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ABSTRACT. We introduce the Property of Rapid Decay for discrete quantum
groups by equivalent characterizations that generalize the classical ones. We
investigate examples, proving in particular the Property of Rapid Decay for
unimodular free quantum groups. We finally check that the applications to the
K-theory of the reduced group C∗-algebras carry over to the quantum case.
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1. INTRODUCTION

Let Γ = FN be the free group on N generators, and denote by l(γ) the length
of a reduced word γ ∈ Γ. In the founding paper [9], Haagerup proved that the
norm of the reduced group C∗-algebra C∗

r (Γ) can be controlled by Sobolev `2-
norms associated to l:

∀x ∈ CΓ ||x||C∗r Γ ≤ C ||x||2,s := C
(

∑γ∈Γ |(1 + l(γ))sxγ|2
)1/2

for suitable constants C, s > 0. This is remarkable since on the other hand the
norm of C∗

r (Γ) always dominates the (non-weighted) `2-norm on CΓ. Moreover
the norm of C∗

r (Γ) is a non-trivial and very interesting data, whereas the Sobolev
norms are easily computable.

In fact this phenomenon occurs in many more cases and we say that a dis-
crete group Γ endowed with a length function l has the Property of Rapid Decay
(Property RD) if the inequality above is satisfied on CΓ for some constants C, s.
This general notion was introduced and studied by Jolissaint in [12], where many
examples are also presented.

Among the various applications of this property, let us mention the one con-
cerning K-theory, which is interesting from the point of view of noncommutative
geometry: thanks to the control on the norm of C∗

r (Γ) provided by Property RD
one can prove that the K-theory of C∗

r (Γ) equals the K-theory of certain dense
convolution subalgebras of rapidly decreasing functions on Γ [11]. This fact was
notably used by V. Lafforgue in his approach to the Baum-Connes conjecture via
Banach KK-theory [14, 15].
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The foundations of the theory of discrete quantum groups are now very well
understood [25, 8, 20, 27], and it is a general motivation to figure out whether the
classical analytic properties of discrete groups are still relevant in the quantum
framework. In this article we address this question for the Property of Rapid
Decay.

As we will see, there is a quite natural way to extend the definition of Prop-
erty RD to discrete quantum groups, and one can prove that the applications to
K-theory still work in the general case. The natural candidates for interesting
quantum examples are the free quantum groups of Wang-Banica [21, 3], and we
will show that the unimodular ones indeed have Property RD: this is the quan-
tum analogue of the founding result of Haagerup.

The first section of this article summarizes definitions and facts about dis-
crete quantum groups that are needed in the sequel. In the second section we
give a definition of Property RD for discrete quantum groups, establishing the
equivalence between various characterizations that generalize the classical ones.

In the third section, we investigate the main known classes of examples.
Amenable discrete quantum groups have Property RD iff they have polynomial
growth and this is the case of duals of connected compact Lie groups, see Sec-
tion 4.1. On the other hand it turns out that Property RD implies unimodularity:
this results from a necessary condition that we introduce in Section 4.2. In Sec-
tion 4.3 we address the case of the free quantum groups. The previous necessary
condition is then sufficient — in the unitary case, this is an adaptation of the clas-
sical proof of Haagerup —, and it is true in the unimodular case — this is the
“purely quantum” part of the proof.

Finally we prove in the fourth section that the application to K-theory men-
tioned above still holds in the quantum case. We deal with the case of the Banach
algebras Ĥs

L, with s big enough, and also with Ĥ∞
L , which is a smaller dense sub-

algebra but not a Banach algebra anymore.

Let us conclude this introduction with a remark. In the original paper of
Haagerup the Property of Rapid Decay was used in conjunction with the fact
that l is conditionnally of negative type to show that C∗

r (FN) has the Metric Ap-
proximation Property — although it does not have the Completely Positive Ap-
proximation Property since FN is not amenable. In the case of the free quantum
groups however one can show that the natural length, which satisfies Property
RD, is not conditionnally of negative type in the appropriate sense.
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2. NOTATION

In this section we introduce the notation and results about discrete quantum
groups that are needed in the article. Having in mind the study of the Property
of Rapid Decay, it is natural to use the framework of Hopf C∗-algebras [18]. The
global situation to be considered consists in two “dual” Hopf C∗-algebras (S, δ)
and (Ŝ, δ̂) related by a multiplicative unitary V ∈ M(Ŝ⊗S) of discrete type. In
fact this discrete situation can be axiomatized equally at the level of S, Ŝ or V:

• (Ŝ, δ̂) is a bisimplifiable unital Hopf C∗-algebra [25, 27].
• V is a regular multiplicative unitary with a unique co-fixed line [1].
• (S, δ) is the completion of a multiplier Hopf ∗-algebra which is a direct

sum of matrix algebras [19, 20].
Notice also that these notions fit in the theory of locally compact quantum groups
[13], yielding exactly the discrete case. Moreover, they include many families of
interesting examples, such as discrete groups, duals of compact Lie groups and
their q-deformations, unitary and orthogonal free quantum groups. References
and basic facts about these examples will be presented along the text of the article
as they are investigated.

