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Introduction Motivation

Motivation

I notion of Γ-boundary in topological dynamics (Furstenberg, 1950s)
I surprising connection with the structure of reduced group C ∗-algebra

(Kalantar-Kennedy, Breuillard-Kalantar-Kennedy-Ozawa, 2010s)

Γ discrete group I translation operators λ(g) ∈ B(`2Γ)
I reduced C ∗-algebra C ∗red(Γ) = Span {λ(g), g ∈ Γ}
I with trace h(x) = (11e | x11e), h(λ(g)) = δg ,e

Trace : ϕ : C ∗red(Γ)→ C, positive, unital, ϕ(xy) = ϕ(yx).

Theorem (BKKO)

C ∗red(Γ) simple ⇔ ∃ free Γ-boundary Γ y X.
C ∗red(Γ) has a unique trace ⇔ ∃ faithful Γ-boundary Γ y X.

In particular simplicity ⇒ uniqueness of trace for reduced C ∗-algebras of
discrete groups. The converse is false.
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Introduction Discrete quantum groups

Discrete quantum groups

A discrete quantum group � is given by :

a von Neumann algebra `∞(�) =
⊕`∞

α∈I B(Hα) with dimHα <∞
a normal ∗-homomorphism ∆ : `∞(�)→ `∞(�)⊗̄`∞(�) such that
(∆⊗ id)∆ = (id⊗∆)∆ (coproduct)

left and right ∆-invariant nsf weights hL, hR on `∞(�)

� is unimodular if hL = hR . Denote `2(�) = L2(`∞(�), hL).

Classical case : � = Γ = I , `∞(�) = `∞(Γ), ∆(f ) = ((r , s) 7→ f (rs)),
hL(f ) = hR(f ) =

∑
r∈Γ f (r).

In general : coproduct I tensor product π ⊗ ρ := (π ⊗ ρ)∆ for
representations π, ρ of `∞(�) I tensor C ∗-category Corep(�).
I : irreducible objects up to equivalence.
The multiplication table of Γ is replaced by the spaces Hom(α, β ⊗ γ).
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Introduction Actions

Actions
Canonical dense subalgebra : c0(�) ⊂ `∞(�) given by

⊕c0
α∈I .

A �-C ∗-algebra is a C ∗-algebra A equipped with a ∗-homomorphism
α : A→ M(c0(�)⊗ A) such that (id⊗ α)α = (∆⊗ id)α (coaction).

For a ∈ A, ν ∈ A∗, µ ∈ c0(�)∗ we can then define
Lµ(a) = (µ⊗ id)α(a) ∈ M(A),
Pν(a) = (id⊗ ν)α(a) ∈ `∞(�),
µ ∗ ν = (µ⊗ ν)α ∈ A∗.

A �-map T : A→ B is a linear map such that T ◦ Lµ = Lµ ◦ T .

Classical case : Γ y X , A = C0(X ), α(f ) = ((r , x) 7→ f (r · x)).

Example : A = c0(�), α = ∆ “translation action”.
By invariance, the maps Lµ extend to bounded operators on `2(�).
I C ∗-algebra C ∗red(�) = Span {Lµ} with state h = (ξ0 | · ξ0).

Note : h is a trace ⇔ � unimodular.
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Introduction Actions

Actions
Canonical dense subalgebra : c0(�) ⊂ `∞(�) given by

⊕c0
α∈I .

A �-C ∗-algebra is a C ∗-algebra A equipped with a ∗-homomorphism
α : A→ M(c0(�)⊗ A) such that (id⊗ α)α = (∆⊗ id)α (coaction).

For a ∈ A, ν ∈ A∗, µ ∈ c0(�)∗ we can then define
Lµ(a) = (µ⊗ id)α(a) ∈ M(A),
Pν(a) = (id⊗ ν)α(a) ∈ `∞(�),
µ ∗ ν = (µ⊗ ν)α ∈ A∗.

