet reduced C^* -algebra: $C^*_{\mathrm{red}}(\mathbb{\Gamma}) = \lambda(C^*(\mathbb{\Gamma}))$
- trivial repr: co-unit $\epsilon: C^*(\Gamma) \to \mathbb{C}$
- dense Hopf algebra: $\mathbb{C}[\mathbb{F}] \subset C^*(\mathbb{F})$ with antipode S

There is a dual Hopf C^* -algebra $C_0(\mathbb{F})$ with duality described by a multiplicative unitary $V \in M(C_0(\mathbb{F}) \otimes C^*_{\mathrm{red}}(\mathbb{F}))$.

Definition

A π -cocycle on $\mathbb F$ is a derivation $c:\mathbb C[\mathbb F]\to_\pi H_\epsilon$, i.e. a linear map such that $c(xy)=\pi(x)c(y)+c(x)\epsilon(y)$. It is *trivial* if there is a *fixed vector* $\xi\in H$, such that $c(x)=\pi(x)\xi-\xi\epsilon(x)$.

3 / 14

Connection with quantum Dirichlet forms

"Generating functional": $\psi \in \mathbb{C}[\mathbb{F}]^*$ such that $\psi(1) = 0$, $\psi(x^*) = \overline{\psi(x)}$ and $\psi(x^*x) \leq 0$ for $x \in \operatorname{Ker} \epsilon$.

- → convolution semigroup of states, quantum Levy process, ..., and also:
- → Dirichlet form \mathcal{E} under a symmetry condition [Cipriani-Franz-Kula]. In the tracial case: $\mathcal{E}(x\xi_0) = h(x^*(\psi * x))$.

Proposition (V.)

Assume $c : \mathbb{C}[\mathbb{F}] \to H$ to be real, i.e. $(c(x)|c(y)) \in \mathbb{R}$ as soon as $x = S(x)^*$ and $y = S(y^*)$. Then: $y : x \mapsto (c(S(x))^*)|c(x)|$ is a generating functional

Then: $\psi: x \mapsto (c(S(x_{(1)})^*)|c(x_{(2)}))$ is a generating functional, $\psi(x^*y) = -2(c(x)|c(y))$ for all $x, y \in \operatorname{Ker} \epsilon$, ψ is symmetric: $\psi \circ S = \psi$.

Note: if h is tracial, reality is not needed to get a generating functional. In the classical case, it is not needed either for symmetry.

Analytical properties

Cocycle c oup "function" $C = (\mathrm{id} \otimes c)(V)$, unbdd multiplier of $C_0(\mathbb{F}) \otimes H$. We have $C_0(\mathbb{F}) \simeq \bigoplus_{\alpha} B(H_{\alpha}) \to C = (C_{\alpha})_{\alpha} \in \prod B(H_{\alpha}, H_{\alpha} \otimes H)$.

Say that c is bounded if $(\|C_{\alpha}\|)_{\alpha}$ is bounded, $(\text{metrically}) \ \text{proper} \ \text{if} \ \|(C_{\alpha}^*C_{\alpha})^{-1}\| \to_{\alpha} 0.$

Lemma [V. 2012]: A cocycle *c* is bounded *iff* it is trivial.

Theorem (Kyed 2011)

 ${\mathbb F}$ has Property (T) [Fima 2010] iff every cocycle in a unitary repr. is trivial.

Theorem (DFSW)

 Γ admits a metrically proper real cocycle iff it has Haagerup's approximation property, i.e. there exists a net of states $\varphi_k \in C^*(\Gamma)_+^*$ s.t. $\varphi_k \stackrel{w*}{\longrightarrow} \epsilon$ and $\forall k \ (\mathrm{id} \otimes \varphi_k)(V_{\mathrm{full}}) \in C_0(\Gamma)$.

5 / 14

Free quantum groups

The orthogonal free quantum groups $\mathbb{F}O_n$ [Wang 1995] are given by

$$C^*(\mathbb{F}O_n) = A_o(n) = \langle u_{ij}, 1 \leq i, j \leq n \mid u_{ij} = u_{ij}^*, \ (u_{ij}) \ \text{unitary} \rangle$$

with $\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}$. For $n \geq 3$, the quantum group $\mathbb{F}O_n$ is non amenable [Banica 1996], exact, C^* -simple [Vaes-Vergnioux 2007], ...

Theorem (Brannan 2012)

 $\mathbb{F}O_n$ satisfies Haagerup's approximation property.

