Furstenberg boundary for discrete quantum groups

Roland Vergnioux

joint work with M. Kalantar, P. Kasprzak, A. Skalski

University of Normandy (France)

Seoul, April 7, 2021

Outline

- Introduction
 - Motivation
 - Discrete quantum groups
 - Actions
 - Orthogonal free quantum groups
- 2 Boundary actions
 - Γ-boundaries
 - Boundaries and unique stationarity
 - The Gromov boundary of $\mathbb{F}O_Q$
 - An $\mathbb{F}O_Q$ -boundary
- 3 Applications
 - Uniqueness of trace
 - Universal boundary and the amenable radical

Motivation

- → notion of Γ-boundary in topological dynamics (Furstenberg, 1950s)
- → surprising connection with the structure of **reduced group** *C**-**algebra** (Kalantar-Kennedy, Breuillard-Kalantar-Kennedy-Ozawa, 2010s)

```
 \begin{array}{c} \Gamma \text{ discrete group} \  \, \to \  \, \text{translation operators} \  \, \lambda(g) \in B(\ell^2\Gamma) \\ \quad \  \, \to \  \, \text{reduced} \  \, C^*\text{-algebra} \  \, C^*_{\mathrm{red}}(\Gamma) = \overline{\mathrm{Span}} \  \, \{\lambda(g), g \in \Gamma\} \\ \quad \  \, \to \  \, \text{with trace} \  \, h(x) = (\mathbbm{1}_e \mid x \mathbbm{1}_e), \  \, h(\lambda(g)) = \delta_{g,e} \\ \text{Trace} : \  \, \varphi : C^*_{\mathrm{red}}(\Gamma) \to \mathbb{C}, \  \, \text{positive, unital}, \  \, \varphi(xy) = \varphi(yx). \end{array}
```

Theorem (BKKO)

 $C^*_{\mathrm{red}}(\Gamma)$ simple $\Leftrightarrow \exists$ free Γ -boundary $\Gamma \curvearrowright X$. $C^*_{\mathrm{red}}(\Gamma)$ has a unique trace $\Leftrightarrow \exists$ faithful Γ -boundary $\Gamma \curvearrowright X$.

In particular simplicity \Rightarrow uniqueness of trace for reduced C^* -algebras of discrete groups. The converse is false.

4 D > 4 P > 4 E > 4 E > E | E 9 Q P

Discrete quantum groups

A discrete quantum group Γ is given by :

- a von Neumann algebra $\ell^\infty(\Gamma)=igoplus_{lpha\in I}^{\ell^\infty}B(H_lpha)$ with dim $H_lpha<\infty$
- a normal *-homomorphism $\Delta: \ell^\infty(\mathbb{\Gamma}) \to \ell^\infty(\mathbb{\Gamma}) \bar{\otimes} \ell^\infty(\mathbb{\Gamma})$ such that $(\Delta \otimes \mathrm{id})\Delta = (\mathrm{id} \otimes \Delta)\Delta$ (coproduct)
- ullet left and right Δ -invariant nsf weights h_L , h_R on $\ell^\infty(\mathbb{\Gamma})$

 Γ is unimodular if $h_L = h_R$. Denote $\ell^2(\Gamma) = L^2(\ell^{\infty}(\Gamma), h_L)$.

Classical case :
$$\mathbb{F} = \Gamma = I$$
, $\ell^{\infty}(\mathbb{F}) = \ell^{\infty}(\Gamma)$, $\Delta(f) = ((r, s) \mapsto f(rs))$, $h_L(f) = h_R(f) = \sum_{r \in \Gamma} f(r)$.

In general : coproduct \rightarrow tensor product $\pi \otimes \rho := (\pi \otimes \rho)\Delta$ for representations π , ρ of $\ell^{\infty}(\mathbb{\Gamma}) \rightarrow$ tensor C^* -category $\operatorname{Corep}(\mathbb{\Gamma})$. I: irreducible objects up to equivalence.

The multiplication table of Γ is replaced by the spaces $\operatorname{Hom}(\alpha,\beta\otimes\gamma)$.

