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ABSTRACT. We prove that the twisted property RD introduced in [BVZ15] fails to hold for all non
Kac type, non amenable orthogonal free quantum groups. In the Kac case we revisit property RD,
proving an analogue of the L, — Ly non-commutative Khintchine inequality for free groups from
[RX16]. As an application, we give new and improved hypercontractivity and ultracontractivity
estimates for the generalized heat semigroups on free orthogonal quantum groups, both in the Kac
and non Kac cases.

1. INTRODUCTION

Property RD (Haagerup’s inequality) is a fundamental tool in the study of the reduced C™*-
algebra of discrete groups, allowing one to control the operator norm of convolution operators by
means of the much simpler /?-norm (see Section 2.4 for more details). It appeared in the seminal
paper [Haa79] where it was used in conjunction with Haagerup’s approximation property (HAP)
to establish the Metric Approximation Property (MAP) for reduced C*-algebras of free groups.

The definition of Property RD was extended to discrete quantum groups in [VerO7] and was
proved there to be satisfied by Kac type (unimodular) orthogonal and unitary free quantum groups.
In [Bral2] a quantum analogue of the HAP was established for these free quantum groups, thus
yielding a proof of the MAP for the corresponding reduced C*-algebras. Property RD was more-
over used for the study of other aspects of discrete quantum group operator algebras, see e.g.
[VVO07, Ver12, Bral4, Youl8]. Interesting connections to Quantum Information Theory, specific
to the quantum framework, were also unveiled in [BC18].

The definition of Property RD used in [Ver07] can only be satisfied by Kac type discrete quantum
groups. In [BVZ15], the authors give a “twisted” version of the definition which holds for all
(duals of) g-deformations of connected compact semi-simple Lie groups, and give applications to
noncommutative geometry.

Hypercontractivity describes the regularization effect, in terms of L,-norms, of a given Markov
semigroup. It has been studied extensively since the early 70’s, starting with the work of Nelson
and Gross [Nel73, Gro72], and has found surprising applications in harmonic analysis, information
theory and statistical mechanics. In the case of the Ornstein-Uhlenbeck semigroup on the Clifford
algebra with one generator, the two-point inequality of Bonami, rediscovered by Gross [Bon70,
Gro75], already has deep applications to (quantum) information theory [BRSdW12, GKK*09,
KR11, KV15].

In the noncommutative framework, hypercontractivity problems for Orstein-Uhlenbeck-like semi-
groups emerged from quantum field theory and optimal times have been obtained in the fermionic
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case in [Nel73, CL93], using noncommutative L,-theory. Moving further away from the commuta-
tive situation, hypercontractivity results for free group algebras were obtained in [Bia97, JPP*15]
(with respect to different semigroups). Note that the connection between hypercontractivity and
Property RD in that case was already noticed by Biane [Bia97].

The study of hypercontractivity for discrete quantum group algebras was initiated in [FHL*17],
where a natural analogue of the heat semigroup on the reduced C*-algebra of orthogonal free
quantum groups was studied. In the Kac case, the authors of [FHL " 17] obtain the ultracontractivity
of these semigroups (at all times), as well as hypercontractivity with explicit upper bounds for the
optimal time to contractivity.

In the present article we pursue the study of Property RD for non Kac type discrete quantum
groups. We prove that non Kac and non amenable orthogonal free quantum groups do not satisfy
the property RD introduced in [BVZ15] (Theorem 3.3). Then we state and prove a weaker RD
inequality (Proposition 3.4) which holds for all orthogonal free quantum groups, and which was
already used without proof in [VVO07] in a slightly less precise form.

In the second part of the article we continue the study of ultra- and hypercontractivity for the heat
semigroup on free orthogonal quantum groups. We obtain in particular the first known results in
the non Kac case, namely ultracontractivity with a strictly positive optimal time (Proposition 4.1)
and hypercontractivity for large time (Proposition 4.2). In the Kac case we sharpen the upper
bound of [FHL™17] for the optimal time to hypercontractivity (Theorems 4.5, 4.6 and 4.7), using
a non-commutative Khintchine type inequality (Theorem 4.4). We give as well a lower bound for
the optimal time to hypercontractivity (Lemma 4.3). Motivated by these results, we end the article
with a conjectural formula for the asymptotical behavior of the optimal time to hypercontractivity
when the rank of the free orthogonal quantum group tends to infinity.

The article is organized as follows. In Section 2 we recall the necessary preliminaries about
compact quantum groups and Property RD on their duals. Section 3 is devoted to the study of
Property RD on non Kac type orthogonal free quantum groups. Finally in Section 4 we produce
applications to hypercontractivity as described above.
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2. PRELIMINARIES

We assume that the reader is familiar with the basic notation and terminology on compact and
discrete quantum groups. For details, we refer the reader to the standard references [Wor98, Tim08,
NT13, MVD98]. In this paper we will mainly be concerned with the class of free orthogonal
quantum groups and their associated dual discrete quantum groups. We now recall these objects.

2.1. Compact quantum groups. A compact quantum group G is given by a Woronowicz C*-
algebra C'(G), which is in particular a unital Hopf-C*-algebra with co-associative coproduct A :

C(G) — C(G) ® C(G). We denote by h the Haar state on C'(G), which is the unique state on
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C(G) satisfying

(h®id)A = (id®h)A = h(-)1.
The Haar state induces the inner product (f, g) = h(f*g) and the norm || f||o = h(f*f)'/? for f,
g € C(G). By completion we obtain the GNS space L,(G) with canonical cyclic vector &, and
we denote 7, : C(G) — B(Lo(G)) the associated representation. The image of 7, is the reduced
Woronowicz C*-algebra denoted C,.(G) and the associated von Neumann algebra is L..(G) =
C.(G)" C B(Ly(G)).

We then define L (G) as the predual of L. (G) and consider the natural embedding L..(G) —
Ly(G) given by & +— h(-z). Then (L (G), L1(G)) is a compatible pair of Banach spaces, which
allows one to define the non-commutative L,-spaces L,(G) = (Loo(G), L1(G))/, by the complex
interpolation method [Pis03]. When the Haar state is tracial we have ||a[|r,c) = h(|a|?)"/? for any
l<p<oanda € L(G).

A representation of G on a Hilbert space H, is an invertible element v € M (K (H,) ® C(G))
such that (id ®A)(v) = w2013, using the leg-numbering notation. Here, v;o = v ® 1 and vy3 =
o93(v12) in M (K (H,)®C(G)®C(G)), where o3 is the unique extension of the x-homomorphism
on K(H,) ® C(G) @ C(G) givenby T®a®@b—T ®b® a.