A �-map T : A→ B is a linear map such that T ◦ Lµ = Lµ ◦ T .

Definition

The cokernel Nα ⊂ `∞(�) of α is the weak closure of
{Pν(a), a ∈ A, ν ∈ A∗}. We say that α is faithful if Nα = `∞(�).

We have ∆(Nα) ⊂ Nα⊗̄Nα. In the classical case this implies Nα = `∞(Γ)Λ

with Λ C Γ, and we have Λ = Kerα in this case. In the quantum case Nα
is not necessarily associated to a subgroup � < �...
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Introduction Orthogonal free quantum groups

Orthogonal free quantum groups

Let N ∈ N, Q ∈ GLN(C) s.t. QQ̄ = ±IN .
The discrete quantum group � = FO(Q) can be described as follows:
I Corep(FO(Q)) is the Temperley-Lieb category with δ = Tr(Q∗Q),
I I = N with k ⊗ 1 ' 1⊗ k ' (k − 1)⊕ (k + 1), k̄ = k ,
I H0 = C, H1 = CN and Hom(0, 1⊗ 1) = Ct1 with t1 =

∑
ei ⊗ Qei .

We can then construct Hk by induction, `∞(FOQ) and compute ∆.

Assume Q = IN — we write FOQ = FON .
ωij = (ei | · ej) ∈ B(H1)∗ ⊂ c0(�)∗ I operators Lij := Lωij ∈ C ∗red(FON)
I matrix L = (Lij)ij ∈ MN(C ∗red(FON)) s.t. L∗ij = Lij and LL∗ = L∗L = IN
I representation of Wang’s algebra:

Ao(N) = C ∗〈1, uij | u∗ij = uij , uu
∗ = u∗u = In〉

In fact Ao(N) is the full C ∗-algebra of FON ...

The terminology comes from the following “classical” quotients of Ao(N):
Ao(N)/(uij , i 6= j) ' C ∗(FN), Ao(N)/([uij , ukl ]) ' C (ON).
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Boundary actions Γ-boundaries

Γ-boundaries
Classical case: Γ y X compact.
We have X ⊂ Prob(X ) via Dirac measures and Γ y Prob(X ).

The action Γ y X is:

minimal if ∀x , y ∈ X ∃gn ∈ Γ s.t. lim gn · x = y ,
in other words: ∀x ∈ X Γ · x = X ;
proximal if ∀x , y ∈ X ∃gn ∈ Γ s.t. lim gn · x = lim gn · y ;
strongly proximal if Γ y Prob(X ) proximal,
or equivalently: ∀ν ∈ Prob(X ) Γ · ν ∩ X 6= ∅.

X is a Γ-boundary if it is minimal and strongly proximal,
or equivalently: ∀ν ∈ Prob(X ) X ⊂ Γ · ν.

Classical examples:

G connected simple Lie group, H < G maximal amenable, X = G/H
Γ non elementary hyperbolic, X = ∂GΓ Gromov boundary

i) ∀ν ∈ Prob(X ) X ⊂ Γ · ν
ii) ∀ν ∈ Prob(X ) Prob(X ) =
iii) ∀ν ∈ Prob(X ), f ∈ C (X )sa ‖f ‖ = supµ∈Prob(Γ)

iv) ∀ν ∈ Prob(X ) Pν is isometric on C (X )sa
v) ∀ν ∈ Prob(X ) Pν is a complete isometry
vi) all UCP Γ-maps T : C (X )→ `∞(Γ) are complete isometries
vii) all UCP Γ-maps T : C (X )→ B are complete isometries
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Boundary actions Γ-boundaries

Γ-boundaries
Classical case: Γ y X compact.
We have X ⊂ Prob(X ) via Dirac measures and Γ y Prob(X ).

X is a Γ-boundary if it is minimal and strongly proximal,
or equivalently: ∀ν ∈ Prob(X ) X ⊂ Γ · ν.