4 D > 4 A P > 4 E > 4 E > E E 9 Q P

Actions

Canonical dense subalgebra : $c_0(\Gamma) \subset \ell^{\infty}(\Gamma)$ given by $\bigoplus_{\alpha \in I}^{c_0}$. A Γ - C^* -algebra is a C^* -algebra A equipped with a *-homomorphism $\alpha: A \to M(c_0(\mathbb{F}) \otimes A)$ such that $(id \otimes \alpha)\alpha = (\Delta \otimes id)\alpha$ (coaction).

For
$$a \in A$$
, $\nu \in A^*$, $\mu \in c_0(\mathbb{\Gamma})^*$ we can then define
$$\frac{L_{\mu}(a) = (\mu \otimes \mathrm{id})\alpha(a) \in M(A),}{P_{\nu}(a) = (\mathrm{id} \otimes \nu)\alpha(a) \in \ell^{\infty}(\mathbb{\Gamma}),}$$
$$\frac{\mu * \nu}{\mu} = (\mu \otimes \nu)\alpha \in A^*.$$

A Γ -map $T:A\to B$ is a linear map such that $T\circ L_\mu=L_\mu\circ T$.

Classical case :
$$\Gamma \curvearrowright X$$
, $A = C_0(X)$, $\alpha(f) = ((r, x) \mapsto f(r \cdot x))$.

Example : $A = c_0(\Gamma)$, $\alpha = \Delta$ "translation action".

By invariance, the maps L_{μ} extend to bounded operators on $\ell^{2}(\mathbb{\Gamma})$.

 $ightharpoonup C^*$ -algebra $\overline{C^*_{rod}(\Gamma)} = \overline{\operatorname{Span}} \{L_u\}$ with state $h = (\xi_0 \mid \cdot \xi_0)$.

Note: h is a trace $\Leftrightarrow \Gamma$ unimodular.

Actions

Canonical dense subalgebra : $c_0(\Gamma) \subset \ell^{\infty}(\Gamma)$ given by $\bigoplus_{\alpha \in I}^{c_0}$. A Γ - C^* -algebra is a C^* -algebra A equipped with a *-homomorphism $\alpha: A \to M(c_0(\mathbb{F}) \otimes A)$ such that $(\mathrm{id} \otimes \alpha)\alpha = (\Delta \otimes \mathrm{id})\alpha$ (coaction).

For
$$a \in A$$
, $\nu \in A^*$, $\mu \in c_0(\mathbb{\Gamma})^*$ we can then define $L_{\mu}(a) = (\mu \otimes \mathrm{id})\alpha(a) \in M(A)$, $P_{\nu}(a) = (\mathrm{id} \otimes \nu)\alpha(a) \in \ell^{\infty}(\mathbb{\Gamma})$, $\mu * \nu = (\mu \otimes \nu)\alpha \in A^*$.

A Γ -map $T: A \to B$ is a linear map such that $T \circ L_{\mu} = L_{\mu} \circ T$.

Definition

The cokernel $N_{\alpha} \subset \ell^{\infty}(\mathbb{F})$ of α is the weak closure of $\{P_{\nu}(a), a \in A, \nu \in A^*\}$. We say that α is faithful if $N_{\alpha} = \ell^{\infty}(\mathbb{\Gamma})$.

We have $\Delta(N_{\alpha}) \subset N_{\alpha} \otimes N_{\alpha}$. In the classical case this implies $N_{\alpha} = \ell^{\infty}(\Gamma)^{\Lambda}$ with $\Lambda \lhd \Gamma$, and we have $\Lambda = \operatorname{Ker} \alpha$ in this case. In the quantum case N_{α} is not necessarily associated to a subgroup $\mathbb{A} < \mathbb{F}$...

Orthogonal free quantum groups

Let $N \in \mathbb{N}$, $Q \in GL_N(\mathbb{C})$ s.t. $Q\bar{Q} = \pm I_N$.

The discrete quantum group $\Gamma = \mathbb{F}O(Q)$ can be described as follows:

- ightharpoonup Corep($\mathbb{F} O(Q)$) is the Temperley-Lieb category with $\delta = \mathrm{Tr}(Q^*Q)$,
- $ightharpoonup I = \mathbb{N}$ with $k \otimes 1 \simeq 1 \otimes k \simeq (k-1) \oplus (k+1)$, $\bar{k} = k$,
- $ightharpoonup H_0=\mathbb{C}$, $H_1=\mathbb{C}^N$ and $\operatorname{Hom}(0,1\otimes 1)=\mathbb{C} t_1$ with $t_1=\sum e_i\otimes Qe_i$.

