Quantum Boundary Actions and C*-Simplicity

Roland Vergnioux

University of Normandy (France)

Banff, December 3rd, 2025

1/8

Free quantum groups

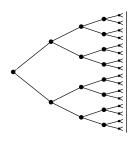
- [Wang '95; W., Van Daele '96] Free quantum groups $\mathbb{F}O(Q)$, $\mathbb{F}U(Q)$ for $Q \in GL_N(\mathbb{C})$ given by $C^*(\mathbb{F}U(Q)) = C(U^+(Q)) = A_u(Q) = \langle u_{ij} \mid u \text{ and } Q\bar{u}Q^{-1} \text{ unitary} \rangle$.
- [Banica '97] Computation of $Corep(\mathbb{F}O(Q))$, $Corep(\mathbb{F}U(Q))$ $\Rightarrow \mathbb{F}U(Q)$ non amenable, $C^*_{red}(\mathbb{F}U(Q))$ simple $(N \ge 2)$

2/8

Free quantum groups

- [Wang '95 ; W., Van Daele '96] Free quantum groups $\mathbb{F}O(Q)$, $\mathbb{F}U(Q)$ for $Q \in GL_N(\mathbb{C})$
- [Banica '97] Computation of $Corep(\mathbb{F}O(Q))$, $Corep(\mathbb{F}U(Q))$ $\Rightarrow \mathbb{F}U(Q)$ non amenable, $C^*_{red}(\mathbb{F}U(Q))$ simple $(N \ge 2)$
- [V., Vaes '07; Vaes, V-Vennet '10] [Biane, Izumi, Neshveyev, Tuset] Quantum Gromov Boundaries $\partial_G \mathbb{F}O(Q)$, $\partial_G \mathbb{F}U(Q)$ $\partial_G \mathbb{F}O(Q)$ realizes the Quantum Poisson and Martin Boundaries Amenability of $\mathbb{F}O(Q) \curvearrowright \partial_G \mathbb{F}O(Q) \Rightarrow$ exactness of $\mathbb{F}O(Q)$
- [Kalantar, Kasprzak, Skalski, V. '22] [A.-S., Khosravi '24] $\partial \mathbb{F}O(Q)$ is a Quantum Furstenberg Boundary $\mathbb{F}O(Q) \curvearrowright \partial_G \mathbb{F}O(Q)$ faithful $\Rightarrow \tau$ -KMS states $\subset \{h\}$ on $C^*_{\mathrm{red}}(\mathbb{F}O(Q))$
- [Anderson-Sackaney, V.] $\partial \mathbb{F} U(Q)$ is a Quantum Furstenberg Boundary $\mathbb{F} U(I_N) \curvearrowright \partial_G \mathbb{F} U(I_N)$ strongly C^* -faithful $\Rightarrow C^*_{\mathrm{red}}(\mathbb{F} U(I_N))$ simple

Classical Case

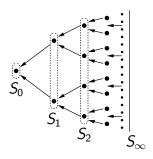


(rooted) tree
$$T \rightarrow$$
 boundary ∂T

Picture:
$$\partial T = \{0,1\}^{\mathbb{N}}$$
 (Cantor "line" on the right)

If
$$\Gamma \curvearrowright T$$
 then $\Gamma \curvearrowright \partial T$.

Classical Case

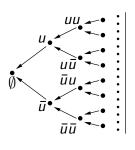


Possible defn: $\partial T = \varprojlim_n (S_n, \psi_n)$ S_n : spheres ; $\psi_n : S_{n+1} \to S_n$ given by tree structure

 $\Gamma \curvearrowright \partial T$ maybe not so evident...

3/8

Classical Case



This is in fact the *classical* Cayley tree of $\mathbb{F}U(Q)$ with generating set $\{u, \bar{u}\}$.

But there is no action $\mathbb{F}U(Q) \curvearrowright T$.

[Banica '97] $\operatorname{Irr}(\mathbb{F}U(Q))$ is indexed by words in u, \bar{u} , so that :

- ullet u is the generating matrix, $ar{u}$ its conjugate,
- $\bullet \ vu \otimes u \simeq vuu, \ v\bar{u} \otimes u \simeq v \oplus v\bar{u}u, \ ...$

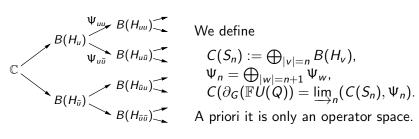
The inclusions $w \subset v \otimes u$, $w \subset v \otimes \bar{u}$ correspond to edges in the tree.