The following assertions are equivalent:

i) ∀ν ∈ Prob(X ) X ⊂ Γ · ν
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v) ∀ν ∈ Prob(X ) Pν is a complete isometry
vi) all UCP Γ-maps T : C (X )→ `∞(Γ) are complete isometries

(indeed T = Pν for ν = ε ◦ T )

vii) all UCP Γ-maps T : C (X )→ B are complete isometries

R. Vergnioux (Univ. Normandy) Quantum Furstenberg boundary Seoul, 7/4/2021 8 / 15

Roland Vergnioux




Boundary actions Γ-boundaries

Γ-boundaries
Classical case: Γ y X compact.
We have X ⊂ Prob(X ) via Dirac measures and Γ y Prob(X ).

X is a Γ-boundary if it is minimal and strongly proximal,
or equivalently: ∀ν ∈ Prob(X ) X ⊂ Γ · ν.

The following assertions are equivalent:

i) ∀ν ∈ Prob(X ) X ⊂ Γ · ν
ii) ∀ν ∈ Prob(X ) Prob(X ) = {µ ∗ ν, µ ∈ Prob(Γ)}
iii) ∀ν ∈ Prob(X ), f ∈ C (X )sa ‖f ‖ = supµ∈Prob(Γ) |〈µ,Pν(f )〉|
iv) ∀ν ∈ Prob(X ) Pν is isometric on C (X )sa
v) ∀ν ∈ Prob(X ) Pν is a complete isometry
vi) all UCP Γ-maps T : C (X )→ `∞(Γ) are complete isometries
vii) all UCP Γ-maps T : C (X )→ B are complete isometries

R. Vergnioux (Univ. Normandy) Quantum Furstenberg boundary Seoul, 7/4/2021 8 / 15



Boundary actions Γ-boundaries

Γ-boundaries
Classical case: Γ y X compact.
We have X ⊂ Prob(X ) via Dirac measures and Γ y Prob(X ).

X is a Γ-boundary if it is minimal and strongly proximal,
or equivalently: ∀ν ∈ Prob(X ) X ⊂ Γ · ν.

The following assertions are equivalent:

i) ∀ν ∈ Prob(X ) X ⊂ Γ · ν
ii) ∀ν ∈ Prob(X ) Prob(X ) = {µ ∗ ν, µ ∈ Prob(Γ)}
iii) ∀ν ∈ Prob(X ), f ∈ C (X )sa ‖f ‖ = supµ∈Prob(Γ) |〈µ,Pν(f )〉|
iv) ∀ν ∈ Prob(X ) Pν is isometric on C (X )sa
v) ∀ν ∈ Prob(X ) Pν is a complete isometry
vi) all UCP Γ-maps T : C (X )→ `∞(Γ) are complete isometries
vii) all UCP Γ-maps T : C (X )→ B are complete isometries

Quantum case: � y A unital, Prob(X )/Prob(Γ) I S(A)/S(c0(�))
i) no meaning ; ii)–iv) still equiv. ; only iv)⇒v) ; v)–vii) still equiv.
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Boundary actions Boundaries and unique stationarity

Boundaries and unique stationarity

Definition

A unital �-C ∗-algebra A is a �-boundary if every UCP �-map T : A→ B
is automatically UCI.

This has good categorical properties : C ↪→ A is an “essential extension”
in the category of unital �-C ∗-algebras with UCP �-maps as morphisms
and UCI �-maps as embeddings.

Choose µ ∈ S(c0(�)). A state ν ∈ S(A) is µ-stationary if µ ∗ ν = ν.

Proposition (Kalantar)

Assume that A admits a unique µ-stationary state ν and that Pν is
completely isometric. Then A is a �-boundary.
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Boundary actions Boundaries and unique stationarity

Boundaries and unique stationarity

Choose µ ∈ S(c0(�)). A state ν ∈ S(A) is µ-stationary if µ ∗ ν = ν.