We can then construct H_k by induction, $\ell^{\infty}(\mathbb{F}O_Q)$ and compute Δ .

Assume $Q = I_N$ — we write $\mathbb{F}O_Q = \mathbb{F}O_N$.

$$oxed{\omega_{ij}} = (e_i \mid \cdot e_j) \in B(H_1)^* \subset c_0(\mathbb{F})^* othermoonup$$
 operators $oxed{L_{ij}} := L_{\omega_{ij}} \in C^*_{\mathrm{red}}(\mathbb{F}O_N)$

- lacktriangledown matrix $L=(L_{ij})_{ij}\in M_N(C^*_{\mathrm{red}}(\mathbb{F}O_N))$ s.t. $L^*_{ij}=L_{ij}$ and $LL^*=L^*L=I_N$
- → representation of Wang's algebra:

$$\underline{A_o(N)} = C^*\langle 1, u_{ij} \mid u_{ij}^* = u_{ij}, uu^* = u^*u = I_n \rangle$$

In fact $A_o(N)$ is the full C^* -algebra of $\mathbb{F}O_N$...

The terminology comes from the following "classical" quotients of $A_o(N)$:

$$A_o(N)/(u_{ij}, i \neq j) \simeq C^*(F_N), \quad A_o(N)/([u_{ij}, u_{kl}]) \simeq C(O_N).$$

Outline

- Introduction
 - Motivation
 - Discrete quantum groups
 - Actions
 - Orthogonal free quantum groups
- 2 Boundary actions
 - I-boundaries
 - Boundaries and unique stationarity
 - The Gromov boundary of $\mathbb{F}O_Q$
 - An $\mathbb{F}O_Q$ -boundary
- 3 Applications
 - Uniqueness of trace
 - Universal boundary and the amenable radical

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

The action $\Gamma \curvearrowright X$ is:

- minimal if $\forall x, y \in X \exists g_n \in \Gamma$ s.t. $\lim g_n \cdot x = y$, in other words: $\forall x \in X \overline{\Gamma \cdot x} = X$;
- proximal if $\forall x, y \in X \exists g_n \in \Gamma \text{ s.t. } \lim g_n \cdot x = \lim g_n \cdot y$;
- strongly proximal if $\Gamma \curvearrowright \operatorname{Prob}(X)$ proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X)$ $\overline{\Gamma \cdot \nu} \cap X \neq \emptyset$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X)$ $X \subset \overline{\Gamma \cdot \nu}$.

Classical examples:

- G connected simple Lie group, H < G maximal amenable, X = G/H
- Γ non elementary hyperbolic, $X = \partial_G \Gamma$ Gromov boundary

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \text{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \text{Prob}(X)$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \operatorname{Prob}(X)$ $\operatorname{Prob}(X) = \overline{\operatorname{Conv}} \Gamma \cdot \nu$

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \text{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \text{Prob}(X)$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \overline{\{\mu * \nu, \mu \in \operatorname{Prob}(\Gamma)\}}$

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \text{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \text{Prob}(X)$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \text{Prob}(X) \quad \text{Prob}(X) = \{\mu * \nu, \mu \in \text{Prob}(\Gamma)\}\$
- iii) $\forall \nu \in \operatorname{Prob}(X), f \in C(X)_{sa} \quad \|f\| = \sup_{\mu \in \operatorname{Prob}(\Gamma)} |\langle \underline{\mu * \nu}, f \rangle|$

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \Gamma \cdot \nu$
- ii) $\forall \nu \in \text{Prob}(X) \quad \text{Prob}(X) = \{\mu * \nu, \mu \in \text{Prob}(\Gamma)\}$
- iii) $\forall \nu \in \operatorname{Prob}(X), f \in C(X)_{sa} \quad \|f\| = \sup_{\mu \in \operatorname{Prob}(\Gamma)} |\langle \mu, P_{\nu}(f) \rangle|$

