Gamma-Elements for Free Quantum Groups

Roland Vergnioux vergniou@math.jussieu.fr

August 18, 2003

Motivations

- *K*-amenability [Cuntz]
- groups acting on trees [Julg-Valette]
- amalgamated free products of amenable discrete quantum groups

Compact Quantum Groups [Woronowicz]

main examples

- discrete groups
- free quantum groups [Wang-Banica]

C^* -algebras

- S unital C^* -algebra
- coproduct $\delta: S \to S \otimes S$
- There exists a Haar state $h \in S^*$.

corepresentations

- $v \in L(H_v) \otimes S$ st $(\mathsf{id} \otimes \delta)(v) = v_{12}v_{13}$
- \rightarrow category C with \oplus , \otimes , ...
- \rightarrow Irr C : irreducible corepresentations

hilbertian objects [Baaj-Skandalis]

- $H = L^2(S,h), \ \lambda : S \to L(H), \ S_{\mathsf{red}} = \lambda(S)$
- decomposition $H = \bigoplus_{r \in \operatorname{Irr} \mathcal{C}} p_r H$
- Kac system (H, V, U)

Quantum Caley Graphs

data

- quant. discrete group : S, C, (H, V, U)
- $-\mathcal{D} \subset \operatorname{Irr} \mathcal{C}$ finite st $\overline{\mathcal{D}} = \mathcal{D}$, $1_{\mathcal{C}} \notin \mathcal{D}$
- $p_1 = \sum_{r \in \mathcal{D}} p_r$

classical graph associated to $(\mathcal{C}, \mathcal{D})$

- $-\mathfrak{v} = \operatorname{Irr} \mathcal{C}, \ \mathfrak{e} = \{(r, r') \in \mathfrak{v}^2 \mid \exists s \in \mathcal{D} \ r' \subset r \otimes s\}$
- the reversing map $\boldsymbol{\theta}$ is well defined :

 $r' \subset r \otimes s \iff r \subset r' \otimes \overline{s}$

- geometrical edges, orientation

quantum graph associated to $(\mathcal{C}, \mathcal{D})$

- $-\ell^2$ -space of vertices : H
- ℓ^2 -space of edges : $K = H \otimes p_1 H$
- $-\Theta = \Sigma(1 \otimes U)V(U \otimes U)\Sigma, K_q = \operatorname{Ker}(\Theta \operatorname{id})$
- $-V: K \rightarrow H \otimes H \ll$ endpoints \gg operator
- $-S = (\mathsf{id} \otimes \epsilon)V$ and $T = (\epsilon \otimes \mathsf{id})V$

 \mathbf{nb} : $\Theta^2 \neq \mathrm{id}$

Ascending Edges

hypothesis

The classical graph of $(\mathcal{C}, \mathcal{D})$ is a strict tree, choose the origin $1_{\mathcal{C}} \rightarrow$ ascending orientation

proposition In this case the discrete quantum group associated to C is a free product of $A_o(Q_i)$'s and $A_u(R_j)$'s (with $Q_i\bar{Q}_i \in \mathbb{C}$ id).

definition (quantum ascending orientation) $-p_{\star +} = \sum \{V^*(p_r \otimes p_{r'})V \mid (r, r') \in \mathfrak{e}_+\}$ $-p_{+\star} := \Theta^*(1 - p_{\star +})\Theta \neq p_{\star +}!$ $-p_{\star -} = 1 - p_{\star +}, p_{-\star} = 1 - p_{+\star}$ $-p_{++} = p_{+\star}p_{\star +}, p_{+-} = \cdots, K_{++} = p_{++}K$

definition (quantum Julg-Valette operator) $F_g^* : K_g \xrightarrow{p_{++}} K_{++} \xrightarrow{T} H$

Space of Edges at Infinity

We consider the quantum Cayley tree of $A_o(Q)$, with $Q\bar{Q} \in \mathbb{C}$ id and Tr $Q^*Q > 2$.

theorem

- $-T_{|K_{++}|}$ is injective and its image equals $(1-p_0)H$.
- $-p_{++|K_g} \text{ is injective and its image equals} \\ \{\zeta \in K_{++} \mid p_{+-} \Theta p_{++} \zeta \in \text{Im} (\text{id} p_{+-} \Theta p_{+-}) \}.$

definition

$$p_{+-}\Theta p_{+-}$$
 is a « right shift », we put
 $H_{\infty} = \varinjlim ((p_k \otimes \operatorname{id})K_{+-}, p_{+-}\Theta p_{+-})$

theorem

 $p_{++}K_g$ is closed and its orthogonal is naturally isomorphic to H_{∞} .