Proposition (Kalantar)

Assume that A admits a unique µ-stationary state ν and that Pν is
completely isometric. Then A is a �-boundary.

Proof. ν is stationary iff Pν(A) ⊂ H∞µ (�) := {f ∈ `∞(�) | Lµ(f ) = f }.
Then Pν is the unique UCP �-map A→ H∞µ (�). Moreover we know that
H∞µ (�) is �-injective. Thus it suffices to apply:

Exercice. Let X ↪→ Y be an embedding, Z an injective object. Assume
that there exists a unique morphim Y → Z , which is moreover an
embedding. Then X ↪→ Y is essential.
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Boundary actions The Gromov boundary of FOQ

The Gromov boundary of FOQ

Classical case: free group � = Γ = FN .
Word length: |g |, spheres: Sn = {g ∈ FN ; |g | = n}.
Gromov boundary ∂GFN : set of infinite reduced words.

The topology of the compactification βGFN = FN t ∂GFN can be
described by specifying the unital sub-C ∗-algebra C (βGFN) ⊂ `∞(FN):

C (βGFN) =
⋃

m C (βGFN)m where
C (βGFN)m = {f ∈ `∞(FN) | f depends only on first m letters}

= {(fk)k ∈
⊕`∞

k C (Sk) | ∀k ≥ m fk+1 = fk ◦ ρk}
where ρk : Sk+1 → Sk “forgets last letter”.
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Boundary actions The Gromov boundary of FOQ

The Gromov boundary of FOQ

The topology of the compactification βGFN = FN t ∂GFN can be
described by specifying the unital sub-C ∗-algebra C (βGFN) ⊂ `∞(FN):

C (βGFN) =
⋃

m C (βGFN)m where
C (βGFN)m = {f ∈ `∞(FN) | f depends only on first m letters}

= {(fk)k ∈
⊕`∞

k C (Sk) | ∀k ≥ m fk+1 = fk ◦ ρk}
where ρk : Sk+1 → Sk “forgets last letter”.

Quantum case: � = FOQ , N ≥ 3.
Recall `∞(�) =

⊕`∞

k≥0 B(Hk) and we have canonical isometries
Vk : Hk+1 → Hk ⊗ H1 from the Temperley-Lieb category.

Theorem (Vaes-Vergnioux ’05)

Put C (βGFOQ)m = {(fk)k | ∀k ≥ m fk+1 = V ∗k (fk ⊗ id)Vk}. Then
C (βGFOQ) =

⋃
m C (βGFOQ)m is a sub-FOQ-C

∗-algebra of `∞(FOQ).

We also denote C (∂GFOQ) = C (βGFOQ)/c0(FOQ), which is still a unital
FOQ-C ∗-algebra.
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Boundary actions An FOQ -boundary

An FOQ-boundary

We have “categorical traces” qtrk : B(Hk)→ C.
They satisfy qtrk+1(V ∗k (a⊗ id)Vk) = qtrk(a)
I we get a state ω = lim−→ qtrk on C (∂GFOQ).

One checks that ω is µ-stationary for µ = qtr1 ∈ B(H1)∗ ⊂ c0(FOQ)∗.

Denote Cr (∂GFOQ) the image of the GNS representation of ω.

Theorem (Vaes-Vergnioux ’05)

Assume N ≥ 3. Then Pω extends to a normal ∗-isomorphism
Pω : Cr (∂FOQ)′′ → H∞µ (FOQ).

Theorem (KKSV ’20)

For N ≥ 3, ω is the unique µ-stationary state on C (∂GFOQ).
Hence Cr (∂GFOQ) is an FOQ-boundary. proof

For N = 2, FOQ is amenable, the only FOQ-boundary is C.
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Applications Uniqueness of trace

Uniqueness of trace

Theorem (KKSV ’20)

Assume that � acts faithfully on some �-boundary A. Then:

if � is unimodular, h is the unique trace on C ∗red(�) ;

else C ∗red(�) does not admit any KMS state wrt the scaling group.