To be more precise, and since it will be convenient for Property RD to have
the C∗-algebras S and Ŝ represented on the same Hilbert space right from the
begining, let us start from the multiplicative unitary. It is a unitary element of
B(H⊗H) for some Hilbert space H, such that V12V13V23 = V23V12 on H⊗H⊗H.
Regularity means that the norm closure of (id⊗B(H)∗)(ΣV) coincides with K(H),
where Σ is the flip operator, here on H⊗H. A co-fixed vector is an element e ∈ H
such that V(ζ⊗e) = ζ⊗e for all ζ ∈ H. The Hopf C∗-algebra (S, δ) can then be
defined by

S = Lin{(ω⊗id)(V) | ω ∈ B(H)∗} and

∀a ∈ S δ(a) = V(a⊗1)V∗.

It follows from the work of Baaj, Skandalis [1] and Podleś, Woronowicz [16] that
(S, δ) is indeed a Hopf C∗-algebra whith left and right Haar weights hL, hR.

The involutive monoidal category C of finite-dimensional unitary represen-
tations of S is a major tool when investigating in detail the properties of S and
Ŝ [26]. We will denote by Hα the space of the representation α ∈ C. Choosing a
complete set Irr C of representatives of the irreducible representations, we have

S '
⊕

α∈Irr C
L(Hα).

We will denote by S the algebraic direct sum of the matrix algebras L(Hα), by
pα ∈ S the central support of α ∈ Irr C, and by H the algebraic direct sum of the
f.-d. subspaces pα H.

The category of f.-d. representations of S can be endowed with a tensor
product α⊗β := (α⊗β) ◦ δ and with a conjugation which we describe now. Let
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(ei) be an orthonormal basis of Hα. The conjugate object ᾱ of α ∈ C is charac-
terized, up to equivalence, by the existence of a conjugation map jα : Hα → Hᾱ,
ζ 7→ ζ̄ which is an anti-isomorphism such that tα : 1 7→ ∑ ei⊗ēi and t′α : ζ̄⊗ξ 7→
(ζ|ξ) are resp. elements of Mor (1, α⊗ᾱ) and Mor (ᾱ⊗α, 1). If α is irreducible, the
conjugation map jα is unique up to a scalar and one can renormalize it in such a
way that Tr j∗α jα = Tr (j∗α jα)−1 and jᾱ jα = ±1.

The positive invertible maps j∗α jα do not depend on the normalized jα and
describe the non-trivial interplay between the involution of C and its hilbertian
structure. Putting them together, we obtain the modular element, a positive un-
bounded multiplier F ∈ Sη such that pαF = j∗α jα for every α ∈ Irr C. One
can show that δ(F) = F⊗F, this is equivalent to the fact that the restrictions of
jα⊗β = Σ ◦ (jα⊗jβ) to the irreducible subspaces of Hα⊗Hβ are normalized conju-
gation maps if jα, jβ are so.

The Haar weights of (S, δ) admit the following simple expressions in terms
of F:

(2.1) ∀a ∈ pαS ' L(Hα) hL(a) = mαTr (F−1a) and hR(a) = mαTr (Fa),

where the positive number mα = Tr pαF = Tr pαF−1 is called the quantum di-
mension of α. We say that (S, δ) is unimodular if F = 1.

The antipode κ : S → S is a linear and antimultiplicative map such that
κ(pα) = pᾱ for all α ∈ C, and the co-unit ε ∈ S′ equals the trivial representation
1C ∈ Irr C. Let us recall from [16] the following classical identities:

m ◦ (κ⊗id) ◦ δ = m ◦ (id⊗κ) ◦ δ = 1Sε,(2.2)

(ε⊗id) ◦ δ = (id⊗ε) ◦ δ = id and δ ◦ κ = σ ◦ (κ⊗κ) ◦ δ,(2.3)

where m : S⊗S → S is the product of S and σ : S⊗S → S⊗S is the flip map.