Furthermore, v is called a unitary representation if v*v = Idy, ® 1¢@) = vv*. If H, is finite-
dimensional and equipped with an orthonormal basis (e;);, the associated matrix elements of v are
vi; = (€f ®id)v(e; ® id). Then we have v = ) e;ef ® v;; and A(vy;) = > vip ® vg;. For two
unitary representations v € M (K (H,) ® C(G)) and w € M(K(H,) ® C(G)), the tensor product
representation is vDw = vigwey € M (K (H, ® H,) ® C(G)).

Furthermore, we say that v is irreducible if Mor(v,v) :={T € B(H,) : v(T ® 1) = (T ® 1)v} =
C - idy,. We denote by Irr(G) the set of all irreducible unitary representations of G up to unitary
equivalence. For each o € Irr(G) we choose u = u® € « and denote H, = H, (which is always
finite-dimensional). The coefficients of u® with respect to some orthonormal basis (e;); C H,
are denoted v;';. The multiplicity of an irreducible representation v in another representation v is
mult(u C v) = dim Mor(u, v).

There is, for each irreducible unitary representation u, a uniquely defined positive element (), €
B(H,) such that d,, := Tr(Q,) = Tr(Q."') and such that the following orthogonality relations
hold

h(ujjum) = dy (e | Q' er),

h(uwuy;) = d ' i(e; | Quer).
The number d,, is called the quantum dimension of u, as opposed to the classical dimension n,, =
dim H,,. The compact quantum group G is said to be of Kac type if Q, = idy, forall o € Trr(G).
This is equivalent to the Haar state h being tracial.

The coefficients ug; of irreducible unitary representations span a dense subalgebra O(G) C
C(G) which is a Hopf algebra with respect to the restriction of the coproduct A. We recall that
h is faithful on O(G) and we shall identify O(G) with its image in C,(G) through the GNS

representation 7, — in particular we identify a representation v and its image (id ®m,)(v) €
B(H,) ® C,(G). Note also that O(G) is dense in L,(G) forany 1 < p < oco.

2.1)

A compact quantum group G is said to be a compact matrix quantum group if there exists a finite
generating subset {a, - - -, a,, } of Irr(G) in the sense that any irreducible unitary representation

u® appears as an irreducible component of a tensor product representation u“™t D u*2 @ - - - D u*"*
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forsome k € Nand 1 < my, mo, -+, mi < n. In this case, for any «, the minimal number k € N
required to generate u® as a subrepresentation as above is called the length of «, and denoted
|a| = k. The length at the trivial representation is 0. We say that a non-zero element f € C(G)
or C;(G) has length & if it can be written as a linear combination of coefficients ug'; with irre-
ducible representations « of length k. We denote p, € B(Ly(G)) the orthogonal projection onto
the subspace of Ly(G) spanned by elements of length k.

2.2. Dual algebras. Associated to each compact quantum group G is its dual discrete quantum
group G. For us the main object of interest will be the algebra

loo(G) = {a € [Taerm) B(Ha)  (||aal))o bounded}

and the subalgebras cyo(G), ¢(G) of sequences with finite support, resp. converging to 0. For each
a € Irr(G) we denote p, the corresponding minimal central projection in any of these algebras.
We use the same notation p,, for the orthogonal projection onto the subspace of L,(G) spanned
by the GNS images of the coefficients u;'; — indeed there is a natural representation of co(@) on
L, (G) which realizes this identification.

~

The algebras c¢o(G) and C'(G) are related through the “multiplicative unitary” V' = @@ u* €

~

M(co(G) ® C(G)). We endow ¢o(G) and (o (G) with the coproduct A such that (A ® id)(V) =
V13Va3. By definition this coproduct is related to the tensor product construction for representa-
tions, more precisely we have, for all o, 3, v € Irr(G), a € B(H,) and T' € Mor(y,a @ f3), the
following identity in B(H.,, H, ® Hp):

~

(Pa @ pg)A(a)T = Ta.
There is a distinguished weight / on 800(@), called the left Haar weight, given by

ha)= Y deTr(Qata)  (a=(a0)a € con(G)).

a€lrr(G)

We denote again ||al|; = h(a*a)"/? the norm on coo(G) associated with this weight. By restriction
and tensor product one obtains as well norms, still denoted || - ||2, on B(H,) and B(Hz ® H.,),
associated to the inner products (ai, as) = d,Tr(Qqajaz) for all ay,ay € B(H,) and (x1, z5) =
dpd, Tr((Qp ® Q)xix,) for all 1,2, € B(Hg ® H.,). Note that the collection of matrices @),

~

defines an algebraic (in general unbounded) multiplier @ = (Q,)a of ¢o0(G), the modular element.

The analogue of the classical Fourier transform is the linear map F : coo(G) — C/(G) given by
F(a) = (h®id)(V(a ® 1)). Explicitly, we have

Fla)= Y > da(aaQa)jius; € Co(G).
a€lr(G) i,j=1
The Haar state h on G and the left Haar weight h on G are related through the Plancherel Theorem,
which asserts that for any @ = (aq)acnr(@) € coo(G), we have h(a*a) = h(F(a)*F(a)).
Let us note the following algebraic properties of the Fourier transform. Recall that for f €
O(G), p € O(G)* we denote [ x p = (p @ 1d)A(f) and ¢ x f = (id ®p)A(f). Then we have,
fora € coo(@), v e O0G)*":

¢ * F(a) = F(ba) an:l Fla) * o = F(ab?)



where b = (id ®¢) (V) is an algebraic multiplier of Coo(@) and b% = QbQ~!. On the other hand

~

for a, b € coo(G) we have F(a)F(b) = F(a *b) where a x b is the unique element of cqo(G) such
that (h ® h)(A(c)(a @ b)) = h(c(a b)) forall ¢ € co(G). The map a @ b — a x b defined above
is referred to as the convolution product on coo(@).

We say that G is finitely generated when G is a compact matrix quantum group. Having fixed a

generating subset in Irr(G), we putp, = >, _,, Pa € coo(G). This is compatible with the notation
pn € B(Ly(G)) introduced previously, in the sense that we have F(p,a)&y = ppF(a)é for any

n € Ny and a € ¢oo(G).

2.3. The free orthogonal quantum groups. We now come to the main objects of study in this
paper. Let N € N, N > 2 and F € GLy(C) such that F'F' = +1. The free orthogonal quantum
group is the compact quantum group O; = (C(OF), A), where

(H C (O}“) is the universal unital C*-algebra generated by N? elements u;j, 1 < 1,5 < N,
satisfying the relations making v unitary and v = (F ® 1)u(F~! @ 1), where v =
(“i,j)lgi,jgN € My(C)® C(0O}) and u¢ = (u;j)léidSN.

