Introduction to Quantum Groups Operator algebraic aspects

Roland Vergnioux

University of Normandy (France)

Herstmonceux, 15 July 2015

3 K K 3 K

Outline

- Constructions and tools
 [Woronowicz, Baaj–Skandalis, Banica, ...]
 - Full and reduced C*-algebra
 - The dual C*-algebra
 - Corepresentations
 - The boundary of $\mathbb{F}O(Q)$
- Some operator-algebraic properties [Voiculescu, Ruan, Tomatsu, Brannan, DFSW, DCFY]
 - Amenability
 - Approximation properties
 - Haagerup AP for $\mathbb{F}O(Q)$

3 K K 3 K

The algebraic Setting

General setting

We are given: \mathscr{A} unital *-algebra and $\Delta : \mathscr{A} \to \mathscr{A} \odot \mathscr{A}$ *-hom. Assume: \mathscr{A} generated by u_{ij} such that $\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}$, $u = (u_{ij})$ and $\overline{u} = (u_{ij}^*)$ invertible in $M_N(\mathscr{A})$.

Examples

The algebraic Setting

General setting

We are given: \mathscr{A} unital *-algebra and $\Delta : \mathscr{A} \to \mathscr{A} \odot \mathscr{A}$ *-hom. Assume: \mathscr{A} generated by u_{ij} such that $\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}$, $u = (u_{ij})$ and $\overline{u} = (u_{ij}^*)$ invertible in $M_N(\mathscr{A})$.

→ (id⊗Δ)Δ = (Δ⊗id)Δ and
→ Span Δ(𝔄)(1 ⊙ 𝔄) = Span Δ(𝔄)(𝔄 ⊙ 1) = 𝔄 ⊙ 𝔄

Notation: $\mathscr{A} = \operatorname{Pol}(\mathbb{G}) = \mathbb{C}[\mathbb{F}].$ \mathbb{G} , \mathbb{F} are a "compact and a discrete quantum group in duality".

(人間) トイヨト イヨト ニヨ

The algebraic Setting

General setting

We are given: \mathscr{A} unital *-algebra and $\Delta : \mathscr{A} \to \mathscr{A} \odot \mathscr{A}$ *-hom. Assume: \mathscr{A} generated by u_{ij} such that $\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}$, $u = (u_{ij})$ and $\overline{u} = (u_{ij}^*)$ invertible in $M_N(\mathscr{A})$.

Examples

• $\mathscr{A} = \mathscr{A}_o(Q), \ Q \in GL_N(\mathbb{C}): \ A_o(Q) = \langle u_{ij} \mid u \text{ unitary}, u = Q\bar{u}Q^{-1} \rangle$ The elements $U_{ij} = \sum u_{ik} \otimes u_{kj}$ satisfy the relations $\rightarrow \Delta$. Notation: $\mathbb{T} = \mathbb{F}O(Q), \ \mathbb{G} = O^+(Q).$

• Special case
$$Q = \begin{pmatrix} 0 & 1 \\ -1/q & 0 \end{pmatrix} \rightarrow \mathscr{A}_o(Q) = \operatorname{Pol}(SU_q(2))$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The full and reduced C^* -algebras

Definition (Full C*-algebra)

We wish to define a norm on \mathscr{A} by

$$\|x\|_{\mathrm{f}} = \sup\{\|\pi(x)\|_{B(\mathcal{K})} \mid \pi : \mathscr{A} \to B(\mathcal{K}) * \operatorname{rep}\}.$$

Assumption: this is finite — " \mathscr{A} has an envelopping C^* -algebra". → completion $A_f = C_f(\mathbb{G}) = C_f^*(\mathbb{F})$

By universality, the coproduct Δ extends to

 $\Delta: C^*_{\mathrm{f}}(\mathbb{F}) \to C^*_{\mathrm{f}}(\mathbb{F}) \otimes C^*_{\mathrm{f}}(\mathbb{F})$

and $C_{f}^{*}(\mathbb{F})$ is a **Woronowicz** C^{*} -algebra (cf Adam's talk).

▲ 伊 ▶ ▲ 田 ▶ ▲ 田 ▶ ― 田

The full and reduced C^* -algebras

Still assume: \mathscr{A} has an envelopping C^* -algebra — e.g. (u_{ij}) unitary. **Theorem:** there exists a unique state $h : \mathscr{A} \to \mathbb{C}$ such that $(h \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes h)\Delta = 1 \circ h$, and it is faithful on \mathscr{A} .