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \text{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \text{Prob}(X)$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

The following assertions are equivalent:

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \{\mu * \nu, \mu \in \operatorname{Prob}(\Gamma)\}\$
- iii) $\forall \nu \in \operatorname{Prob}(X), f \in C(X)_{sa} \quad \|f\| = \sup_{\mu \in \operatorname{Prob}(\Gamma)} |\langle \mu, P_{\nu}(f) \rangle|$
- iv) $\forall \nu \in \operatorname{Prob}(X)$ P_{ν} is isometric on $C(X)_{sa}$

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \text{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \text{Prob}(X)$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

The following assertions are equivalent:

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \text{Prob}(X) \quad \text{Prob}(X) = \{\mu * \nu, \mu \in \text{Prob}(\Gamma)\}$
- iii) $\forall \nu \in \operatorname{Prob}(X), f \in C(X)_{sa} \quad \|f\| = \sup_{\mu \in \operatorname{Prob}(\Gamma)} |\langle \mu, P_{\nu}(f) \rangle|$
- iv) $\forall \nu \in \text{Prob}(X)$ P_{ν} is isometric on $C(X)_{sa}$
- v) $\forall \nu \in \text{Prob}(X)$ P_{ν} is a complete isometry

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \text{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \text{Prob}(X)$.

X is a Γ-boundary if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

The following assertions are equivalent:

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \{\mu * \nu, \mu \in \operatorname{Prob}(\Gamma)\}\$
- iii) $\forall \nu \in \operatorname{Prob}(X), f \in C(X)_{sa} \quad \|f\| = \sup_{\mu \in \operatorname{Prob}(\Gamma)} |\langle \mu, P_{\nu}(f) \rangle|$
- iv) $\forall \nu \in \text{Prob}(X)$ P_{ν} is isometric on $C(X)_{sa}$
- v) $\forall \nu \in \text{Prob}(X)$ P_{ν} is a complete isometry
- vi) all UCP Γ -maps $T: C(X) \to \ell^{\infty}(\Gamma)$ are complete isometries (indeed $T=P_{\nu}$ for $\nu=\epsilon \circ T$)

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

X is a Γ-boundary if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \{\mu * \nu, \mu \in \operatorname{Prob}(\Gamma)\}\$
- iii) $\forall \nu \in \operatorname{Prob}(X), f \in C(X)_{sa} \quad \|f\| = \sup_{\mu \in \operatorname{Prob}(\Gamma)} |\langle \mu, P_{\nu}(f) \rangle|$
- iv) $\forall \nu \in \operatorname{Prob}(X)$ P_{ν} is isometric on $C(X)_{sa}$
- v) $\forall \nu \in \text{Prob}(X)$ P_{ν} is a complete isometry
- vi) all UCP Γ -maps $T:C(X)\to \ell^\infty(\Gamma)$ are complete isometries
- vii) all UCP Γ -maps $T: C(X) \to B$ are complete isometries

Classical case: $\Gamma \curvearrowright X$ compact.

We have $X \subset \operatorname{Prob}(X)$ via Dirac measures and $\Gamma \curvearrowright \operatorname{Prob}(X)$.

X is a Γ-**boundary** if it is minimal and strongly proximal, or equivalently: $\forall \nu \in \operatorname{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$.

The following assertions are equivalent:

- i) $\forall \nu \in \text{Prob}(X) \quad X \subset \overline{\Gamma \cdot \nu}$
- ii) $\forall \nu \in \operatorname{Prob}(X) \quad \operatorname{Prob}(X) = \{\mu * \nu, \mu \in \operatorname{Prob}(\Gamma)\}\$
- iii) $\forall \nu \in \operatorname{Prob}(X), f \in C(X)_{sa} \quad \|f\| = \sup_{\mu \in \operatorname{Prob}(\Gamma)} |\langle \mu, P_{\nu}(f) \rangle|$
- iv) $\forall \nu \in \operatorname{Prob}(X)$ P_{ν} is isometric on $C(X)_{sa}$
- v) $\forall \nu \in \text{Prob}(X)$ P_{ν} is a complete isometry
- vi) all UCP Γ -maps $T:C(X)\to \ell^\infty(\Gamma)$ are complete isometries
- vii) all UCP Γ -maps $T:C(X)\to B$ are complete isometries

Quantum case: $\Gamma \curvearrowright A$ unital, $Prob(X)/Prob(\Gamma) \rightarrow S(A)/S(c_0(\Gamma))$

i) no meaning; ii)-iv) still equiv.; only i

Boundaries and unique stationarity

Definition

A unital \mathbb{F} - C^* -algebra A is a \mathbb{F} -boundary if every UCP \mathbb{F} -map $T:A\to B$ is automatically UCI.