(2) A: C(O}) — C(OF) ® C(O}) is the unital x-homomorphism determined by A(u; ;) =
> Ui ® U

The compact quantum group O} is a compact matrix quantum group and we choose the funda-
mental representation u = (u; ;);; € B(CY) ® C(O}), coming from the canonical generators of
C(0}), as the (unique) generating representation. Then it is known from [Ban96] that for each
k € N there is a unique irreducible representation (up to equivalence) of length k&, which is equiv-
alent to its conjugate. We denote this class k, yielding an identification of Irr(O}) with Ny. We
have in particular u” = 1¢(g) (the frivial representation), and u' = u = (u;;) € B(H;) ® C(G)
with H1 = CN.

One can check that Q; = F"F, so that d; = Tr(F*F). There exists a unique ¢ € (0, 1] such
that d, = ¢ + ¢~! and we denote also N, = d; = q+ ¢~'. On the other hand one can see that
1Qkll = |Q1]|* = || F'||?* for all k € N, and that O} is of Kac type iff F' is unitary. This is typically
the case of F' = Iy and we denote in this case O} := O] .

It is moreover known that u™ (D" is unitarily equivalent to u/™ " @ u™ "2l @ ... @yt
We denote by P, = P™" the orthogonal projection from H,, ® H,, onto H, for any one of [ =
|m —n|,|m —n|+2,--- ,;m + n. We have in particular ng = 1,n; = N, nyng 1 = ngio + ng
forall k € Ngand dy = 1, dy = N, := Tr(F*F), didjy1 = di+o + di for all k& € Ny. Finally, it
was also shown by Banica [Ban96] that the fundamental character x1 = sz\il u;; 1S a semicircular
element (on [—2, 2]) with respect to the Haar state.

2.4. Property RD and its generalizations. In the case when G is a classical discrete group I', the
Property of Rapid Decay amounts to controlling the norm of C,.(G) = C*(I") from above by the
2-norm. More precisely a discrete group I' has Property RD if there exists a polynomial PP such
that

lzllez ) < PE)|2 (2.2)

for all k € Ny and all z € C}(I') supported on elements of length & in I, with respect to some
fixed length (for instance a word length if I' is finitely generated). Note that the reverse inequality
|zll2 < ||lz||cx(ry is always true.
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A quantum generalization of Property RD was introduced in [VerO7] by means of the same
inequality (2.2), with appropriate notions of length and support as introduced above. It was shown
in the same article that Property RD holds for the dual of O}, but fails for the dual of any compact
quantum group G which is not of Kac type. Later, a modification of the quantum definition was
proposed in [BVZ15] so as to accommodate non-Kac examples such as SU,(2), and more generally
quantum groups G with (classical) polynomial growth. This modification is obtained by replacing
the 2-norm on the right-hand side of (2.2) by a still “easily computable” twisted 2-norm.

In this setting, “easily computable” means a norm of the form || f||, = [|¢ * f|l2 or || f * ¢||2
for f € O(G), with ¢ € O(G)* fixed. Using the fact that the Fourier transform is isometric, this
can also be written || F(a)||, = ||Dally or [|[aD?||; for a € coo(G), where D = (id ®@¢)(V), and
these norms can indeed be computed by multiplying matrices and summing their traces. In this
picture the twisted Property RD takes the form ||F(a)| ¢, ) < P(k)||Dall or || F(a)|c, @) <

~

P(k)||aD'||2 if F(a) is of length k, for some fixed algebraic multiplier D or D’ of ¢yo(G). Observe
that by polar decomposition one can assume D > 0 (resp. D’y/Q > 0) without changing the
associated twisted norm.

Of course one could always achieve such inequalities by taking a central multiplier D = (b, )a
with weights b, growing sufficiently rapidly (see for example [VV07] and the discussion at the be-
ginning of Section 3.1). However, for some applications (e.g., to the metric approximation property
[Bral2], and to non-commutative geometry [BVZ15]), it is desirable to use “natural” or “optimal”
elements D, D'.

We note that the authors of [BVZ15] choose the twisted 2-norm in such a way that { Na s } 1<i,j<na
"7 aenn(G)
forms an orthonormal basis, as it is in the case of Kac type compact quantum groups. An easy in-

spection with our conventions shows that the only twisted norm with this property is ||F(a)||, :=

|av/C|2, where

C= (Z—ZQQ)Q 2.3)

is the canonical element used in [BVZ15] to define their twisted 2-norms. In the following defi-

~

nition we fix a multiplier D = (D, )acim(c) Of coo(G), we consider the associated twisted norms
lall2.p := ||aD||2 for a € cyo(G), and we put

1£ll2.0 = |77 (F)ll2.p = | F7(£)Dll2
for f € O(G). Observe that D is uniquely determined by || - ||2 p if we assume D+/Q > 0.

Definition 2.1. Let G be a compact matrix quantum group with a ﬁ)ied family of generating irre-
ducible representations and D a multiplier of coo(G). We say that G has Property RDp if there
exists a polynomial P € R [X] such that for all k € Ny and f € O(G) of length k, we have

1Fllen@) < PR)f20-
o) < P(k)|all2,p for all k € Ny and a €

The property above can also be written || F(a)|

~

prcoo(G). Explicitly, Property RDp, asks that

1)) da(aaQa)jitid 1,y < P(k)* Y do Tr(DaQoDja}an). (2.4)

la|=k i,j=1 la|=k
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The Property RD considered in [BVZ15] corresponds to the case D = +/C, which satisfies
D+/@Q > 0 since C' commutes with ). If G is of Kac type, the Property RD /& coincides with the

property D in [VerO7]. In particular, if G is a discrete group I', then Property RD /& is exactly
same with the property RD of I'.

We now restate [Ver07, Lemma 4.6] in a slightly more general form. Note that in the case
G = Oj equipped with the canonical generating representation, there is only one irreducible
representation o« = k € Irr(G) for each given length k, and the inclusions v! C u* @ u™ are
multiplicity-free.