Definition (Reduced C^* -algebra)

$$(\mathscr{A}, h) \to \Lambda : \mathscr{A} \hookrightarrow H = L^{2}(\mathbb{G}) = \ell^{2}(\mathbb{F}) \text{ with } \|\Lambda(x)\|^{2} = h(x^{*}x)$$
$$\to \lambda : \mathscr{A} \to B(H), \ \lambda(x)\Lambda(y) = \Lambda(xy)$$

$$imes$$
 completion $\mathcal{A}_{\mathrm{r}} = \mathcal{C}_{\mathrm{r}}(\mathbb{G}) = \mathcal{C}_{\mathrm{r}}^*(\mathbb{F}) = \overline{\mathrm{Img}}\,\lambda$

By invariance, the coproduct Δ extends to

$$\Delta: C^*_{\mathrm{r}}(\mathbb{F}) \to C^*_{\mathrm{r}}(\mathbb{F}) \otimes C^*_{\mathrm{r}}(\mathbb{F})$$

and $C_{\mathbf{r}}^*(\mathbb{F})$ is a **Woronowicz** C^* -algebra (cf Adam's talk).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The full and reduced C^* -algebras

Still assume: $\mathbb{C}[\Gamma]$ has an envelopping C^* -algebra — e.g. (u_{ij}) unitary.

→ potentially different Woronowicz C*-algebras $C_{\rm f}^*(\mathbb{F})$, $C_{\rm r}^*(\mathbb{F})$ → possibly others in between

Useful maps:

- $\lambda: C^*_{\mathrm{f}}(\mathbb{F}) \to C^*_{\mathrm{r}}(\mathbb{F})$ by definition (regular representation)
- $\epsilon: C^*_{\mathrm{f}}(\mathbb{F}) \to \mathbb{C}$ character s.t. $\epsilon(u_{ij}) = \delta_{ij}$ (trivial repr. / co-unit)
- $\Delta': C^*_{\mathrm{r}}(\mathbb{F}) \to C^*_{\mathrm{r}}(\mathbb{F}) \otimes C^*_{\mathrm{f}}(\mathbb{F})$ (Fell's absorption)

- ▲ @ ▶ ▲ 注 ▶ → 注 = - - の Q @

The dual C^* -algebra

Multiplicative Unitary

Define $V \in B(H \otimes H)$ by putting $V(\Lambda \otimes \Lambda)(x \otimes y) = (\Lambda \otimes \Lambda)(\Delta(x)(1 \otimes y))$.

$$\rightarrow C^*_{\mathrm{r}}(\mathbb{F}) = \overline{\mathrm{Span}}\{(\omega \otimes \mathrm{id})(V) \mid \omega \in B(H)_*\}$$

$$ightarrow V(x{\mathord{ \otimes } } 1)V^*=\Delta(x) ext{ for } x\in \mathit{C}^*_{\mathrm{r}}(\mathbb{\Gamma})$$

- 本間 と えき と えき とうき

The dual C^* -algebra

Multiplicative Unitary

Define $V \in B(H \otimes H)$ by putting $V(\Lambda \otimes \Lambda)(x \otimes y) = (\Lambda \otimes \Lambda)(\Delta(x)(1 \otimes y))$.

Definition (Dual C*-algebra)

We define $\hat{A} = C_0(\mathbb{F}) = C^*(\mathbb{G})$ and a coproduct $\Delta : \hat{A} \to M(\hat{A} \otimes \hat{A})$ by

$$C_0(\mathbb{F}) = \overline{\operatorname{Span}}\{(\operatorname{id}\otimes\omega)(V) \mid \omega \in B(H)_*\},\ \Delta(f) = V^*(1 \otimes f)V ext{ for } f \in C_0(\mathbb{F}).$$

We put also $C_b(\mathbb{F}) = M(C_0(\mathbb{F}))$.

向下 イヨト イヨト ニヨ

The dual C^* -algebra

Definition (Dual C*-algebra) We define $\hat{A} = C_0(\mathbb{F}) = C^*(\mathbb{G})$ and a coproduct $\Delta : \hat{A} \to M(\hat{A} \otimes \hat{A})$ by $C_0(\mathbb{F}) = \overline{\text{Span}}\{(\operatorname{id} \otimes \omega)(V) \mid \omega \in B(H)_*\},$ $\Delta(f) = V^*(1 \otimes f)V$ for $f \in C_0(\mathbb{F}).$

We put also $C_b(\mathbb{F}) = M(C_0(\mathbb{F}))$.