This has good categorical properties : $\mathbb{C} \hookrightarrow A$ is an "essential extension" in the category of unital \mathbb{F} - C^* -algebras with UCP \mathbb{F} -maps as morphisms and UCI \mathbb{F} -maps as embeddings.

Choose $\mu \in S(c_0(\mathbb{F}))$. A state $\nu \in S(A)$ is μ -stationary if $\mu * \nu = \nu$.

Proposition (Kalantar)

Assume that A admits a unique μ -stationary state ν and that P_{ν} is completely isometric. Then A is a \mathbb{F} -boundary.

Boundaries and unique stationarity

Choose $\mu \in S(c_0(\mathbb{F}))$. A state $\nu \in S(A)$ is μ -stationary if $\mu * \nu = \nu$.

Proposition (Kalantar)

Assume that A admits a unique μ -stationary state ν and that P_{ν} is completely isometric. Then A is a \mathbb{F} -boundary.

Proof. ν is stationary **iff** $P_{\nu}(A) \subset H_{\mu}^{\infty}(\mathbb{\Gamma}) := \{f \in \ell^{\infty}(\mathbb{\Gamma}) \mid L_{\mu}(f) = f\}$. Then P_{ν} is the unique UCP $\mathbb{\Gamma}$ -map $A \to H_{\mu}^{\infty}(\mathbb{\Gamma})$. Moreover we know that $H_{\mu}^{\infty}(\mathbb{\Gamma})$ is $\mathbb{\Gamma}$ -injective. Thus it suffices to apply:

Exercice. Let $X \hookrightarrow Y$ be an embedding, Z an injective object. Assume that there exists a unique morphim $Y \to Z$, which is moreover an embedding. Then $X \hookrightarrow Y$ is essential.

The Gromov boundary of $\mathbb{F}O_Q$

Classical case: free group $\Gamma = \Gamma = F_N$.

Word length: |g|, spheres: $S_n = \{g \in F_N; |g| = n\}$.

Gromov boundary $\partial_G F_N$: set of infinite reduced words.

The topology of the compactification $\beta_G F_N = F_N \sqcup \partial_G F_N$ can be described by specifying the unital sub- C^* -algebra $C(\beta_G F_N) \subset \ell^{\infty}(F_N)$:

$$\frac{C(\beta_G F_N)}{C(\beta_G F_N)_m} = \bigcup_m C(\beta_G F_N)_m \text{ where}
C(\beta_G F_N)_m = \{f \in \ell^{\infty}(F_N) \mid f \text{ depends only on first } m \text{ letters}\}
= \{(f_k)_k \in \bigoplus_k^{\ell^{\infty}} C(S_k) \mid \forall k \geq m \mid f_{k+1} = f_k \circ \rho_k\}$$

where $\rho_k: S_{k+1} \to S_k$ "forgets last letter".

The Gromov boundary of $\mathbb{F}O_Q$

The topology of the compactification $\beta_G F_N = F_N \sqcup \partial_G F_N$ can be described by specifying the unital sub- C^* -algebra $C(\beta_G F_N) \subset \ell^{\infty}(F_N)$:

$$C(\beta_G F_N) = \bigcup_m C(\beta_G F_N)_m \text{ where}$$

$$\frac{C(\beta_G F_N)_m}{(f_k)_k} = \{ f \in \ell^{\infty}(F_N) \mid f \text{ depends only on first } m \text{ letters} \}$$

$$= \{ (f_k)_k \in \bigoplus_k^{\ell^{\infty}} C(S_k) \mid \forall k \geq m \text{ } f_{k+1} = f_k \circ \rho_k \}$$

where $\rho_k: S_{k+1} \to S_k$ "forgets last letter".