Lemma 2.2. Let G be a compact matrix quantum group with a fixed family of generating irre-
ducible representations. For k, n € Ny and v € Irr(G) we denote

dod
Vim = Z d—ﬂ mult(u? C u*@Du?). (2.5)

lo|=k,|Bl=n "

Then the discrete quantum group G has Property RDp with respect to a multiplier D iff there exists

~ A~

a polynomial P such that we have, for any k, I, n € Ny and for every a € prpcy(G), b € p,co(G):
> vl A (@@ HAEP,)I5 < Pk)*llaD @ b3, 2.6)

Iy|=t
Proof. The proof is a straightforward extension of the ideas in the proof of [Ver07, Lemma 4.6]
using our notation. Let us recall the main ideas for the convenience of the reader.
First of all, Property RD)p is equivalent to the fact that ||p; fp,||c, @) < P(k)| fl2,p for all k,

l,n € Ngand f € O(G) of length k, see [Ver07, Proposition 3.5] and [BVZ15, Proposition 3.4].
Using the Fourier transform, this means that we require
[P F (@) F(b)éoll2 < P(K)all2,pl|bll2 = P(k)|laD @ b2, (2.7)

for all a of length & and b of length n. Moreover we have ||p,F(a)F (b)&o|l2 = ||piF (a * b)oll2 =
| F(pi(axb))||2 = ||pi(a*b)||2 — indeed by definition of p; (in ¢y(G) and B(Ly(G))) and of V' we
have (1@p)V(1®&) = (p®id)V(1®¢&,). Then we can decompose into orthogonal components:

lpu(a D)5 = 321, = [Ip5 (@ % ) 3.
Then by definition of the convolution product we can write, for any ¢ € ¢o(G):

h(e*py(axb)) = (h® h)(A() Ap,)(a @ b))
— (h @ ) ((pr @ p) A Ap,) (@ © DA(,)).
Note that p., is central in co(@) and that A(p,) is (b ® h)-central. To obtain the expression of
|p(a * b)||3 which appears in the left-hand side of (2.6), it remains to take the supremum over
¢ € pyco(G), with [|c[]; < 1. We show below that we have in fact ||(pr ® pn)A(c)|l3 = v, [lcll3,

which yields the correct expression ||p,(a * b)||2 = (V,Z’n)lﬂHA(pA,)(a ® b)A(p,) |2 so that (2.6)
results from (2.7). R N

Indeed we have A(Q) = ( ® @ in the multiplier algebra of cy(G) ® co(G), and on the matrix
algebra pwco(@) — B(H,) the *-homomorphism (p, ® ps)A is an amplification with the same
multiplicity as the inclusion u” C u® @ u”. Thus we have

Tr ((Q ® Q)(Pa @ pg)A(d)) = mult(w” C u® D) Tr(Qd) 2.8)
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for any d € B(H,). As aresult we can write

(&) (e ®p)APD) = D dads(Tr@T[(pa © 92)(Q ® Q)A(pyd)

la|=k,|Bl=n
= Z dodgmult(u? C u* ©u”) Tr(Qp,d) = V];Y’nﬁ(pvd).
la|=k,|Bl=n
Taking d = ¢*c we obtain ||(py @ pn)A(e)|2 = v llell3 as claimed. O

3. ON PROPERTY RDp FOR @

In this section we turn our attention to the duals of the free orthogonal quantum groups O},
establishing some necessary conditions for Property RDp, to hold for a given multiplier D. In this
case Property RDp with respect to a multiplier D and a polynomial P is characterized by the
following multiplicity-free version of (2.6):

~ A d
1A (@@ )A@)z < /77 P#E)|aDy @bl (3.1)

for all k, [, n such that ! C u* ® u™, a € B(Hy) and b € B(H,).

Here the 2-norms are the ones coming from the weight h, but one can use as well the twisted
Hilbert-Schmidt norms, e.g. ||al|4s = Tr(Qra*a) for a € B(Hj,), since these two norms only differ
by a scalar factor v/d;,. Moreover, if we fix an isometric intertwiner (unique up to a phase) v =
v € Mor(ul, u* @ u™) we have || A(p;) (a @ b)A(pr) |lus = [|vv* (a ® b)vv*||lus = ||v*(a @ b)v||us
— notice that the last norm is the twisted Hilbert-Schmidt norm on B(H)).

We can moreover give an explicit form to the intertwiners vlk "™ as follows. For each n € Nj
the tensor power representation u' @ - - -@u' contains a unique copy of u™, we choose for H,, the
corresponding subspace of H®" and we denote P, = p®"A"~1(p,) € B(HE") the corresponding
orthogonal projection. We further fix an intertwiner (unique up to a phase) t,, € Mor(1, u" D u™)
such that ||t,|| = /d, and we consider the intertwiners A/ = (P, ® P,)(id ® t, ® id)P, €
Mor(u!, u* @ u™), where r = (k + n — )/2. One can then take v)"" = || AF"|| = A"

The (operator) norm of Af’" can be explicitly computed, see for example [Ver07, Lemma 4.8]
or [BC18, Equation (6) and Proposition 3.1]. This norm happens to be controlled from below and
above, up to factors depending only the parameter 0 < ¢ < 1 given by ¢ + ¢~ = Tr(F*F), as
follows:
2m—2r+2s)

L apre = Lm0 - @0 g
- dr pole (1 _ q2k+2+2s)(1 _ qzs)z
1

T

= [r+11]q<Hl1_1qzs>3 = %(

sS= s=1

where | = k +n — 2r. If we put

| < Clg) = — (H L )3, 3.2)




and use the inequality
did,

(1-¢°)° < e S (- @)~
which follows from the dimension formula d,, = %, we get
d; \1/2 — d; \1/2
(= () <1 <0 (5) (3.3)

Inequality (3.3) shows that HA;”Z | =2 compensates exactly for the analogous factor of the right-
hand side of the RD inequality (3.1) which can thus be rewritten in the equivalent formulation

1(A;™) (@ @ b) A7 lus < P(k)||aDy @ bl|us. (3.4)

In (3.4), it is important to use the twisted Hilbert-Schmidt norms since the matrix spaces are no
longer the same on both sides.

Remark. The universal constant C'(¢) defined in (3.2) will make several appearances in the remain-
der of the paper.

Note that we have u! C u*@u" iff | € {|n — k|,|n — k + 2|,...,n + k}. One can obtain
necessary conditions for Property RDp by fixing the value of /. More specifically we say that the
dual of O}, satisfies Property RDY, (resp. RD'3*) for some polynomial P if the above inequality
is satisfied for all K = n € Ny and [ = 0 (resp. for all k£, n € Ny and for [ = k + n).

In the case of RDY we have simply A" = A" =t, : C — H, ® H,, so that Property RDY,
with respect to the polynomial P, is equivalent to the fact that

|t (a @ b)t,| < P(n)|laD, ® b||us- (3.5)

forall n € Ny and a, b € B(H,,). Note that t,, can be written uniquely as ¢,,(1) = >_. e; ® jn(e;),
where the anti-linear map j,, : H,, — H, does not depend on the chosen orthonormal basis (e;);
of H,, and recall that we have Q,, = j’j, and j2 = +id. Then one can compute (recalling that

(Cl7¢) = (&|7*C) for an anti-linear map j):
tr(a @ b)t, = Tr(j:b"jna) (3.6)
Summing everything up, one can reformulate Property RDY as follows:
Definition 3.1. We say that 5\} has RDY, if there exists a polynomial P such that
|t7(a @ b)ty| = Tr(jpb"jna) < P(n)llaDy @ bl|us 3.7)
forall a,b € B(H,) andn € Ny.

