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Outline

1 Constructions and tools
[Woronowicz, Baaj–Skandalis, Banica, ...]

– Full and reduced C∗-algebra
– The dual C∗-algebra
– Corepresentations
– The boundary of FO(Q)

2 Some operator-algebraic properties
[Voiculescu, Ruan, Tomatsu, Brannan, DFSW, DCFY]

– Amenability
– Approximation properties
– Haagerup AP for FO(Q)
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The algebraic Setting

General setting

We are given: A unital ∗-algebra and ∆ : A → A �A ∗-hom.

Assume: A generated by uij such that ∆(uij) =
∑

uik⊗ukj ,
u = (uij) and ū = (u∗ij) invertible in MN(A ).

I (id⊗∆)∆ = (∆⊗id)∆ and
I Span∆(A )(1�A ) = Span∆(A )(A � 1) = A �A

Examples

G ⊂ UN compact group of matrices
A = Pol(G ), uij : G → C coordinate maps
∆(uij)(g , h) =

∑
gikhkj = uij(gh)

Γ = 〈γi 〉 finitely generated group
A = C[Γ], u = diag(γi ), ∆(γ) = γ⊗γ
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The algebraic Setting

General setting

We are given: A unital ∗-algebra and ∆ : A → A �A ∗-hom.

Assume: A generated by uij such that ∆(uij) =
∑

uik⊗ukj ,
u = (uij) and ū = (u∗ij) invertible in MN(A ).

I (id⊗∆)∆ = (∆⊗id)∆ and
I Span∆(A )(1�A ) = Span∆(A )(A � 1) = A �A

Notation: A = Pol(G) = C[�].
G, � are a “compact and a discrete quantum group in duality”.
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The algebraic Setting

General setting

We are given: A unital ∗-algebra and ∆ : A → A �A ∗-hom.

Assume: A generated by uij such that ∆(uij) =
∑

uik⊗ukj ,
u = (uij) and ū = (u∗ij) invertible in MN(A ).

I (id⊗∆)∆ = (∆⊗id)∆ and
I Span∆(A )(1�A ) = Span∆(A )(A � 1) = A �A

Examples

A = Ao(Q), Q ∈ GLN(C): Ao(Q) = 〈uij | u unitary, u = QūQ−1〉
The elements Uij =

∑
uik⊗ukj satisfy the relations I∆.

Notation: � = FO(Q), G = O+(Q).

Special case Q =
(

0 1
−1/q 0

)
IAo(Q) = Pol(SUq(2))
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The full and reduced C ∗-algebras

Definition (Full C ∗-algebra)

We wish to define a norm on A by

‖x‖f = sup{‖π(x)‖B(K) | π : A → B(K ) ∗-rep}.
Assumption: this is finite — “A has an envelopping C ∗-algebra”.
I completion Af = Cf(G) = C ∗f (�)

By universality, the coproduct ∆ extends to

∆ : C ∗f (�)→ C ∗f (�)⊗C ∗f (�)

and C ∗f (�) is a Woronowicz C ∗-algebra (cf Adam’s talk).
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The full and reduced C ∗-algebras

Still assume: A has an envelopping C ∗-algebra — e.g. (uij) unitary.
Theorem: there exists a unique state h : A → C such that
(h⊗id)∆ = (id⊗h)∆ = 1 ◦ h, and it is faithful on A .

Definition (Reduced C ∗-algebra)

(A , h) I Λ : A ↪→ H = L2(G) = `2(�) with ‖Λ(x)‖2 = h(x∗x)
I λ : A → B(H), λ(x)Λ(y) = Λ(xy)

I completion Ar = Cr(G) = C ∗r (�) = Img λ

By invariance, the coproduct ∆ extends to

∆ : C ∗r (�)→ C ∗r (�)⊗C ∗r (�)

and C ∗r (�) is a Woronowicz C ∗-algebra (cf Adam’s talk).
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The full and reduced C ∗-algebras

Still assume: C[�] has an envelopping C ∗-algebra — e.g. (uij) unitary.

I potentially different Woronowicz C ∗-algebras C ∗f (�), C ∗r (�)
I possibly others in between

Useful maps:

λ : C ∗f (�)→ C ∗r (�) by definition (regular representation)

ε : C ∗f (�)→ C character s.t. ε(uij) = δij (trivial repr. / co-unit)

∆′ : C ∗r (�)→ C ∗r (�)⊗C ∗f (�) (Fell’s absorption)
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The dual C ∗-algebra

Multiplicative Unitary
Define V ∈ B(H⊗H) by putting V (Λ⊗Λ)(x⊗y) = (Λ⊗Λ)(∆(x)(1⊗y)).