Quantum case: $\Gamma = \mathbb{F}O_Q$, $N \ge 3$.

Recall $\ell^{\infty}(\Gamma) = \bigoplus_{k\geq 0}^{\ell^{\infty}} B(H_k)$ and we have canonical isometries $V_k: H_{k+1} \to H_k \otimes H_1$ from the Temperley-Lieb category.

Theorem (Vaes-Vergnioux '05)

Put $C(\beta_G \mathbb{F} O_Q)_m = \{(f_k)_k \mid \forall k \geq m \ f_{k+1} = V_k^* (f_k \otimes \mathrm{id}) V_k \}$. Then $C(\beta_G \mathbb{F} O_Q) = \overline{\bigcup_m C(\beta_G \mathbb{F} O_Q)_m}$ is a sub- $\overline{\mathbb{F} O_Q}$ - C^* -algebra of $\ell^\infty(\mathbb{F} O_Q)$.

We also denote $C(\partial_G \mathbb{F} O_Q) = \frac{C(\beta_G \mathbb{F} O_Q)/c_0(\mathbb{F} O_Q)}{C(\beta_G \mathbb{F} O_Q)/c_0(\mathbb{F} O_Q)}$, which is still a unital $\mathbb{F} O_Q$ - C^* -algebra.

An $\mathbb{F}O_Q$ -boundary

We have "categorical traces" $\operatorname{qtr}_k : B(H_k) \to \mathbb{C}$.

They satisfy $\operatorname{qtr}_{k+1}(V_k^*(a \otimes \operatorname{id})V_k) = \operatorname{qtr}_k(a)$

ightharpoonup we get a state $\omega = \varinjlim \operatorname{qtr}_k$ on $C(\partial_G \mathbb{F} O_Q)$.

One checks that ω is μ -stationary for $\mu = \operatorname{qtr}_1 \in B(H_1)^* \subset c_0(\mathbb{F}O_Q)^*$.

Denote $C_r(\partial_G \mathbb{F} O_Q)$ the image of the GNS representation of ω .

Theorem (Vaes-Vergnioux '05)

Assume $N \geq 3$. Then P_{ω} extends to a normal *-isomorphism $P_{\omega} : C_r(\partial \mathbb{F} O_Q)'' \to H^{\infty}_{\mu}(\mathbb{F} O_Q)$.

Theorem (KKSV '20)

For $N \geq 3$, ω is the unique μ -stationary state on $C(\partial_G \mathbb{F} O_Q)$. Hence $C_r(\partial_G \mathbb{F} O_Q)$ is an $\mathbb{F} O_Q$ -boundary.

For N=2, $\mathbb{F}O_Q$ is amenable, the only $\mathbb{F}O_Q$ -boundary is \mathbb{C} .

Outline

- Introduction
 - Motivation
 - Discrete quantum groups
 - Actions
 - Orthogonal free quantum groups
- 2 Boundary actions
 - Γ-boundaries
 - Boundaries and unique stationarity
 - The Gromov boundary of $\mathbb{F}O_Q$
 - An $\mathbb{F}O_Q$ -boundary
- 3 Applications
 - Uniqueness of trace
 - Universal boundary and the amenable radical

Uniqueness of trace

Theorem (KKSV '20)

Assume that Γ acts faithfully on some Γ -boundary A. Then:

- ullet if ${\mathbb F}$ is unimodular, h is the unique trace on $C^*_{\operatorname{red}}({\mathbb F})$;
- ullet else $C^*_{\mathrm{red}}(\mathbb{F})$ does not admit any KMS state wrt the scaling group.

Question: in the unimodular case, does uniqueness of trace imply the existence of a faithful boundary action?

Theorem (KKSV '20)

For $N \geq 3$, $\mathbb{F}O_Q$ acts faithfully on $\partial_G \mathbb{F}O_Q$.

Note: in this case, uniqueness of trace was already proved in [VV '05]. In the non-unimodular case, the absence of τ -KMS state is new.

Universal boundary and the amenable radical

Recall that an injective envelope is an injective and essential extension.