Proof : explicit net of states φ_k (in fact associated multipliers) arising from the "central subalgebra" generated by $\chi = \sum u_{ii}$.

Question : What can be said about proper cocycles on $\mathbb{F}O_n$? In which representations do they live?

4 D > 4 D > 4 B > 4 B > B 9 Q P

Outline

- Cocycles on discrete quantum groups
 - Definitions
 - Analytical properties
- 2 Path cocycles on free quantum groups
 - Path cocycles
 - Vanishing of L^2 -cocycles
- - Construction of the cocycle
 - Applications

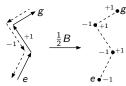
A classical path cocycle

Consider the Cayley graph of the classical free group $\Gamma = F_n = \langle S \rangle$:

- $X^{(0)} = \Gamma$. $X^{(1)} = \Gamma \times S$.
- s(g,h) = g, t(g,h) = gh, $\theta(g,h) = (gh,h^{-1})$.

Put $p(g) = \sum$ (edges along path $e \rightarrow g$) – (reversed edges). Fact. $p: \Gamma \to \ell^2(\Gamma) \otimes \ell^2(S)$ is a proper cocycle \to Haagerup's property.

Other fact. p is a lift of the trivial cocycle $c_0(g) = g - e$ through the boundary map $B(g \otimes h) = gh - g \rightarrow \text{every cocycle "factors" through } p$.



A classical path cocycle

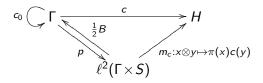
Consider the Cayley graph of the classical free group $\Gamma = F_n = \langle S \rangle$:

- $X^{(0)} = \Gamma, X^{(1)} = \Gamma \times S,$
- s(g,h) = g, t(g,h) = gh, $\theta(g,h) = (gh,h^{-1})$.

Put $p(g) = \sum$ (edges along path $e \rightarrow g$) – (reversed edges).

Fact. $p: \Gamma \to \ell^2(\Gamma) \otimes \ell^2(S)$ is a proper cocycle riangle Haagerup's property.

Other fact. p is a lift of the trivial cocycle $c_0(g) = g - e$ through the boundary map $B(g \otimes h) = gh - g \rightarrow e$ every cocycle "factors" through p.



→ □ ト ◆ □ ト ◆ 差 ト ◆ 差 ・ 夕 Q ○

The quantum case

Denote $\ell^2(\mathbb{S}) = \operatorname{Span}\{u_{ij}\} \subset \ell^2(\mathbb{F}) = \ell^2(\mathbb{F}O_n)$. Quantum Cayley graph:

- $\ell^2(\mathbb{X}^{(0)}) = \ell^2(\mathbb{F}), \ \ell^2(\mathbb{X}^{(1)}) = \ell^2(\mathbb{F}) \otimes \ell^2(\mathbb{S}),$
- $S(x \otimes y) = x\epsilon(y)$, $T(x \otimes y) = xy$, $\Theta(x \otimes y) = xy_{(1)} \otimes S(y_{(2)})$.

Put B = T - S, $\ell^2_{\wedge}(\mathbb{X}^{(1)}) = \operatorname{Ker}(\Theta + \operatorname{id})$.

Path cocycle : $p: \mathbb{C}[\Gamma] \to \ell^2_{\wedge}(\mathbb{X}^{(1)})$ such that $B \circ p = c_0$.

Theorem (V. 2012)

For $\Gamma = \mathbb{F}O_n$, $n \geq 3$, the operator $B : \ell^2_{\wedge}(\mathbb{X}^{(1)}) \to \ell^2(\mathbb{X}^{(0)})$ is invertible. There exists a unique path cocycle, and it is bounded.

Theorem (V. 2012)

For $\Gamma = \mathbb{F}U_n$, $n \geq 3$, there exists a unique path cocycle in a suitable dense subspace of $\ell^2_{\wedge}(\mathbb{X}^{(1)})$. It is unbounded but not proper.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Applications

Recall the classical case: every cocycle factors through the path cocycle.

Theorem (V. 2012)

For
$$\Gamma = \mathbb{F}O_n$$
, $n \geq 3$, every λ -cocycle $c : \mathbb{C}[\Gamma] \to \ell^2(\Gamma)^k$ is trivial.

Proof. In the quantum case, the values of the path cocycle p do not have finite support \rightarrow one needs an analytical version of the "factorization trick" above, which only works for ℓ^2 -cocycles, and Property RD.