Quantum Case

For each $v \in I := \operatorname{Irr}(\mathbb{F}U(Q))$ we have a f.d. Hilbert space H_v . We get: $\ell^{\infty}(\mathbb{F}U(Q)) \simeq \bigoplus_{v \in I} B(H_v).$

From
$$\psi_{vu}: H_{vu} \hookrightarrow H_v \otimes H_u$$
 we get:

$$\Psi_{vu}: B(H_v) \to B(H_{vu}), a \mapsto \psi_{vu}^*(a \otimes \mathrm{id})\psi_{vu}.$$



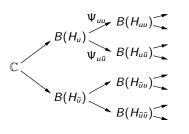
$$C(S_n) := \bigoplus_{|v|=n} B(H_v),$$

$$\Psi_n = \bigoplus_{|w|=n+1} \Psi_w,$$

$$C(\partial_G(\mathbb{F}U(Q)) = \varinjlim_n (C(S_n), \Psi_n)$$

A priori it is only an operator space.

Quantum Case



We define

$$C(S_n) := \bigoplus_{|v|=n} B(H_v),$$

$$\Psi_n = \bigoplus_{|w|=n+1} \Psi_w,$$

$$C(\partial_G(\mathbb{F}U(Q)) = \varinjlim_n (C(S_n), \Psi_n).$$

A priori it is only an operator space.

Theorem (Vaes, Vander Vennet '10)

 $C(\partial_G(\mathbb{F}U(Q)))$ is a unital sub- C^* -algebra of $\ell^\infty(\mathbb{F}U(Q))/c_0(\mathbb{F}U(Q))$. The coproduct yields $\alpha: C(\partial_G(\mathbb{F}U(Q)) \to M(c_0(\mathbb{F}U(Q)) \otimes C(\partial_G(\mathbb{F}U(Q)))$.

Moreover, putting $q\mathrm{Tr}_n = \sum_{|v|=n} q\mathrm{Tr}_v$ and $q\mathrm{tr}_n = q\mathrm{Tr}_n/q\mathrm{Tr}_n(1)$, $\omega = \varinjlim_n q\mathrm{tr}_n$ is a well-defined state s.t. $(q\mathrm{tr}_1 \otimes \omega)\alpha = \omega$ (stationary).

Quantum Furstenberg Boundaries

 Γ -boundary: $\Gamma \curvearrowright X$ compact which is minimal and strongly proximal.

Example: $F_N \curvearrowright \partial F_N$.

Definition [KKSV22]. A quantum action $\mathbb{F} \curvearrowright A$ unital C^* -algebra is a \mathbb{F} -boundary if any \mathbb{F} -equivariant UCP map $F:A \to B$ to any B is automatically completely isometric (CI).

Theorem [KKSV22]. There is a universal \mathbb{F} -boundary, denoted $\partial_F \mathbb{F}$.

Theorem (Anderson-Sackaney, V.)

If $N \geq 3$, $\partial_G \mathbb{F} U(Q)$ is an $\mathbb{F} U(Q)$ -boundary.

Quantum Furstenberg Boundaries

Definition [KKSV22]. A quantum action $\mathbb{F} \curvearrowright A$ unital C^* -algebra is a \mathbb{F} -boundary if any \mathbb{F} -equivariant UCP map $F:A\to B$ to any B is automatically completely isometric (CI).

Theorem [KKSV22]. There is a universal \mathbb{F} -boundary, denoted $\partial_F \mathbb{F}$.

Proposition (KKSV22)

Take $\mu \in \ell^{\infty}(\Gamma)^+_*$. If there exists a unique μ -stationary state $\nu \in A^*$, and if $P_{\nu} := (\mathrm{id} \otimes \nu)\alpha : A \to \ell^{\infty}(\Gamma)$ is CI, then A is a Γ -boundary.

 P_{ω} completely isometric: known since [VVV10].

Theorem (Habbestad, Hataishi, Neshveyev '22)

The state ω is the unique $D(\mathbb{F}U(\mathbb{Q}))$ -stationary state (wrt $qtr_1 \otimes h$) on $A = C(\partial_G \mathbb{F}U(Q))$. Hence $\partial_G \mathbb{F}U(Q)$ is a $D(\mathbb{F}U(Q))$ -boundary.

Banff, December 3rd, 2025

Quantum Furstenberg Boundaries

Definition [KKSV22]. A quantum action $\mathbb{F} \curvearrowright A$ unital C^* -algebra is a \mathbb{F} -boundary if any \mathbb{F} -equivariant UCP map $F:A \to B$ to any B is automatically completely isometric (CI).

Theorem [KKSV22]. There is a universal \mathbb{F} -boundary, denoted $\partial_F \mathbb{F}$.

Proposition (KKSV22)

Take $\mu \in \ell^{\infty}(\Gamma)_{*}^{+}$. If there exists a unique μ -stationary state $\nu \in A^{*}$, and if $P_{\nu} := (\mathrm{id} \otimes \nu)\alpha : A \to \ell^{\infty}(\Gamma)$ is CI, then A is a Γ -boundary.

 P_{ω} completely isometric: known since [VVV10].

Theorem (Anderson-Sackaney, V.)

The state ω is the unique $\mathbb{F}U(Q)$ -stationary state (wrt qtr_1) on $A = C(\partial_G \mathbb{F}U(Q))$. Hence $\partial_G \mathbb{F}U(Q)$ is an $\mathbb{F}U(Q)$ -boundary.