It turns out that Property RD?Y, for the dual of O}, can be explicitly characterized in terms of the
matrices D,, (and (),,), as follows.

Proposition 3.2. The discrete quantum group O}, has RDY, with respect to a polynomial P if and
only if

1Q, 2D, Q|| QY% < P(n) for alln € N. (3.8)
9



Proof. Note that (3.7) can be written as
| Te(b"a)|* < P(n)*[|aDy @ jibiallfis = P(1)? Tr(D;QnDna’a) Tr(Quinb™ jndnbin)-

We have moreover D}, D,, = D2 where D,, = D /@, is positive, and Tr(Q,,j:b* jnjxbjn) =
Tr(jngidndib* jngib) = Tr(Q,, 1b*Qn '5Q-1). Now we note that, by the Cauchy-Schwarz inequal-
ity (for the untwisted Hilbert-Schmidt scalar product), the maximum of | Tr(b*a)[?/ Tr(D2a*a)
equals Tr(D;2b*D), attained at a = bD;;2, so that RDY is equivalent to

Tr(D,*b*b) < P(n)* Tr(Q,'b*Q,"bQ;,")
1
Replacing b with Q)7 b(Q),,, the above can be written as

Tr(Q, D 2Qub*Q,b) < P(n)? Tr(b*b).
We note that, for positive matrices M, N € B(H,),

2
Tr(Mb* Nb) ( ||NébM%||HS>
max = A

b20  Tr(b*h) 16| s

equals || M ||| N]|, attained at b = &n* € B(H,), where £, 7 are unit vectors chosen to satisfy
INz&|| = |[Nz| and ||Mz2n|| = ||Mz|. Therefore, RDY is equivalent to
10D 2Qulll|Qull = 17 Qul* Q%> < P(n)* for all n € N.

which gives us the desired conclusion. 0
Remark. The same techniques apply if one tries to twist the 2-norm from the other side, i.e. if
one considers inequalities of the form |t (a ® b)t,| < P(n)||D,a ® b||us. Then one arrives at the
condition || D, LQN? [ ||Qi/ ?|| < P(n), which is equivalent to the condition of Proposition 3.2 if D
and () commute.

Recall that [BVZ15] take D? = C}, = Z_ZQk to verify RDp for SU,(2) (more generally, the
Drinfeld-Jimbo ¢-deformations (G,). It seems reasonable to consider a continuous family of vari-
ants of this multiplier by taking Dj, = (Z—’Z)‘SVQQZ/Q with s € R. Recalling that | Qx| = [|Q; ]| =
[

we see that in that case Proposition 3.2 reads
Is|
<%> Q1| P2+ VE < P(k)? for all k > 0.
k

However, the following theorem shows that this inequality is not satisfied for any non-Kac O}
as soon as NV > 3.

Theorem 3.3. Let N > 3, s € R and consider the multiplier D(s) = (Dy)gen, With Dy =
(dlyﬁ/nk)‘s‘/2 QZ/Q. Then O}, has Property RD%(S) if and only if O} is of Kac type. In particular, all
non-Kac O} do not have property RD D(s)-

Proof. We only need to consider the case Where O} is not of Kac type. Le., we assume Q; # I.

Since <"—:) Q| (P—sFDF > <”k||Q I ) for all k& € N, it suffices to show that [/ |* has

exponential growth, i.e.
k
lim inf <"k:HdL1H) > 1.

==

k—o0 k
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First of all, we have limy_,, d,% = f(dy) and limy_, n,% = f(ny) where f(t) = @. Let
us denote by A\; < --- < Ay the eigenvalues of ();. Then, since the spectrum of (); is symmetric
under inversion, we have \; < 1 and Ay < 1.

Then, in the expansion of (A; + - -+ + A\y)? = 22[]':1 Aidj, we have A\F, Ao, Ao < 1,02 <1
and the other terms are smaller than \.. From this observation we obtain

d? <4+ (N?—4))3%,
which together with the obvious estimate d; < N Ay yields

di + /&> —4 Ny + /(N2 —4))\2
iy = DAVAZ T VIEZ DN ).
1
Hence, we have lim infj,_, o (%ﬁ’“”) f = % > 1. d

max

Remark. On the other hand, one might try to consider the “opposite” case of RD}/**, which is
satisfied iff we have || Pyy,(a ® b) Piyy||lus < P(k)||aDy & b||us for all k,n € Ny and a € B(Hy),
b € B(H,). In fact, when D commutes with () it turns out that RD'5** is a consequence of RDY,,
thank to Proposition 3.2.

Indeed we always have ||Pyi,(a ® b)Prin|lus < |la ® bllgs (using the fact that Py, com-
mutes with Q; ® @Q,,), so that ||a|lus < P(k)|laD|lus implies RDE*. Performing the same
analysis as in the proof of Proposition 3.2 we see that this stronger condition is equivalent to
| Dl < P(k) for all k. On the other hand when D commutes with () we can write | D' =

21/2 ~ ~1/2 1/2 —-1/2
Q%D Qi I < Q5 Dy Qulll @i
terization of RDY, given at Proposition 3.2 since ||Q,;l/ | =@

, which makes the connection with the charac-
1/2
(s

Remark. The analysis of the above two subcases of Property RDp leads us to ask whether Prop-

erty RDp is equivalent to RDY for 6\}? L.e., Is Property RDp equivalent to the inequalities
1Q, *Di ' Qull Q%] < P(k), at least when D and @ commute?

3.1. A Weaker Variant of Property RD. Despite the failure of RD /7 for non-amenable, non-
Kac type orthogonal free quantum groups, one can prove a weaker RD inequality (corresponding to
a larger multiplier D) which holds for all orthogonal free quantum groups, and also for all discrete
quantum groups with polynomial growth. This inequality was already stated (without proof) and
used in [VVO07], see Remark 7.6 therein. We provide below a slightly more precise statement and
a proof. In the following section, we will see how this weakened property RD is applicable to find
almost sharp optimal time estimates for ultracontractivity of heat semigroups on OF.

Proposition 3.4. Let ' € GLy(C) be such that FF = £Iy, N > 2. Then for any k, I, n € N
and a € B(Hy,) C lo(0}) we have

I F(a)pall < C@IFI*(lallz  and  [|F(a)]| < Cla)(k + DIFI*[lalle,
where C(q) > 1 is the constant defined by (3.2) for 0 < q < 1 such that Tr(F*F) = q+ ¢ ..

