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joint work with Benôıt Collins and Michael Brannan

University of Normandy (France)

Greifswald, march 11th, 2015

Roland Vergnioux (Univ. Normandy) Stabilizer subgroups Greifswald, march 11th, 2015 1 / 17



Introduction

Outline

1 Introduction
The universal NC orthogonal random matrix
Compact and discrete quantum groups
Main results

2 Stabilizer subgroups
Generating subgroups
Stabilizer subgroups of O+

n

Idea of the proof

3 Applications
Connes’ embedding property
Free entropy dimension and microstates

Roland Vergnioux (Univ. Normandy) Stabilizer subgroups Greifswald, march 11th, 2015 2 / 17



Introduction The universal NC orthogonal random matrix

A NC probability space

Underlying algebra defined by generators and relations [Wang]:

Ao(n) = 〈uij , 1 ≤ i , j ≤ n | uij = u∗ij , (uij) unitary〉.

We have a coproduct which allows to convolve states:

∆ : Ao(n)→ Ao(n)⊗Ao(n), uij 7→
∑

kuik⊗ukj .

In fact (Ao(n),∆) is a Woronowicz C ∗-algebra I unique bi-invariant state

h : Ao(n)→ C, (h⊗id)∆ = (id⊗h)∆ = 1h.

u ∈ Mn(C)⊗Ao(n) universal n × n orthogonal matrix with NC entries
Haar distributed NC random orthogonal matrix

I joint moments of the entries uij? n→∞ asymptotics?
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Introduction The universal NC orthogonal random matrix

Old and new results

Some known results about Ao(n) in NC probability:

χ1 =
∑

uii is a semicircular variable with respect to h [Banica 1997];

the elements (
√

n uij)i ,j≤N are asymptotically free and semi-circular
with respect to h as n→∞ [Banica-Collins 2007];

computation of the spectral measure of uij with respect to h for n
fixed [Banica-Collins-Zinn-Justin 2009];

convergence of (
√

n uij)i ,j≤N strongly in distribution [Brannan 2014].

Main result [Brannan-Collins-V.]:

The generators uij admit matricial microstates (if n 6= 3).

One consequence:

The (modified, microstate) free entropy dimension δ0(uij) equals 1.
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Introduction Compact and discrete quantum groups

Quantum groups

A Woronowicz C ∗-algebra is a unital C ∗-algebra A with ∗-homomorphism
∆ : A→ A⊗A (coproduct) such that

(∆⊗id)∆ = (id⊗∆)∆,

∆(A)(1⊗A) and ∆(A)(A⊗1) are dense in A⊗A.

Notation : A = C ∗(�) = C (G).

Examples :

G compact group, A = C (G ), ∆(f ) = ((x , y) 7→ f (xy)),
characterized by commutativity of A ;

Γ discrete group, A = C ∗(Γ), ∆(g) = g⊗g — but also A = C ∗red(Γ),
characterized by co-commutativity : Σ∆ = ∆.
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Introduction Compact and discrete quantum groups

Quantum groups

A Woronowicz C ∗-algebra is a unital C ∗-algebra A with ∗-homomorphism
∆ : A→ A⊗A (coproduct) such that

(∆⊗id)∆ = (id⊗∆)∆,

∆(A)(1⊗A) and ∆(A)(A⊗1) are dense in A⊗A.

Notation : A = C ∗(�) = C (G).

General theory :

Haar state h ∈ C ∗(�)∗ I GNS representation λ : C ∗(�)→ B(`2�),

C ∗red(�) = λ(C ∗(�)) is again a Woronowicz C ∗-algebra,

L (�) = C ∗red(�)′′ von Neumann algebra of �,

trivial representation / co-unit ε : C ∗f (�) = Cf(G)→ C,

f.-d. corepresentations v ∈ Mk(C)⊗C (G), intertwiners
T ∈ HomG(v ,w) ⊂ Ml ,k(C).

� is called unimodular if h is a trace, amenable if ε factors through λ.
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Introduction Compact and discrete quantum groups

Back to the algebra Ao(n)

Recall Wang’s algebra:

Ao(n) = 〈uij , 1 ≤ i , j ≤ n | uij = u∗ij , (uij) unitary〉.