Duality

We have $V \in M(C_0(\mathbb{F}) \otimes C_r^*(\mathbb{F})) \rightarrow$ duality between $C_r^*(\mathbb{F})$ and $C_0(\mathbb{F})$: $\omega \in C_r^*(\mathbb{F})^* \rightarrow \tilde{\omega} = (\mathrm{id} \otimes \omega)(V) \in C_b(\mathbb{F}).$ V lifts to $V_f \in M(C_0(\mathbb{F}) \otimes C_f^*(\mathbb{F}))$ such that $V = (\mathrm{id} \otimes \lambda)(V_f)$, again:

$$\omega \in C^*_{\mathrm{f}}(\mathbb{F})^* extsf{argenta} \widetilde{\omega} = (\mathrm{id} \otimes \omega)(V_{\mathrm{f}}) \in \mathcal{C}_b(\mathbb{F}).$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

Irreducible (co)representations

Definition

K f.-d. Hilbert space, $v \in B(K) \otimes C^*_{\mathrm{f}}(\mathbb{\Gamma})$ unitary, $(\mathrm{id} \otimes \Delta)(v) = v_{12}v_{13}$

 \twoheadrightarrow "representation" of ${\mathbb G}$ / "corepresentation" of ${\mathbb F}$ and ${\mathscr A}$

Following the theory of the compact case:

- $f \in B(K_1, K_2)$ intertwiner if $(f \otimes 1)v_1 = v_2(f \otimes 1) \rightarrow \operatorname{Hom}(v_1, v_2)$
- $v_1 \sim v_2$ if $\operatorname{Hom}(v_1, v_2)$ contains a bijection
- v irreducible if $\operatorname{Hom}(v, v) = \mathbb{C}\operatorname{id} \twoheadrightarrow \operatorname{set} \operatorname{Irr} \Gamma$
- direct sum, tensor product, conjugate representation, ...

向下 イヨト イヨト 二日

Irreducible (co)representations

Definition

K f.-d. Hilbert space, $v \in B(K) \otimes C^*_{\mathrm{f}}(\mathbb{\Gamma})$ unitary, $(\mathrm{id} \otimes \Delta)(v) = v_{12}v_{13}$

 \twoheadrightarrow "representation" of ${\mathbb G}$ / "corepresentation" of ${\mathbb F}$ and ${\mathscr A}$

Application: "Decomposition of the regular repr. of \mathbb{G} " There is an isomorphism

 $\begin{array}{c} C_0(\mathbb{F}) \simeq \bigoplus_{\alpha \in \operatorname{Irr} \mathbb{F}} B(K_\alpha) \quad \text{s.t.} \quad V_{\mathrm{f}} \simeq \bigoplus v_\alpha. \end{array}$ Moreover $(\Delta \otimes \operatorname{id})(V_{\mathrm{f}}) = V_{\mathrm{f},13} V_{\mathrm{f},23} \simeq \bigoplus v_\alpha \otimes v_\beta. \end{array}$

Remark: in fact f.d. representations v live in $B(K) \odot \mathscr{A}$. \rightarrow allows to reconstruct \mathscr{A} from a Woronowicz C^* -algebra

Corepresentations of $\mathbb{F}O(Q)$ and the boundary

In this slide $\mathbb{T} = \mathbb{F}O(Q)$ and $Q\overline{Q} \in \mathbb{C}I_N$.

Theorem

One can write $\operatorname{Irr} \mathbb{F}O(Q) = \{v_k\}$ with $v_0 = 1$, $v_1 = u$, $\overline{v}_k \simeq v_k$ and $v_k \otimes v_1 \simeq v_{k-1} \oplus v_{k+1}$.

▲ 伊 ▶ ▲ 田 ▶ ▲ 田 ▶ ― 田

Corepresentations of $\mathbb{F}O(Q)$ and the boundary

In this slide $\mathbb{T} = \mathbb{F}O(Q)$ and $Q\bar{Q} \in \mathbb{C}I_N$.

Theorem

One can write $\operatorname{Irr} \mathbb{F}O(Q) = \{v_k\}$ with $v_0 = 1$, $v_1 = u$, $\overline{v}_k \simeq v_k$ and $v_k \otimes v_1 \simeq v_{k-1} \oplus v_{k+1}$.

