Discrete Quantum Groups

[Woronowicz, van Daele]

Setting

Two dual Hopf C^* -algebras (S, δ) , $(\widehat{S}_{red}, \widehat{\delta})$ Densely defined co-units and antipodes

$$[c_0(\Gamma)]$$
 $S \xrightarrow{\mathcal{F}} \widehat{S}_{\mathsf{red}}$ $[C^*_{\mathsf{red}}(\Gamma)]$ $GNS \ h_R \qquad \widehat{h} \ GNS \ H \xrightarrow{\simeq} H \qquad [\ell^2(\Gamma)]$

Structure of (S, δ)

 $S = \bigoplus_{\alpha} B(H_{\alpha}) =: \bigoplus_{\alpha} p_{\alpha} S$, $S = \text{alg-} \bigoplus p_{\alpha} S$ Index set $\mathcal{I} := \{\alpha\}$, fd representations of S

Haar weights h_L , h_R defined on \mathcal{S} $\forall \ a \in p_{\alpha}S \ h_L(a) = m_{\alpha} \mathrm{Tr} \ (F_{\alpha}^{-1}a)$ and $h_R(a) = m_{\alpha} \mathrm{Tr} \ (F_{\alpha}a)$ with $F_{\alpha} \in B(H_{\alpha})_+$ st $\mathrm{Tr} \ F_{\alpha} = \mathrm{Tr} \ F_{\alpha}^{-1} =: m_{\alpha}$

The Property of Rapid Decay

[cf Haagerup, Jolissaint]

Length on (S, δ)

It is an unbounded multiplier $L \in S^{\eta}$ st

$$L \ge 0$$
, $\varepsilon(L) = 0$, $\kappa(L) = L$
 $\delta(L) \le 1 \otimes L + L \otimes 1$.

 $p_n \in M(S)$: spectral proj of L for [n, n+1[.

Sobolev norms

For $a \in \mathcal{S}$ we put $||a||_2 := h_R(a^*a)^{1/2}$ and $||a||_{2,s} := ||(1+L)^s a||_2$.

Let $H_L^s \subset H$ be the associated completions.

Definition / Proposition

Let L be a central length on (S, δ) .

We say that (S, δ, L) has Property RD if

$$\exists C, s \in \mathbb{R}_+ \ \forall a \in \mathcal{S} \ ||\mathcal{F}(a)|| \leq C||a||_{2,s}$$

$$\iff H_L^{\infty} := \bigcap_{s>0} H_L^s \subset \widehat{S}_{red} \text{ inside } H$$

$$\iff$$
 $\exists P \in \mathbb{R}[X] \ \forall k, l, n \ \forall a \in p_n \mathcal{S}$

$$||p_l \mathcal{F}(a) p_k|| \le P(n)||a||_2.$$

The amenable case

Growth

We say that (S, δ, L) has polynomial growth if $\exists P \in \mathbb{R}[X] \ \forall n \in \mathbb{N} \ h_R(p_n) \leq P(n)$

Proposition

 (S, δ, L) amenable + RD \Rightarrow polynomial growth (S, δ, L) polynomial growth \Rightarrow Prop RD

Example

Duals of connected compact Lie groups have Property RD. In fact in this case

$$H_L^{\infty} \subset \widehat{S}_{\mathsf{red}} \iff C^{\infty}(G) \subset C(G).$$

Proposition

 (S, δ) not unimodular \Rightarrow not polynomial growth The dual of $SU_q(N)$ does not have RD.

A necessary condition

If (S, δ, L) has RD there exists $P \in \mathbb{R}[X]$ st for any inclusion $\gamma \subset \beta \otimes \alpha$ without multiplicity $\forall a \in p_{\alpha}S \quad ||p_{\gamma}\mathcal{F}(a)p_{\beta}|| \leq P(|\alpha|)||a||_{2}.$

Proposition

This condition is equivalent to requiring, for any $a \in L(H_{\alpha})$, $b \in L(H_{\beta})$:

$$||\delta(p_{\gamma})(b\otimes a)\delta(p_{\gamma})||_{2} \leq \sqrt{\frac{m_{\gamma}}{m_{\beta}m_{\alpha}}} |P(|\alpha|) ||b\otimes a||_{2}$$

NB : $\delta(p_{\gamma})$ is the projection onto $H_{\gamma} \subset H_{\beta} \otimes H_{\alpha}$.