I C ∗r (�) = Span{(ω⊗id)(V ) | ω ∈ B(H)∗}
I V (x⊗1)V ∗ = ∆(x) for x ∈ C ∗r (�)
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The dual C ∗-algebra

Multiplicative Unitary
Define V ∈ B(H⊗H) by putting V (Λ⊗Λ)(x⊗y) = (Λ⊗Λ)(∆(x)(1⊗y)).

Definition (Dual C ∗-algebra)

We define Â = C0(�) = C ∗(G) and a coproduct ∆ : Â→ M(Â⊗Â) by

C0(�) = Span{(id⊗ω)(V ) | ω ∈ B(H)∗},
∆(f ) = V ∗(1⊗f )V for f ∈ C0(�).

We put also Cb(�) = M(C0(�)).
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The dual C ∗-algebra

Definition (Dual C ∗-algebra)

We define Â = C0(�) = C ∗(G) and a coproduct ∆ : Â→ M(Â⊗Â) by

C0(�) = Span{(id⊗ω)(V ) | ω ∈ B(H)∗},
∆(f ) = V ∗(1⊗f )V for f ∈ C0(�).

We put also Cb(�) = M(C0(�)).

Duality
We have V ∈ M(C0(�)⊗C ∗r (�)) I duality between C ∗r (�) and C0(�):

ω ∈ C ∗r (�)∗ I ω̃ = (id⊗ω)(V ) ∈ Cb(�).

V lifts to Vf ∈ M(C0(�)⊗C ∗f (�)) such that V = (id⊗λ)(Vf), again:

ω ∈ C ∗f (�)∗ I ω̃ = (id⊗ω)(Vf) ∈ Cb(�).
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Irreducible (co)representations

Definition
K f.-d. Hilbert space, v ∈ B(K )⊗C ∗f (�) unitary, (id⊗∆)(v) = v12v13
I “representation” of G / “corepresentation” of � and A

Following the theory of the compact case:

f ∈ B(K1,K2) intertwiner if (f⊗1)v1 = v2(f⊗1) IHom(v1, v2)

v1 ∼ v2 if Hom(v1, v2) contains a bijection

v irreducible if Hom(v , v) = Cid I set Irr�

direct sum, tensor product, conjugate representation, ...
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Irreducible (co)representations

Definition
K f.-d. Hilbert space, v ∈ B(K )⊗C ∗f (�) unitary, (id⊗∆)(v) = v12v13
I “representation” of G / “corepresentation” of � and A

Application: “Decomposition of the regular repr. of G”
There is an isomorphism

C0(�) '
⊕

α∈Irr� B(Kα) s.t. Vf '
⊕

vα.
Moreover (∆⊗id)(Vf) = Vf,13Vf,23 '

⊕
vα⊗vβ.

Remark: in fact f.d. representations v live in B(K )�A .
I allows to reconstruct A from a Woronowicz C ∗-algebra
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Corepresentations of FO(Q) and the boundary

In this slide � = FO(Q) and QQ̄ ∈ CIN .

Theorem

One can write IrrFO(Q) = {vk} with v0 = 1, v1 = u, v̄k ' vk and
vk⊗v1 ' vk−1 ⊕ vk+1.
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Corepresentations of FO(Q) and the boundary

In this slide � = FO(Q) and QQ̄ ∈ CIN .

Theorem

One can write IrrFO(Q) = {vk} with v0 = 1, v1 = u, v̄k ' vk and
vk⊗v1 ' vk−1 ⊕ vk+1.

An application
r ∈ Hom(vk+1, vk⊗v1) isometric I UCP map (cf Mike’s talk)

R =
(
Φk,1
k+1

)∗
: B(Hk)→ B(Hk+1), f 7→ r∗(f⊗id)r .

We put C (∂FO(Q)) = lim−→(B(Hk),R).

Recall B(Hk) ⊂ C0(�) I ∂� = “projective limit of spheres”.
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Corepresentations of FO(Q) and the boundary

In this slide � = FO(Q) and QQ̄ ∈ CIN .

An application
r ∈ Hom(vk+1, vk⊗v1) isometric I UCP map (cf Mike’s talk)

R =
(
Φk,1
k+1

)∗
: B(Hk)→ B(Hk+1), f 7→ r∗(f⊗id)r .

We put C (∂FO(Q)) = lim−→(B(Hk),R).

Recall B(Hk) ⊂ C0(�) I ∂� = “projective limit of spheres”.

Theorem

C (∂�) ⊂ Cb(�)/C0(�) is a infinite-dimensional unital ∗-subalgebra.
It is stable under the left and right actions of �.
The restriction of the left (resp. right) action is amenable (resp. trivial).