Theorem (Hamana, KKSV '20)

 \mathbb{C} admits an injective envelope $C(\partial_F \mathbb{F}) := I_{\mathbb{F}}(\mathbb{C})$, which is unique up to unique isomorphism. We call it the Furstenberg boundary of \mathbb{F} .

Then any \mathbb{F} -boundary embeds in a unique way in $C(\partial_F \mathbb{F})$. There exists a faithful \mathbb{F} -boundary **iff** $\mathbb{F} \curvearrowright \partial_F \mathbb{F}$ is faithful. In the classical case the kernel of this action is the maximal amenable normal subgroup of Γ (amenable radical).

Universal boundary and the amenable radical

Theorem (Hamana, KKSV '20)

 \mathbb{C} admits an injective envelope $C(\partial_F \mathbb{F}) := I_{\mathbb{F}}(\mathbb{C})$, which is unique up to unique isomorphism. We call it the Furstenberg boundary of \mathbb{F} .

There exists a faithful Γ -boundary **iff** $\Gamma \curvearrowright \partial_{\Gamma}\Gamma$ is faithful. In the classical case the kernel of this action is the maximal amenable normal subgroup of Γ (amenable radical).

 $M \subset \ell^{\infty}(\mathbb{F})$ is called a Baaj-Vaes subalgebra if $\Delta(M) \subset M \bar{\otimes} M$. It is relatively amenable if there exists a UCP \mathbb{F} -map $T : \ell^{\infty}(\mathbb{F}) \to M$.

Theorem (KKSV '20)

The cokernel N_F of $\Gamma \curvearrowright \partial_F \Gamma$ is the unique minimal relatively amenable Baaj-Vaes subalgebra of $\ell^{\infty}(\Gamma)$.

Hence there exists a faithful \mathbb{F} -boundary **iff** $\ell^{\infty}(\mathbb{F})$ has no proper relatively amenable Baaj-Vaes subalgebra.

Proof of unique stationarity for F_N

 $S_n \subset F_N$: reduced words of length n. μ_n : uniform proba measure on S_n . Gromov boundary: $\partial_G F_N \simeq S_\infty$. Put $X_g = \{g \cdots \text{ reduced}\} \subset S_\infty$.

Proposition

Let ω be a proba measure on S_{∞} such that $\mu_1 * \omega = \omega$. Then for any $g \in F_N$ we have $\omega(X_g) = (\#S_{|g|})^{-1}$.

Observe that the assumption implies $\mu^{*k} * \omega = \omega$ and $\mu_k * \omega = \omega$ for all k. It is sufficient to prove $\overline{\lim}_n (\mu_n * \omega)(X_g) \leq (\#S_{|g|})^{-1}$: indeed both sides sum up to 1 when |g| is fixed.

We have $(\mu_n * \omega)(X_g) = (\#S_n)^{-1} \sum_{|h|=n} \omega(hX_g)$.

Proof of unique stationarity for F_N

It is sufficient to prove $\overline{\lim}_n (\mu_n * \omega)(X_g) \leq (\#S_{|g|})^{-1}$: indeed both sides sum up to 1 when |g| is fixed.

We have
$$(\mu_n * \omega)(X_g) = (\#S_n)^{-1} \sum_{|h|=n} \omega(hX_g)$$
.

Case 1: the last letter of g is not simplified in the product hg, i.e. |hg| = |g| + n - 2I with $0 \le I \le |g| - 1$. Then $hX_g = X_{hg}$ and when I is fixed these subsets are pairwise disjoint. Hence for fixed I:

$$\sum \{\omega(hX_g); |h| = n, |hg| = |g| + n - 2I\} \le 1.$$

Case 2: use the trivial estimate $\omega(hX_g) \leq 1$. In this case the last |g| letters of h are fixed, equal to g^{-1} , so we have $(2N-1)^{n-|g|}$ such elements h.

Altogether
$$(\mu_n * \omega)(X_g) \le (\#S_n)^{-1} \sum_{l=0}^{|g|-1} 1 + (\#S_n)^{-1} (2N-1)^{n-|g|}$$

= $(\#S_n)^{-1} |g| + (\#S_{|g|})^{-1} \to_{n\infty} (\#S_{|g|})^{-1}$.

Indeed $\#S_n = 2N(2N-1)^{n-1}$.

back