Proof. We follow quite closely the proof of [Ver07, Theorem 4.9], taking into account the twist-
ing of Hilbert-Schmidt norms. Starting again from (3.1) and taking into account (3.3) as in the
beginning of Section 3 the first inequality will follow if we prove

147" (@ @ 0) A" liss < (| FI*[la @ bl (3.9)
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for any k, [, n € Ny such that v! C v*®u", a € B(Hy) and b € B(H,). Since P, is an
orthogonal projection, the left-hand side admits || (id ®t* ®id)(a®b)(id ®t, ®id)||us as an evident
upper bound, where = (k + n — [)/2 and we are using the twisted Hilbert-Schmidt norm on
B(Hy_, ® H,_,). (Note that the projection P, commutes with the matrix @ ® (,, defining the
twisting of the Hilbert-Schmidt norm.)

We decomposea = ) . a,®E; andb = ), j*E;j, ®b;, where a; € B(Hy_,),b; € B(H,_,) and
(E;); is the basis of matrix units in B(H,.) corresponding to an orthonormal basis of eigenvectors of
Q. in H,. With this choice we have in particular that (E;); and (j F;j,); are orthogonal bases with
respect to the twisted Hilbert-Schmidt scalar product on B(H,.), and one can moreover compute,
if E; = eye; and e, e, are eigenvectors of Q, with respect to eigenvalues \,, Ag: [|Eillfis = Ags
175 Eijrllfrs = Ay °A, " In particular we note that

1E:lls = Aol Eidiellizs < 1@ 11157 B s (3.10)
According to (3.6) we can then write
[(id ®t; ®@id)(a @ b)(id ®t, @ id)|lus = || 22, ; Tr(E7 Es) (@i @ by)|lus = || 22; ai @ bi|ns.
Now we apply the triangle inequality and Cauchy-Schwartz inequality:
(A7) (@ ® D) A" liis < (32 llas @ billus)* = (32, llaa s 1billss)”
< 2 lailliis | Eillts 32 10illfs 12 llns = llallhs 3 101 12 l1gs-

Finally we have 3, [bllAsl Bl < Q.12 5, Iblslii B l3s = 1Q12[blfs by (3.10).
Since ||Q.|| = ||Q:1||" = || F||*" < || F||** we have proved (3.9).

The second inequality in the statement follows from the first one by a standard argument, see
[Ver07, Proposition 3.5], using the fact that for any n the tensor product u* @ u™ has at most k + 1
irreducible subobjects. U

Remark. The Property above can be interpreted as Property RDp, with respect to the central mul-
tiplier D = >, o IF1* k. = D jen, |Qk|Ipx and the (constant) polynomial P = C(g). Note

that the element C' in [BVZ15] satisfies V/C' < D and thanks to [BVZ15, Proposition 4.2] this
implies that Property RDp, for this element D, is also satisfied by all discrete quantum groups of
polynomial growth, and still reduces to the usual Property RD for (classical) discrete groups.

4. APPLICATIONS: ULTRACONTRACTIVITY AND HYPERCONTRACTIVITY OF THE HEAT
SEMIGROUP ON O},

In this section of the paper, we are interested in studying hypercontractivity and ultracontractiv-
ity properties of the heat semigroup (7} );~0 on the free orthogonal quantum groups OF.. This heat
semigroup was introduced and studied in [CFK14, FHL™17] in the Kac-type setting (i.e., F' = Iy),
but a standard argument using results from [DCFY 14, Fre13] on monoidal equivalences and trans-
ference properties of central multipliers allows one to define an appropriate heat semigroup on all
free orthogonal quantum groups O7.’s. The details of this are spelled out, for example, in [Cas18,
Section 6.1].

Let M be a von Neumann algebra equipped with a fixed faithful normal state ¢. In the following,
a p-Markov semigroup on M will mean a o-weakly continuous semigroup (73);>o of normal unital
completely positive p-preserving maps 7; : M — M. With a slight abuse of notation, we will
identify M C Lo(M) as a dense subspace (via the GNS map associated to ¢) also denote by 7} :

Ly(M) — Lo(M) the canonical extension of 7} to a contraction on the GNS space Lo(M ). The
12



semigroup (7} )>o is called ultracontractive if there exists some ¢, > 0 such that 7;(Lo(M)) C M
for all t > ¢,,. By the closed graph theorem, ultracontractivity is equivalent to that 7; : Lo(M) —
M is bounded for all ¢ > t... We call (1});>¢ hypercontractive if for each 2 < p < oo, there exists
at, > 0 such that for all ¢ > ¢,, we have:

| T3 Loary— a0y < 1.

(In the above, we have used the standard fact [JXO03] that the contractions 7; admit canonical
extensions to contractions 7} : L,(M) — L,(M) on the associated non-commutative L,-spaces
for all p € [1,00). We omit the precise details regarding these extensions here because in the
following we only consider hypercontractivity in the tracial setting.) In the case of ultracontractive
(resp. hypercontractive) semigroups (7}); the optimal time 2 (resp. t7) for ultracontractivity (resp.
hypercontractivity) is given by t2, = inf{t..} (resp. t; = inf{¢,}).

Let us now consider the heat semigroup on O7..

4.1. The heat semigroup on O}.. Fix N € Nand I € GLy(C) with FF = 41. Let0 < ¢ < 1
be such that N, := Tr(F*F) = ¢ + ¢!, and define

_ Ui(Ny)
B Uk(Nq)

A(K) = Aq(K) (k € No), 4.1)

where Uy, is the k-th type-II Chebychev polynomial (defined by Uy(z) = 1, Uy(z) = x, and
zU(z) = Ugy1(z) + Ug_1(x)). The heat semigroup on OF [FHL'17, Cas18] is the h-Markov
semigroup (7});>0 on Lo (OF) given by

Ty (uiy) = e P,
forall1 <i,j5 < nyg,and k € Nj.
Note that we have A\(0) = 0, A(1) = 1/N, and moreover from the estimates in [FHL"17] we

have Niq < Mk) < ﬁ forall k € N.

4.2. Ultracontractivity of the Heat Semigroup on O}. We first consider the ultracontractivity
of the heat semigroups. In the tracial case, the ultracontractivity of the heat semigroup for all
time (with 1o, = 0) is well known and follows from standard tracial property RD estimates. See
[FHL*17, Theorem 2.1]. In the case of general O, we show below that ultracontractivity still
holds, but generally not for all time.