Question: in the unimodular case, does uniqueness of trace imply the
existence of a faithful boundary action?

Theorem (KKSV ’20)

For N ≥ 3, FOQ acts faithfully on ∂GFOQ .

Note: in this case, uniqueness of trace was already proved in [VV ’05]. In
the non-unimodular case, the absence of τ -KMS state is new.
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Applications Universal boundary and the amenable radical

Universal boundary and the amenable radical

Recall that an injective envelope is an injective and essential extension.

Theorem (Hamana, KKSV ’20)

C admits an injective envelope C (∂F�) := I�(C), which is unique up to
unique isomorphism. We call it the Furstenberg boundary of �.

Then any �-boundary embeds in a unique way in C (∂F�).
There exists a faithful �-boundary iff � y ∂F� is faithful.
In the classical case the kernel of this action is the maximal amenable
normal subgroup of Γ (amenable radical).
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Universal boundary and the amenable radical

Theorem (Hamana, KKSV ’20)

C admits an injective envelope C (∂F�) := I�(C), which is unique up to
unique isomorphism. We call it the Furstenberg boundary of �.

There exists a faithful �-boundary iff � y ∂F� is faithful.
In the classical case the kernel of this action is the maximal amenable
normal subgroup of Γ (amenable radical).

M ⊂ `∞(�) is called a Baaj-Vaes subalgebra if ∆(M) ⊂ M⊗̄M. It is
relatively amenable if there exists a UCP �-map T : `∞(�)→ M.

Theorem (KKSV ’20)

The cokernel NF of Γ y ∂F� is the unique minimal relatively amenable
Baaj-Vaes subalgebra of `∞(�).

Hence there exists a faithful �-boundary iff `∞(�) has no proper relatively
amenable Baaj-Vaes subalgebra.
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Proof of unique stationarity for FN

Sn ⊂ FN : reduced words of length n. µn: uniform proba measure on Sn.
Gromov boundary: ∂GFN ' S∞. Put Xg = {g · · · reduced} ⊂ S∞.

Proposition

Let ω be a proba measure on S∞ such that µ1 ∗ ω = ω. Then for any
g ∈ FN we have ω(Xg ) = (#S|g |)

−1.

Observe that the assumption implies µ∗k ∗ ω = ω and µk ∗ ω = ω for all k.
It is sufficient to prove limn(µn ∗ ω)(Xg ) ≤ (#S|g |)

−1: indeed both sides
sum up to 1 when |g | is fixed.

We have (µn ∗ ω)(Xg ) = (#Sn)−1
∑
|h|=n ω(hXg ).
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Proof of unique stationarity for FN

It is sufficient to prove limn(µn ∗ ω)(Xg ) ≤ (#S|g |)
−1: indeed both sides

sum up to 1 when |g | is fixed.

We have (µn ∗ ω)(Xg ) = (#Sn)−1
∑
|h|=n ω(hXg ).

Case 1: the last letter of g is not simplified in the product hg , i.e.
|hg | = |g |+ n − 2l with 0 ≤ l ≤ |g | − 1. Then hXg = Xhg and when l is
fixed these subsets are pairwise disjoint. Hence for fixed l :∑

{ω(hXg ); |h| = n, |hg | = |g |+ n − 2l} ≤ 1.

Case 2: use the trivial estimate ω(hXg ) ≤ 1. In this case the last |g | letters
of h are fixed, equal to g−1, so we have (2N − 1)n−|g | such elements h.

Altogether (µn ∗ ω)(Xg ) ≤ (#Sn)−1
∑|g |−1

l=0 1 + (#Sn)−1(2N − 1)n−|g |

= (#Sn)−1|g |+ (#S|g |)
−1 →n∞ (#S|g |)

−1.

Indeed #Sn = 2N(2N − 1)n−1. back
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