Consider the discrete group FOn = (Z/2Z)∗n and the compact group On.
We have two interesting quotient maps:

Ao(n)→ Ao(n)/I ' C ∗(FOn) with I = 〈uij , i 6= j〉,
Ao(n)→ Ao(n)/J ' C (On) with J = 〈[uij , ukl ]〉.

We denote Ao(n) = C ∗(FOn) = C (O+
n ) with dual quantum groups:

FOn, the (discrete) “orthogonal free quantum group”;
O+

n , the (compact) “universal orthogonal quantum group”.
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Introduction Main results

Analogies with free group C ∗-algebras

FOn shares many properties with usual free groups.

FOn is non amenable for n ≥ 3 [Banica 1997];

L (FOn) is a full and strongly solid factor [Vaes-V. 2005, Isono 2012];

Rapid Decay [V. 2007], K-amenability [Voigt 2011], ...

As far as cocycles are concerned:

the “path cocycle” on FOn is trivial and H1
(2)(FOn) = 0 [V. 2012];

Haagerup’s Property [Brannan 2012]: existence of a proper cocyle;

classif. of central generating functionals [Franz-Kula-Cipriani 2014];

there is a proper cocyle living in the adjoint representation, which is
weakly contained in λ [Fima-V. 2014].
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Introduction Main results

Analogies with free group C ∗-algebras

FOn shares many properties with usual free groups.

FOn is non amenable for n ≥ 3 [Banica 1997];

L (FOn) is a full and strongly solid factor [Vaes-V. 2005, Isono 2012];

Rapid Decay [V. 2007], K-amenability [Voigt 2011], ...

Main result of this talk, restated:

L (FOn) embeds in Rω (Connes’ embedding property, n ≥ 3).

Strategy:

FO2 is amenable, hence L (FO2) ⊂ Rω I induction over n.

O+
n is generated by two copies of O+

n−1.
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Stabilizer subgroups Generating subgroups

Generating subgroups

G compact quantum group with full Woronowicz C ∗-algebra Cf(G).

Closed subgroup H ⊂ G: compact quantum group with surjective
Hopf-∗-homomorphism π : Cf(G)� Cf(H).

Inner faithful ∗-homomorphism f : C (G)→ B: for any factorization

f : Cf(G)
π−→ Cf(H)

g−→ B
with π surjective Hopf-∗-homomorphism, π is an isomorphism.

Definition

Let (H1, π1), (H2, π2) be closed subgroups of G. Then G = 〈H1,H2〉 if
(π1⊗π2) ◦∆ : Cf(G)→ Cf(H1)⊗Cf(H2) is inner faithful.

More generally, the subgroup H ⊂ G generated by H1, H2 is the Hopf
image of (π1⊗π2) ◦∆.
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Stabilizer subgroups Generating subgroups

Generating subgroups

Inner faithful ∗-homomorphism f : C (G)→ B: for any factorization

f : Cf(G)
π−→ Cf(H)

g−→ B
with π surjective Hopf-∗-homomorphism, π is an isomorphism.

Definition

Let (H1, π1), (H2, π2) be closed subgroups of G. Then G = 〈H1,H2〉 if
(π1⊗π2) ◦∆ : Cf(G)→ Cf(H1)⊗Cf(H2) is inner faithful.

Restriction: v ∈ Mn(C)⊗Cf (G) repr. of G + (H, π) closed subgroup
I (id⊗π)(v), restricted representation of H.

Proposition

G = 〈H1,H2〉 ⇐⇒ ∀v ,w ∈ Rep(G)
HomG(v ,w) = HomH1(v ,w) ∩HomH2(v ,w)
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Stabilizer subgroups Stabilizer subgroups of O+
n

Examples

H1, H2 ⊂ G classical compact groups I usual notions.

G = Γ̂ dual of discrete group Γ
I πi induced by surjective group morphisms πi : Γ→ Γi .
I Γ̂ = 〈Γ1 ,̂ Γ2 〉̂ ⇐⇒ Γ→ Γ1 × Γ2 faithful.

Some subgroups of O+
n :

ρ : C (O+
n )→ C (On), [uij , ukl ]→ 0.