Proposition 4.1. The heat semigroup (1}):> is ultracontractive for every free orthogonal quantum
group OF.. Moreover; if tp is the optimal time for ultracontractivity of the heat semigroup of O}
we have

2N, — 2)log ||| < tr < 2N, log | F]| (42)
Proof. First of all, let us suppose that t > 2N, log || F'|| and take f € Ly(O}.). Then we can write

f= Zkzo fx, with fi € span {uf] 1 <4, < nk} Using the exponential form of Property RD
13



given by Proposition 3.4, we then have

ITo(Nllee < D e filloo

k>0

<> W@k + DI FIfill

k>0

1/2
D) (2P + DAFI) e

k>0
Hence the conclusion follows if
6—2)\(k)tHFH4k < e—Mk

for all £ € Ny by a universal constant M > 0. Indeed, let M = qut —4log || F'|| > 0. Then

(AR 1 M
f {—2¢t—21 F > —t+—921 Fll = —
in { )~ 210g H}_Nt g l|Fl =2 >0,

k’ENO q

which completes the proof.
To prove the stated lower bound, let us assume that || 7;(f)]| Loh) S K /1] La(o) for a univer-

sal constant K > (. Then forany £ > 0 and 1 < 7, 7 < n; we have

e Nl aiory < €PN (Ui 10

PO iop) < Kl llzaopy

(OF)

On the other hand, using (2.1) it is easy to compute ||} ; H 2

o) = A (@ ) and ()12
d, (Qk) ;j- Therefore, using a basis for H}, in which @), is d1agona1 we obtain

H( ) HL (OF _th
IFI?* = 1 Qklll| Q] = max L7 TO08) e MR < KL eFaE

151 Lo

which implies ¢t > 2(N, —2) log || F|| — w for all k. Then, taking the limit £ — oo gives
the desired conclusion. 0

Remark. A closer examination of the above proof actually shows that T;(Ly(O})) C C,.(OF) for
all t > tp. Le., the heat semigroup on O}, has some additional “smoothing” properties beyond
what is guaranteed by ultracontractivity.

Remark. Of course, it is natural to wonder if hypercontractivity holds for the heat semigroups of
all free orthogonal quantum groups O}.. Actually we can show that hypercontractivity is always
obtained, although at this time we have no clue for optimal estimates for the time to contraction.

Proposition 4.2. Let 2 < p < oo. For sufficiently large t (depending on p), Ty : Ly(O}) —
L,(O7) is a contraction.
14



Proof. For any f € LQ(O;E), we have from [RX16, Theorem 1],
1T (N2 < NTR(TUE + (0 — DIT(f) = M)

<P+ (- 1>(§>;e—“”>fufn||p)2

< Ih(HIP+(p—1) (Z D fullc)

< [h(f) (;e-“"ﬂc(q)m DIFIPfull)

<R+ (p-1) (;ew ‘Cla(n+ 2N FI) IS = RO < 1715,

for all ¢ large enough so that
> (p— De MO (g (n + 1)?|| F|I*™" < 1.
n>1

O

4.3. Improved Hypercontractivity Results for O},. For the remainder of the paper we turn our
attention to the Kac setting and consider O7;. Our aim is to revisit the hypercontractivity results
of [FHL*17], and obtain some improved estimates (from above and below) on the optimal time
to contraction for the heat semigroup (7}):>o. In the following we let ¢, be the optimal time for
Ly — L, hypercontractivity of the heat semigroup on O7.

We begin with a necessary lower bound for ¢ .

Lemma 4.3. For each N > 2 and 2 < p < oo, we have
N
tny 2 5 log(p —1).

Proof. Let x; denote the character of the fundamental representation of O5. With f, = 1 +ay; €
Ly(0%;) and sufficiently small a > 0, we have

(1 + a2) = HfaH}Z/Q(O]\L,) > HTtN,p(fa>HII)/p(O$)

)
2

1 7 w,

=— [ (1+ ae_%x)pvél — 22dx
2m ),
2 [z tNp

:—/ (14 2ae™"~" sin(0))? cos*(0)do.

m ™
2

Then, using Taylor expansion up to second order, we can obtain

2\2 2 _%1(1 + 200N sin())? cos?(0)dd — 1 _ ZNp
RN (S LIl P 3 _pp—neF
aNo a? a\o a? 2
. N
Equivalently, we have ¢y, > 5} log(p — 1).
0]
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4.3.1. Khintchine Inequalities for L,(O%;). Our next goal is to establish upper bounds for the
optimal time to contraction ¢y ,. To do this, we follow along the lines of [RX16, Lemma 7],
establishing and then exploiting a certain non-commutative Khintchine type inequality over O7,.
More precisely, we are interested in finding the optimal constants [, , > 1 such that for all
m €N, p>2,and f € O(G) of length m we have

||f||L,,(0]+V) < Km,pr”LQ(OX,)'

Theorem 4.4. For O}; we have the following estimates for K, ,:

(1) Ky < (Cla)*(m+1)" (4 < p<o0),
(2) Ky < (Clg)*(m+1))277 (2<p < 4).

Proof. For any admissible triple (I, m,n) € Nj letv,"" = || A" || 71 A"" € Morg (Hi, Hin®Hy)
be the isometric intertwiner considered in Section 3. If we repeat the usual RD-type calculations
for OF (e.g. [Ver07, Section 4] or [BR17, Section 5]), one obtains the following general inequality
for the (untwisted) Hilbert-Schmidt norms

m,n || —2 dl 1/2
< A7 2y lasllzll s < C@) () Iyllaszlas.

forany y € B(H,,), z € B(H,). Note that the second inequality above follows from (3.3).

We now consider the case p = oo. In this case, we note that the above inequality is exactly
the required estimate (3.1) for Property RD to hold: It says that ||p,fp,| < C(q)||f]2 for each
f € span{uf’ : 1 <i,j < ny,}. This implies that || f]|¢, o) < C(g)(m+1)|| f|2 forall m € Ny
andall f € span {u; : 1 <1i,j < n,y}. Le., we have Ky, oo < C(g)(m + 1) < C(q)?*(m + 1)

Next, we consider p = 4. Now, we define an involution structure § on B(H,,) by a* = J1aJ,,
for all « € B(H,,), where .J,, is the unique anti-unitary satisfying (uv™)¢ = (J,,, ® 1)u (Jm1 ®1).
Then, for any f = > 7' | a;;uf; € C,(OY), we have

= ZZ v ") (@ @ a)vy, "] jauss

|y we |

i,7=1

s=0 4,5=1
Thus
— 1 m,m i m,m 2
||f||L4 oL) — = | f f”L2 oh) — ;d_% (v9s ™) (a* @ a)vyy "
- d2s
Z e 1% llallZrs
s=0 23 m
a3
= Cla Vg (m 1)
=C(g)*(m+ D2
Thus K,,4 < +/C(q)(m + 1)'/%. The rest of the proof now follows from complex interpolation
theorem and our estimates for K, o, Ky, 4. [

Remark. The above bound for K, 4 is essentially optimal, since ||x,|l4 = (m + 1)/* (the 4th

moment of the mth type II Chebychev polynomial).
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4.3.2. Applications to Improved Optimal Time Estimates.