Applications:

- $\forall k \ \beta_k^{(2)}(\mathbb{F}O_n) = 0$ [Collins-Härtel-Thom]
- $\delta^*(\mathbb{C}[\mathbb{F}O_n], h) = 1$ by [Connes-Shlyakhtenko] $\delta(\mathbb{C}[\mathbb{F}O_n], h) = 1$ if $C^*_{\mathrm{red}}(\mathbb{F}O_n)''$ is R^ω -embeddable

Outline

- Cocycles on discrete quantum groups
 - Definitions
 - Analytical properties
- Path cocycles on free quantum groups
 - Path cocycles
 - Vanishing of L^2 -cocycles
- \colongraph A proper cocycle on $\mathbb{F}O_n$
 - Construction of the cocycle
 - Applications

Action of O_n

By definition there is a surjective map

$$\pi: C^*(\mathbb{F}O_n) = C(O_n^+) \to C(O_n).$$

By Fell's absorption principle, the coproduct Δ factors to

$$\Delta': C^*_{\mathrm{red}}(\mathbb{F}O_n) \to C^*(\mathbb{F}O_n) \otimes C^*_{\mathrm{red}}(\mathbb{F}O_n).$$

We get an action of O_n on $C^*_{\mathrm{red}}(\mathbb{F}O_n)$ by automorphisms :

$$\alpha_{\mathbf{g}} = ((ev_{\mathbf{g}} \circ \pi) \otimes \mathrm{id}) \circ \Delta' : C^*_{\mathrm{red}}(\mathbb{F}O_n) \to C^*_{\mathrm{red}}(\mathbb{F}O_n).$$

Deformation of $C = C^*_{red}(\mathbb{F}O_n)$ **inside** $C \otimes C$

Consider the embedding $\iota = \Delta_{\mathrm{red}} : C = C^*_{\mathrm{red}}(\mathbb{F}O_n) \to C \otimes C$.

We deform ι by putting $\iota_g(x) = (\mathrm{id} \otimes \alpha_g)\iota : C \to C \otimes C$, for $g \in O_n$.

Note: using the conditional expectation $E: C \otimes C \to C$, one can recover Brannan's completely positive deformation, $T_t = E \circ \iota_g$ with t = Tr(g).

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Constructing a cocycle

General scheme : deformation by automorphisms \longleftrightarrow derivation into a C, C-bimodule \longleftrightarrow cocycle in a representation.

Some notation.

 u^{α} irreducible corepr. of $\mathbb{F}O_n \to v^{\alpha} = \pi_*(u^{\alpha})$ representation of O_n . $X = -X^t \neq 0 \in M_n(\mathbb{R})$ tangent vect. to O_n at $I \to$ differentation d_X .

Proposition (Fima-V.)

The cocycle associated to the previous deformation is

$$c_X: \mathbb{C}[\mathbb{F}O_n] \to \ell^2(\mathbb{F}O_n), \quad u_{ij}^{\alpha} \mapsto \sum_{kl} (d_X v_{kl}^{\alpha}) \times u_{ik}^{\alpha} u_{jl}^{\alpha*} \xi_0,$$

with respect to the adjoint representation $\operatorname{ad}: C^*(\mathbb{F}O_n) \to B(\ell^2(\mathbb{F}O_n))$. Moreover it is proper.

Example. c_X is determined by it value on generators. For $X = e_{12} - e_{21}$:

$$c_X(u_{ij}) = (u_{i1}u_{j2} - u_{i2}u_{j1})\xi_0.$$

The adjoint representation

Remark: in the unimodular case, ξ_0 is fixed by ad: $\epsilon \subset ad$.

However $c_X : \mathbb{C}[\mathbb{F}O_n] \to \ell^2(\mathbb{F}O_n)^\circ = \xi_0^\perp$.

Theorem (Fima-V.)

The subrepresentation $\operatorname{ad}^{\circ} \subset \operatorname{ad}$ on $\ell^{2}(\mathbb{F}O_{n})^{\circ}$ factors through λ .

 $\mathbb{F}O_n$ has a proper cocycle in a weakly- ℓ^2 repr. : property "strong (HH)".

By Ozawa-Popa-Sinclair, using CBAP [Freslon], one gets another proof of:

Theorem (Isono 2012)

For $n \geq 3$, the factor $\mathcal{L}(\mathbb{F}O_n)$ is strongly solid.

In particular it is prime and has no Cartan subalgebra.