πi : C (O+
n )→ C (O+

n−1,i ) ' C (O+
n−1), uii → 1.

Note that O+
n−1,i ⊂ O+

n is the stabilizer of ei ∈ Cn.

More generally if Gn(C) are the easy quantum groups associated to a
category of partitions C stable under block removal, we have
Gn−1(C) ⊂ Gn(C) as stabilizer subgroups.
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Stabilizer subgroups Stabilizer subgroups of O+
n

Examples

Some subgroups of O+
n :

ρ : C (O+
n )→ C (On), [uij , ukl ]→ 0.

πi : C (O+
n )→ C (O+

n−1,i ) ' C (O+
n−1), uii → 1.

Note that O+
n−1,i ⊂ O+

n is the stabilizer of ei ∈ Cn.

More generally if Gn(C) are the easy quantum groups associated to a
category of partitions C stable under block removal, we have
Gn−1(C) ⊂ Gn(C) as stabilizer subgroups.

Theorem

For n ≥ 4 and i 6= j we have O+
n = 〈O+

n−1,i ,O
+
n−1,j〉 = 〈O+

n−1,i ,On〉.
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Stabilizer subgroups Idea of the proof

Brauer diagrams

P2(k, l): set of partitions of k upper points and l lower points into pairs
NC2(k , l) ⊂ P2(k, l): pair partitions that can be represented by a planar
diagram with noncrossing strings

Let H = Cn and associate to p ∈ P(k , l) the linear map Tp : H⊗k → H⊗l :

Tp(ei1⊗ · · ·⊗eik ) =
∑
j

(
i1 . . . ik

p
j1 . . . jl

)
ej1⊗ · · ·⊗ejl ,

where the middle symbol is 1 if all blocs in p join pairs of equal indices,
and 0 if not.

Then:

HomOn(u⊗k , u⊗l) = Span{Tp | p ∈ P2(k , l)} [Brauer],

HomO+
n

(u⊗k , u⊗l) = Span{Tp | p ∈ NC2(k, l)} [Banica].
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Stabilizer subgroups Idea of the proof

A lemma of linear algebra

Denote TC2(k , l) ⊂ P2(k , l) the subset of diagrams where crossings are
allowed only with lines that are connected to an upper point. Then:

Lemma

HomO+
n−1,i

(1, u⊗k) = Span{Tp(ei⊗ · · ·⊗ei ) | s ≤ k, p ∈ TC2(s, k)}

Put ξs = e1⊗ · · ·⊗e1⊗e2 + e1⊗ · · ·⊗e2⊗e1 + · · ·+ e2⊗e1⊗ · · ·⊗e1 ∈ H⊗s .

Lemma

We have HomO+
n−1,i

(1, u⊗k) ∩HomO+
n−1,j

(1, u⊗k) = HomO+
n

(1, u⊗k)

iff the family of vectors {Tp(ξs) | 1 ≤ s ≤ k , p ∈ TC2(s, k)} is linearly
independant.
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Stabilizer subgroups Idea of the proof

A lemma of linear algebra

Put ξs = e1⊗ · · ·⊗e1⊗e2 + e1⊗ · · ·⊗e2⊗e1 + · · ·+ e2⊗e1⊗ · · ·⊗e1 ∈ H⊗s .

Lemma

We have HomO+
n−1,i

(1, u⊗k) ∩HomO+
n−1,j

(1, u⊗k) = HomO+
n

(1, u⊗k)

iff the family of vectors {Tp(ξs) | 1 ≤ s ≤ k , p ∈ TC2(s, k)} is linearly
independant.

Lemma

If n ≥ 4, the linear independance property of the previous lemma is true
for any k. As a result O+

n = 〈O+
n−1,i ,O

+
n−1,j〉.

Moreover we have strong numerical evidence of:

Conjecture

The same is true for n = 3.
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Applications Connes’ embedding property

Connes’ embedding property

Let Rω be an ultrapower of the hyperfinite II1 factor.
For A unital C ∗-algebra, define

CEP(A) = {τ : A→ C tracial state | πτ (A)′′ ↪→ Rω tracially},
where πτ is the GNS representation.