Corollary

Non-unimodular DQG cannot have RD. (Consider $\varepsilon \subset \bar{\alpha} \otimes \alpha$.)

Free quantum groups

[Wang, van Daele, Banica]

Recall that

$$C^*(F_N) = C^*(1, u_i \mid \forall i \ u_i u_i^* = u_i^* u_i = 1)$$

One puts for $Q \in GL(N, \mathbb{C})$

$$A_u(Q) = C^*(1, u_{ij} \mid U \text{ and } Q\bar{U}Q^{-1}\text{unitary})$$

$$A_o(Q) = C^*(1, u_{ij} \mid U = Q\bar{U}Q^{-1}$$
unitary)

These are compact quantum groups whose duals are called the free quantum groups.

In the orthogonal case (with $\bar{Q}Q \in \mathbb{C}id$)

 $\mathcal{I}\simeq\mathbb{N}$ with $U\simeqlpha_{1}$, $ar{lpha}_{k}\simeqlpha_{k}$ and

$$\alpha_k \otimes \alpha_l \simeq \alpha_{|k-l|} \oplus \alpha_{|k-l|+2} \oplus \cdots \oplus \alpha_{k+l}.$$

In the unitary case

$$\mathcal{I} \simeq \{ \text{words on } u, \bar{u} \} \text{ with } U \simeq u, \ \overline{wu} \simeq \bar{u}\bar{w}, \ wu \otimes uw' \simeq wuuw', \ wu \otimes \bar{u}w' \simeq wu\bar{u}w' \oplus w \otimes w'.$$

 (S, δ) unimodular $\iff Q \in \mathbb{C}U(N)$.

If $N \geq 3$, m_{α} grows exponentially with $|\alpha|$.

Free quantum groups

Haagerup proved that F_N has Property RD.

Proposition

For the duals of $A_o(Q)$ and $A_u(Q)$, the necessary condition of Slide 5 is sufficient.

Theorem

If $Q \in \mathbb{C}U(N)$, the duals of $A_o(Q)$ and $A_u(Q)$ have Property RD.

(requires a finer description of the representation theory than just the semi-ring structure)

Application to K-theory

[cf Jolissaint, Lafforgue]

L word length on finitely generated (S, δ) . $D: \mathsf{Dom} D \subset B(H) \to B(H)$ derivation by L.

Proposition

We have $\widehat{S}_{\mathrm{red}}\cap \mathrm{Dom}D^k\subset H^k_L$. If (S,δ,L) has RD we have $H^{k+s}_L\subset \widehat{S}_{\mathrm{red}}\cap \mathrm{Dom}D^k$.

Corollary

 H_L^∞ is a dense subalgebra of $\widehat{S}_{\rm red}$, stable under holomorphic functional calculus.

The inclusion induces an isomorphism

$$K_*(H_L^{\infty}) \xrightarrow{\sim} K_*(\widehat{S}_{\mathsf{red}}).$$

Similarly, for s big enough, H_L^s is a dense subalgebra of $\hat{S}_{\rm red}$ which is stable under holomorphic functional calculus.

Another Application

 $U \in M_N \otimes \widehat{S}_{red}$ fundamental corepr. of $A_o(I_N)$. Consider the operator

$$\Psi: \widehat{S}_{\mathsf{red}} \to \widehat{S}_{\mathsf{red}}$$

$$x \mapsto (\mathsf{Tr} \otimes \mathsf{id})(U^*(1 \otimes x)U)/N$$

Proposition

There exists $\lambda < 1$ such that $\forall x \in \widehat{S}_{red}$ $\widehat{h}(x) = 0 \Rightarrow ||\Psi(x)||_2 \leq \lambda ||x||_2$.

Corollary For
$$A_o(I_N)$$
,

- 1. $\hat{S}_{\text{red}}^{\prime\prime}$ is a full factor.
- 2. \hat{S}_{red} is simple with a unique tracial state.