Topological Freeness

Theorem [Kalantar, Kennedy '17]. $C^*_{red}(\Gamma)$ is simple iff Γ admits a topologically free Γ -boundary iff $\partial_F\Gamma$ is free.

Topological freeness: $\forall g \neq e, X^g$ has empty interior.

Definition (ASV)

 $\Gamma \curvearrowright A$ is topologically free if any $F \in M(c_0(\Gamma) \otimes A)$ such that $\forall a \in A \ F(1 \otimes a) = \alpha(a)F$ must lie in $p_0 \otimes A$ (p_0 support of the co-unit).

Theorem (ASV)

- $\mathbb{F} \curvearrowright A$ top. free \Rightarrow faithful.
- $\mathbb{\Gamma} \curvearrowright \partial_F \mathbb{\Gamma}$ top. free $\Rightarrow C^*_{\mathrm{red}} \mathbb{\Gamma}$ simple.

Topological Freeness

Definition (ASV)

 $\mathbb{F} \curvearrowright A$ is topologically free if any $F \in M(c_0(\mathbb{F}) \otimes A)$ such that $\forall a \in A \ F(1 \otimes a) = \alpha(a)F$ must lie in $p_0 \otimes A$ (p_0 support of the co-unit).

Theorem (ASV)

- $\mathbb{F} \curvearrowright A$ top. free \Rightarrow faithful.
- $\mathbb{F} \cap \partial_F \mathbb{F}$ top. free $\Rightarrow C^*_{\text{red}} \mathbb{F}$ simple.

Problems:

- A Γ -boundary with $\Gamma \curvearrowright A$ top. free $\Rightarrow \Gamma \curvearrowright \partial_F \Gamma$ top. free ?
- Quantum examples of topologically free \(\bar{\text{\cupsilon}}\)-boundaries ?
- $\mathbb{F} \cap \partial_F \mathbb{F}$ topologically free $\Rightarrow \mathbb{F}$ unimodular.

Strong *C**-faithfulness

Remark. For $\Gamma \curvearrowright X$ compact minimal, the action is topologically free iff it is strongly faithful: $\forall F \subset \Gamma \setminus \{e\}$ finite $\exists x \in X \ \forall g \in F \ gx \neq x$.

Denote $PZ^{\circ}(\mathbb{F})$ the set of central projections $p \in c_0(\mathbb{F}) \cap \operatorname{Ker}(\epsilon)$.

Definition (ASV)

 $\mathbb{F} \curvearrowright A$ is strongly C^* -faithful if $\forall p \in PZ^{\circ}(\mathbb{F}) \ \forall \eta > 0 \ \exists k \in \mathbb{N}$ $\exists a \in (A \otimes M_k(\mathbb{C}))_+$ s.t. $\|(p \otimes a)(\alpha \otimes \mathrm{id})(a)\| < \eta \|a\|$.

 $\Gamma = \Gamma$ and A = C(X): can take k = 1, $\eta = 0$ and then, for $p = 1_F$, $(p \otimes a)(\alpha \otimes id)(a) = 0$ means $a \cdot \alpha_g(a) = 0$ for all $g \in F$.

 $\Gamma = \Gamma$, A general: strictly stronger that strong faithfulness.

Strong C*-faithfulness

Denote $PZ^{\circ}(\mathbb{F})$ the set of central projections $p \in c_0(\mathbb{F}) \cap \operatorname{Ker}(\epsilon)$.

Definition (ASV)

 $\mathbb{F} \curvearrowright A \text{ is strongly } C^*\text{-faithful if } \forall p \in PZ^{\circ}(\mathbb{F}) \ \forall \eta > 0 \ \exists k \in \mathbb{N}$ $\exists a \in (A \otimes M_k(\mathbb{C}))_+ \text{ s.t. } \|(p \otimes a)(\alpha \otimes \mathrm{id})(a)\| < \eta \|a\|.$

Theorem (ASV)

- A strongly C^* -faithful and $A \hookrightarrow B \Rightarrow B$ strongly C^* -faithful.
- A strongly C^* -faithful Γ -boundary $\Rightarrow C^*_{red}\Gamma$ simple.

Proposition (ASV)

For $Q = I_N$, $\partial_G \mathbb{F} U(Q)$ is strongly C^* -faithful.

Remark. Simplicity of $C^*_{red}(\mathbb{F}U(Q))$ already known [Banica].

Open Questions

- Is $\partial_G \mathbb{F} O(Q)$ strongly C^* -faithful? Simplicity of $C^*_{red}(\mathbb{F} O(Q))$ is known only with restrictions on Q.
- C^* -simplicity \Rightarrow topological freeness? Strong C^* -faithfulness?

Open Questions

- Is $\partial_G \mathbb{F} O(Q)$ strongly C^* -faithful? Simplicity of $C^*_{red}(\mathbb{F} O(Q))$ is known only with restrictions on Q.
- C^* -simplicity \Rightarrow topological freeness? Strong C^* -faithfulness?

Thank You!