For � unimodular discrete quantum group: CEP(�) = CEP(C ∗f (�)).
We say that � is hyperlinear if h ∈ CEP(�), i.e. if its von Neumann
algebra L (�) embeds tracially in Rω.

Proposition

If τ1, τ2 ∈ CEP(�) then τ1 ∗ τ2 = (τ1⊗τ2) ◦ ∆ ∈ CEP(�).

If τn → τ pointwise and τn ∈ CEP(�) then τ ∈ CEP(�).
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Applications Connes’ embedding property

Connes’ embedding property

We say that � is hyperlinear if h ∈ CEP(�), i.e. if its von Neumann
algebra L (�) embeds tracially in Rω.

Proposition

If τ1, τ2 ∈ CEP(�) then τ1 ∗ τ2 = (τ1⊗τ2) ◦ ∆ ∈ CEP(�).

If τn → τ pointwise and τn ∈ CEP(�) then τ ∈ CEP(�).

Let (H1, π1), (H2, π2) be subgroups of G.
Denote hi = hHi

◦ πi : Cf(G)→ C and h = hG : Cf(G)→ C.

Proposition

We have G = 〈H1,H2〉 iff h = lim(h1 ∗ h2)∗n pointwise.

Corollary

If G = 〈H1,H2〉 and Ĥ1, Ĥ2 are hyperlinear, then Ĝ is hyperlinear.
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Applications Connes’ embedding property

Hyperlinearity of FOn

Corollary

If G = 〈H1,H2〉 and Ĥ1, Ĥ2 are hyperlinear, then Ĝ is hyperlinear.

Recall that FOn = Ô+
n and O+

n = 〈O+
n−1,i ,O

+
n−1,j〉 for n ≥ 4.

Moreover FO2 is hyperlinear because it is amenable.
I FOn hyperlinear for all n if O+

3 = 〈O+
2,i ,O2,j+〉.

Bypass to avoid the use of the conjecture at n = 3:

Lemma (after A. Chirvasitu)

We have O+
4 = 〈O+

2 ∗̂O
+
2 ,O4〉.

Altogether:

Theorem

FOn is hyperlinear for all n 6= 3.
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Applications Free entropy dimension and microstates

Free entropy dimension

Denote by δ0 Voiculescu’s modified free entropy dimension.

Consequence of Connes’ embedding property: we can apply Jung’s
“hyperfinite monotonicity” result. Since L (FOn) contains diffuse von
Neumann subalgebras this yields:

Corollary

For the generators uij of L (FOn), n 6= 3, we have 1 ≤ δ0(uij).

On the other hand we have an upper bound coming from `2-Betti
numbers. More precisely

δ0(uij) ≤ δ∗(uij) ≤ β
(2)
1 (FOn)− β(2)0 (FOn) + 1

by [Biane-Capitaine-Guionnet] and [Connes-Shlyakhtenko].
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Applications Free entropy dimension and microstates

Free entropy dimension

On the other hand we have an upper bound coming from `2-Betti
numbers. More precisely

δ0(uij) ≤ δ∗(uij) ≤ β
(2)
1 (FOn)− β(2)0 (FOn) + 1

by [Biane-Capitaine-Guionnet] and [Connes-Shlyakhtenko]. Moreover

Theorem (V. 2012)

We have β
(2)
1 (FOn) = 0 for all n ≥ 3.

Since FOn is infinite we have β
(2)
0 (FOn) = 0 [Kyed] and finally

Corollary

For the generators uij of L (FOn), n 6= 3, we have δ0(uij) = 1.
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Applications Free entropy dimension and microstates

Microstates

Connes’ embedding property is equivalent to the existence of matricial
microstates for the generators uij . More precisely, for every p ∈ N and
ε > 0 there exists k ∈ N and matrices aij ∈ Mk(C)sa such that

|tr(ai1j1 · · · aiq jq)− h(ui1j1 · · · uiq jq)| ≤ ε

for all i , j ∈ {1, . . . , n}q, q ≤ p.

Using the stabilizer subgroups one can write down an explicit construction:

explicit microstate
for O+

2 = SU−1(2)
=⇒ explicit microstate

for {uij} ⊂ O+
n

Questions : construct “natural” microstates / a “natural” asymptotic
random matrix model for O+

n ?
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