Application: exactness and property “AO+”, solidity of the von Neumann
algebra C ∗r (�)′′.
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Amenability : definition(s)

Definition

� is called

weakly amenable if Cb(�) admits an invariant state m:
∀ ω ∈ Cb(�)∗, f ∈ Cb(�) m((ω⊗id)∆(f )) = ω(1)m(f ).

strongly amenable if λ : C ∗f (�)→ C ∗r (�) is an isomorphism.

Note: strongly amenable ⇔ ε factors through λ
⇔ almost invariant vectors in H.

For Γ classical, m : P(Γ)→ [0, 1] invariant, finitely additive, m(Γ) = 1.

Theorem

For discrete quantum groups, weakly amenable ⇔ strongly amenable.

“⇒” is harder if h is not tracial, and still open in the locally compact case.
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Amenability : examples

Fusion rules: α⊗β '
⊕

mγ
αβγ with α, β, γ ∈ Irr�

Theorem

Assume �, � have the same fusion rules. If � is amenable,
dim v�

α ≤ dim v�
α for all α. � is amenable iff we have = for all α.

“Amenability is a property of the dimension function on the fusion ring.”

Examples

Finite or abelian groups are amenable ; non-ab. free groups are not.

The dual of a classical G is always amenable.

The dual of SUq(2) is amenable.

FO(Q) is amenable iff N = 2.
Note: Sp(

∑
uii ) = [−2, 2] in C ∗r (�), and ε(

∑
uii ) = N.
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Approximation properties

Fix (A, h) unital separable C ∗-algebra with faithful state.
Approximation property: ∃ Tn : A→ A s.t. ∀a ∈ A ‖Tn(a)− a‖ −→

n∞
0.

Some examples:

CPAP: Tn UCP and finite rank

CBAP: Tn uniformly CB and finite rank

HAP: Tn UCP and compact on L2(A, h)

Theorem

� amenable ⇒ C ∗r (�) has the CPAP. ⇐ holds if h is tracial.

Proof. ⇒: Tϕ = (id⊗ϕ) ◦∆′ for ϕ ∈ C ∗f (�)∗, Tε = id.

Strong amenability ⇔ ε approximated by vector states for λ
⇔ by states ϕ such that ϕ̃ has finite rank.

⇐: have to reconstruct ϕ from T .
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Approximation properties

Fix (A, h) unital separable C ∗-algebra with faithful state.
Approximation property: ∃ Tn : A→ A s.t. ∀a ∈ A ‖Tn(a)− a‖ −→

n∞
0.

Some examples:

CPAP: Tn UCP and finite rank

CBAP: Tn uniformly CB and finite rank

HAP: Tn UCP and compact on L2(A, h)

Theorem

If there exist states ϕn ∈ C ∗f (�)∗ s.t. ϕn → ε ∗-weakly and ϕ̃n ∈ C0(�),
then C ∗r (�) has the HAP. ⇐ holds if h is a trace.

Proof. ⇒: Tϕ = (id⊗ϕ) ◦∆′ for ϕ ∈ C ∗f (�)∗, Tε = id.
⇐: have to reconstruct ϕ from T .
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FO(Q) has the HAP

Consider ϕt given by ϕ̃t =
∑

[k+1]t
[k+1]N

idk ∈
⊕

B(Hk).

Clearly ϕ̃t ∈ C0(�) and ϕt → ε as t → N. Is ϕt a state?

Approach 1 (Q = IN)
Uses B = 〈

∑
uii 〉 ⊂ C ∗f (�).

In the unimodular case, the “orthogonal projection” extends to a positive
contraction P : C ∗f (�)� B.
For FO(IN), B ' C ([−N,N]) and a computation shows that ϕt = evt ◦P.
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FO(Q) has the HAP

Consider ϕt given by ϕ̃t =
∑

[k+1]t
[k+1]N

idk ∈
⊕

B(Hk).

Clearly ϕ̃t ∈ C0(�) and ϕt → ε as t → N. Is ϕt a state?

Monoidal equivalence
“Abstract” equivalence F : Corep�1 → Corep�2 (⇒ same fusion rules).
Classical cases G , Γ: implies isomorphism.
Every O+(Q) is monoidally equivalent to an SUq(2).

Approach 2
If ϕ̃ =

∑
f (α)idα and � ∼mon �′, define ϕ′ on C ∗f (�′) by ϕ̃′ =

∑
f (α)id′α.

Fact: ‖Tϕ‖cb = ‖Tϕ′‖cb. In particular ϕ state ⇔ ϕ′ state.

Proposition

On C (SUq(2)), ϕt is the vaccum state in the “Podleś sphere”
representations constructed by Voigt.
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