An application

 $\begin{aligned} r \in \operatorname{Hom}(v_{k+1}, v_k \otimes v_1) \text{ isometric } & \mathsf{UCP map (cf Mike's talk)} \\ R &= \left(\Phi_{k+1}^{k,1}\right)^* : B(H_k) \to B(H_{k+1}), f \mapsto r^*(f \otimes \operatorname{id})r. \end{aligned}$ We put $C(\partial \mathbb{F}O(Q)) = \varinjlim(B(H_k), R).$

Recall $B(H_k) \subset C_0(\mathbb{F}) \rightarrow \partial \mathbb{F} =$ "projective limit of spheres".

Corepresentations of $\mathbb{F}O(Q)$ and the boundary

In this slide $\mathbb{T} = \mathbb{F}O(Q)$ and $Q\bar{Q} \in \mathbb{C}I_N$.

An application

 $r \in \operatorname{Hom}(v_{k+1}, v_k \otimes v_1)$ isometric $ightarrow \mathsf{UCP}$ map (cf Mike's talk)

 $R = \left(\Phi_{k+1}^{k,1}\right)^* : B(H_k) \to B(H_{k+1}), f \mapsto r^*(f \otimes \mathrm{id})r.$

We put $C(\partial \mathbb{F}O(Q)) = \varinjlim(B(H_k), R).$

Recall $B(H_k) \subset C_0(\mathbb{F}) \rightarrow \partial \mathbb{F} =$ "projective limit of spheres".

Theorem

 $C(\partial \mathbb{T}) \subset C_b(\mathbb{T})/C_0(\mathbb{T})$ is a infinite-dimensional unital *-subalgebra. It is stable under the left and right actions of \mathbb{T} . The restriction of the left (resp. right) action is amenable (resp. trivial).

Application: exactness and property "AO+", solidity of the von Neumann algebra $C^*_{\rm r}(\mathbb{F})''$.

Amenability : definition(s)

Definition

 \square is called

• weakly amenable if $C_b(\mathbb{F})$ admits an invariant state m: $\forall \ \omega \in C_b(\mathbb{F})_*, \ f \in C_b(\mathbb{F}) \ m((\omega \otimes \mathrm{id})\Delta(f)) = \omega(1)m(f).$

• strongly amenable if $\lambda : C_{f}^{*}(\mathbb{T}) \to C_{r}^{*}(\mathbb{T})$ is an isomorphism.

Note: strongly amenable $\Leftrightarrow \epsilon$ factors through λ \Leftrightarrow almost invariant vectors in H. For Γ classical, $m : \mathcal{P}(\Gamma) \to [0, 1]$ invariant, finitely additive, $m(\Gamma) = 1$.

Theorem

For discrete quantum groups, weakly amenable \Leftrightarrow strongly amenable.

" \Rightarrow " is harder if h is not tracial, and still open in the locally compact case.

Amenability : examples

Fusion rules: $\alpha \otimes \beta \simeq \bigoplus m_{\alpha\beta}^{\gamma} \gamma$ with α , β , $\gamma \in \operatorname{Irr} \mathbb{F}$

Theorem

Assume \mathbb{F} , \mathbb{A} have the same fusion rules. If \mathbb{F} is amenable, dim $v_{\alpha}^{\mathbb{F}} \leq \dim v_{\alpha}^{\mathbb{A}}$ for all α . \mathbb{A} is amenable **iff** we have = for all α .

"Amenability is a property of the dimension function on the fusion ring."

Examples

- Finite or abelian groups are amenable ; non-ab. free groups are not.
- The dual of a classical G is always amenable.
- The dual of $SU_q(2)$ is amenable.
- $\mathbb{F}O(Q)$ is amenable iff N = 2. Note: $\operatorname{Sp}(\sum u_{ii}) = [-2, 2]$ in $C_r^*(\mathbb{F})$, and $\epsilon(\sum u_{ii}) = N$.

向下 イヨト イヨト 二日

Approximation properties

Fix (A, h) unital separable C^* -algebra with faithful state. Approximation property: $\exists T_n : A \to A \text{ s.t. } \forall a \in A || T_n(a) - a || \xrightarrow[n\infty]{} 0.$ Some examples:

- CPAP: T_n UCP and finite rank
- CBAP: T_n uniformly CB and finite rank
- HAP: T_n UCP and compact on $L^2(A, h)$

Theorem

 \mathbb{F} amenable $\Rightarrow C^*_r(\mathbb{F})$ has the CPAP. \Leftarrow holds if h is tracial.