4
Theorem 4.5. Letp > 4 and ¢, = 1 + —————. Then we have
log(p — 1)

N 3
tvp < B log(p— 1)+ (1- 2 ) - 2N 1og(C(g)).
2 p

Proof. By the non-commutative martingale convexity inequality of [RX16, Theorem 1] and our
Theorem 4.4, we have

2 2 —tA(k 2
TN, o) < P+ @ = DI Y e OfillT o)

k>1

2
<h(f)*+(p—1) (Z eI (1+ k)lifk‘Lg(oTV))

k>1

< h(f)2 +(p— 1) (Z e—2t)\(k)C(q ) 1 + k ) (Z kaHLQ ot )
k>1 >1

forany f € L,(OF) and p > 4.
Note that, for any ¢ > 1, the assumption ¢ > <’ log(p — 1) + 2N (1 — ) log(C'(q)) implies

t> % log(p—1) + % <1 - 2) log(C(q))

bg@?—1)+-12'<1—-;>logﬂﬂqﬂ-

> ok
= 2)(k) (k)

Here, the second inequality results from the estimate A(k) > £, where the A(k) are the co-

efficients (4.1) used in the definition of the generalized heat semigroup. Thus we can write
3

e 220 ()1 070) < (p — 1), Now, let us try to find ¢ > 1 satisfying

¢@%=§:@—JP*%L+M%5§L

k>1

To do this, we will use the following estimation

<Z 1ck1+k,)

k>1

=(1=(-D")@-DAP-1D"=3p-1)"*+(p-1)") = ().

By setting t = ——1——, the problem to find ¢ > 1 satisfying 1/(c) < 1 becomes equivalent to
y g 1—(p—1) P ying q

solve the following inequality

1
20—t 1< —— &2t -1) < ——.
p—1 p—1
17



Now, our claim is that the above inequality holds at t = 1 + p%l with a = i. Indeed, since
(1+2)* <1+ 3x(1 + x)*forall z > 0, we have

1+a 2 1+2a <1+2a3
p—1 p—1)— p—1

6 2 24
<l — (14— P<i4—— =L
p—1 —1 p—1 p-—1
log(24—2) ) 4
Therefore, we can see that ¢(c) < ¢(c) < latc =1+ I Lastly, since ¢, = 1+m >
1+ 122?;()2—4;) > cand ¢ is decreasing, we have ¢(c,) < ¢(c) < 1. d

Theorem 4.5 sharpens [FHL' 17, Theorem 2.6] in the case when
L4 S210g(1+\/§)
log(p — 1) log(3)

i.e. when p > 125.1085 approximately. However, even for 2 < p < 125.1085, we can obtain an
improved time to contractivity:

~ 1.8297,

Theorem 4.6. Let ¢ = %log(2) + 1=~ 1.7798 and p > 4. Then

1T (D2, 05) < W llLaop)
forallt > <Flog(p —1) + (1 = 2) - 2N log(C(q))-

Proof. In the proof of Theorem 4.5, let ¢ (p) = (p — 1)*~*(1 + k)2_g. Then

h(p) = (p— 1)L+ k)* 5 (1 — ck) + % log(1 + k).

Let us suppose that 1 < ¢ < 2 and consider functions f(p) = % and g(k) = 1021(“1_ Jrlk). Then it

is easy to check that ¢'(k) > 0 forall k > 1 and f'(p) = 6p~3(2 — p).

Since f(4) =2 < g(1) = @ for all ¢ > §log(2) + 1 ~ 1.7798, the function ¢y, is decreasing

on [4,00) for each k > 1. Therefore, ¢ =, ., ¢y is decreasing on [4, c0) and

6(4) =3 37*(1+ k)2

k>1
% % 3 1
<3 (Z 37k(1+ k:)) (Z 3‘6’“) =3(1-39"23¢2-3z <1
k>1 k>1

if and only if 37¢ < X, where X, is the second largest solution of the equation 8 X3 — 15X? —
3X 4+ 1> 0. Hence, ¢(p) < 1 forall p > 4 whenever ¢ > — log;(Xy) ~ 1.547326. O

In [RX16], their L, — L, Khintchine inequalities were used in conjunction with a clever choice of
conditional expectation onto the subalgebra generated by a semicircular system to find the optimal
time ¢y, for heat semigroups of free groups. However, it is not clear what would be the right choice
of subalgebra to play the same game for the free orthogonal quantum groups O};. Nevertheless,
our Khintchine inequalities (Theorem 4.4) enable us to get an almost optimal time to contraction

under the additional assumption that h(fu; ;) = 0forall 1 <i,j < N:
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Theorem 4.7. Let N > 3 and p > 4. Then the following inequality

||Tt(f)||Lp(ol+V) < Hf||L2(oj+V)
holds
(1) if f € Ly(O}) satisfies h(fu”) =0foralll1 <i,j <N and
(2) ift > Flog(p — 1) + (1 = 2) - 2N log(C(q))-

Proof. By repeating the proof of Theorem 4.5, since ¢ = 1 and f; = 0, the calculation can be
distilled to show

o(p) = Z(p — DR+ k;)2_% < 1forall p > 4.
k>2
It is easy to check that ¢y (p) = (p— 1)1 7*(1 + k)g_g is a decreasing function for any £ > 3 and
sup éa(p) = sup {(p - 1)—132—%} ~ 0.60348. Thus,
p=>4

p>4

¢(p) < supa(p) + > _3"FV1+k

p>4

k>3

= sup ¢2(p +923 v
p=24 k>4

< sup ¢2(p) + 9 23 (VE—k)+ > k37
p=24 k>4

~ 0.60348 + 0.38158 < 1.
U

Based on the above results, we are led to make the following conjecture on the asymptotic
behavior of the optimal time-to-contraction for the heat semigroups:

Conjecture 4.8. The optimal time to L,-hypercontractivity for O3 should be of the form

N
tNp = 5} log(p—1)+ey with lim ey = 0. (4.3)

N—o0

Remark. The conjecture above is motivated by the following observations:

(1) We have ¢y, > log( — 1) (Lemma 4.3).

(2) There exists ¢ ~ 1 83297 such that ¢y, < % log(p — 1) + ey forall p > 4, withey — 0
[FHL" 17, Theorem 2.6].

(3) The above ¢ can be sharpened to 2 log(2) + 1 = 1.7798 for all p > 4 (Theorem 4.6) .

(4) Let ¢, be the best constant ¢ for ﬁxed p > 4. Then lim,,_,, ¢, = 1 (Theorem 4.5).

(5) The constant ¢ can be chosen to be 1 under the additional condition that A( fu, ;) = 0 for
all 1 <4,5 < N (Theorem 4.7) .

In the case of duals of discrete groups we have ¢, = %log(p — 1) for the Poisson semigroup
on TV (Weissler and Bonami’s induction trick), on the dual of Z;N [JPPT15] and on the dual of
Fy = Z*N [JPPP17, RX16].
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