Proof.
$$\Rightarrow$$
: $T_{\varphi} = (\mathrm{id} \otimes \varphi) \circ \Delta'$ for $\varphi \in C^*_{\mathrm{f}}(\mathbb{F})^*$, $T_{\epsilon} = \mathrm{id}$.

 $\begin{array}{ll} \mbox{Strong amenability} \Leftrightarrow \epsilon \mbox{ approximated by vector states for } \lambda \\ \Leftrightarrow \mbox{ by states } \varphi \mbox{ such that } \tilde{\varphi} \mbox{ has finite rank.} \end{array}$

 $\Leftarrow: \mathsf{have to reconstruct} \ \varphi \ \mathsf{from} \ \mathsf{T}.$

医静脉 医原体 医原体 医原

Approximation properties

Fix (A, h) unital separable C^* -algebra with faithful state. Approximation property: $\exists T_n : A \to A \text{ s.t. } \forall a \in A || T_n(a) - a || \xrightarrow[n\infty]{} 0.$ Some examples:

- CPAP: T_n UCP and finite rank
- CBAP: T_n uniformly CB and finite rank
- HAP: T_n UCP and compact on $L^2(A, h)$

Theorem

If there exist states $\varphi_n \in C^*_{\mathrm{f}}(\mathbb{F})^*$ s.t. $\varphi_n \to \epsilon$ *-weakly and $\tilde{\varphi}_n \in C_0(\mathbb{F})$, then $C^*_{\mathrm{r}}(\mathbb{F})$ has the HAP. \Leftarrow holds if h is a trace.

Proof. \Rightarrow : $T_{\varphi} = (id \otimes \varphi) \circ \Delta'$ for $\varphi \in C_{f}^{*}(\mathbb{F})^{*}$, $T_{\epsilon} = id$. \Leftarrow : have to reconstruct φ from T.

化橡胶 化医胶 化医胶 一座

$\mathbb{F}O(Q)$ has the HAP

Consider φ_t given by $\tilde{\varphi}_t = \sum \frac{[k+1]_t}{[k+1]_N} id_k \in \bigoplus B(H_k)$. Clearly $\tilde{\varphi}_t \in C_0(\mathbb{F})$ and $\varphi_t \to \epsilon$ as $t \to N$. Is φ_t a state?

Approach 1 ($Q = I_N$) Uses $B = \langle \sum u_{ii} \rangle \subset C^*_{f}(\mathbb{F}).$

In the unimodular case, the "orthogonal projection" extends to a positive contraction $P: C_{\rm f}^*(\mathbb{F}) \twoheadrightarrow B$.

For $\mathbb{F}O(I_N)$, $B \simeq C([-N, N])$ and a computation shows that $\varphi_t = \operatorname{ev}_t \circ P$.

$\mathbb{F}O(Q)$ has the HAP

Consider
$$\varphi_t$$
 given by $\tilde{\varphi}_t = \sum \frac{[k+1]_t}{[k+1]_N} id_k \in \bigoplus B(H_k)$.
Clearly $\tilde{\varphi}_t \in C_0(\mathbb{F})$ and $\varphi_t \to \epsilon$ as $t \to N$. Is φ_t a state?

Monoidal equivalence

"Abstract" equivalence $F : \operatorname{Corep} \mathbb{F}_1 \to \operatorname{Corep} \mathbb{F}_2$ (\Rightarrow same fusion rules). Classical cases G, Γ : implies isomorphism. Every $O^+(Q)$ is monoidally equivalent to an $SU_q(2)$.

Approach 2

If $\tilde{\varphi} = \sum f(\alpha) \mathrm{id}_{\alpha}$ and $\mathbb{\Gamma} \sim_{\mathrm{mon}} \mathbb{\Gamma}'$, define φ' on $C_{\mathrm{f}}^{*}(\mathbb{\Gamma}')$ by $\tilde{\varphi}' = \sum f(\alpha) \mathrm{id}'_{\alpha}$. Fact: $\|T_{\varphi}\|_{\mathrm{cb}} = \|T_{\varphi'}\|_{\mathrm{cb}}$. In particular φ state $\Leftrightarrow \varphi'$ state.

Proposition

On $C(SU_q(2))$, φ_t is the vaccum state in the "Podleś sphere" representations constructed by Voigt.

(4個) (4回) (4回) (5)