The reduced dual Hopf C∗-algebra of (S, δ) will play an important role in
this paper. It is defined from the left leg of the multiplicative unitary V under
consideration:

Ŝ = Lin{(id⊗ω)(V) | ω ∈ B(H)∗} and

∀â ∈ Ŝ δ̂(â) = V∗(1⊗â)V.

The pair (Ŝ, δ̂) is then the (unital) Hopf C∗-algebra of a compact quantum group
[27]. In particular it admits a two-sided Haar state ĥ which is in our setting the
vector state associated to any co-fixed unit vector e ∈ H. We say that (S, δ) is
amenable if (Ŝ, δ̂) admits a continuous co-unit.

We will consider the Fourier transform defined on the dense subspace S ⊂
S in the following way:

∀a ∈ S F (a) = (id⊗hR)(V∗(1⊗a)) ∈ Ŝ,

and we denote by Ŝ the image of F , a dense subspace of Ŝ. Observe that other
choices are possible for the definition of F . One can check that our choice makes
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F isometric with respect to the GNS norms associated to hR and ĥ. More pre-
cisely, let e be a co-fixed unit vector for V and put Λ(a) = F (a)e for a ∈ S , this
defines a GNS map Λ for hR such that Λ(ab) = aΛ(b) and V(Λ⊗Λ)(a⊗b) =
(Λ⊗Λ)(δ(a)(1⊗b)) for any a, b ∈ S .

All the unbounded operators we have used in this introduction are of an
almost trivial kind: they are self-adjoint and affiliated to S or S⊗S. Due to the
very special structure of S, operators affiliated to S, which are closed by defini-
tion, admit H as a core and they form a ∗-algebra Sη which identifies with the
algebra ∏α∈Irr C L(Hα) of (algebraic) multipliers of the Pedersen ideal S . More-
over in this case symmetry implies self-adjointness. Notice that one can apply
∗-homomorphisms such as δ and ε to elements of Sη , but also proper maps such
as the antipode κ [16].

3. THE PROPERTY OF RAPID DECAY

3.1. LENGTHS. Before introducing the Property of Rapid Decay it is necessary
to discuss the notion of length for discrete quantum groups. In particular we
establish at Lemmas 3.3 and 3.4 some elementary properties of these lengths.

DEFINITION 3.1. Let (S, δ) be the Hopf C∗-algebra of a discrete quantum
group. A length on (S, δ) is an unbounded multiplier L ∈ Sη such that L ≥ 0,
ε(L) = 0, κ(L)|H = L|H and δ(L) ≤ 1⊗L + L⊗1. Given such a length, we denote
by pn ∈ M(S) the spectral projection of L associated to the interval [n, n + 1[, for
n ∈ N.

EXAMPLE 3.2.
1. A complex-valued function l on Irr C will be called a length function if

we have for any α, β, β′ ∈ Irr C
l(α) ≥ 0, l(1C) = 0, l(ᾱ) = l(α) and

α ⊂ β⊗β′ =⇒ l(α) ≤ l(β) + l(β′).

It is easy to observe that L = ∑ l(α)pα is then a central length on (S, δ),
and that all of these are obtained in this way. Notice that α ⊂ β⊗β′ ⇐⇒
(pβ⊗pβ′)δ(pα) 6= 0, by definition of the representation β⊗β′.

2. We say that (S, δ) is finitely generated if there exists a finite subset D =
D̄ ⊂ Irr C, not containing 1C , such that any element of Irr C is contained
in a multiple tensor product of elements of D. The distance to the origin
in the classical Cayley graph associated to (Ŝ,D), in the sense of [23],
defines then a length function on Irr C with values in N given by

l(α) = min{k ∈ N | ∃β1, . . . , βk ∈ D α ⊂ β1⊗ · · ·⊗βk}.

The corresponding central length L0 on (S, δ) is called the word length
of (S, δ) with respect to D.
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LEMMA 3.3. Let L0 and L be lengths on (S, δ), and assume that L0 is a word
length. Then there exists ε > 0 such that L0 ≥ εL.

Proof. Using the spectral projections of L0, put p = p0 + p1 ∈ Z(S) and
C = ||Lp||. For any n ∈ N∗ we have then

p⊗nδn−1(L) ≤ p⊗n(L⊗1⊗ · · ·+ 1⊗L⊗1⊗ · · ·+ · · ·+ 1⊗1⊗ · · ·⊗L) ≤ Cn.

Take α ∈ Irr C such that l(α) = n : we have p⊗nδn−1(pα) 6= 0. The C∗-algebra pαS
being simple, this implies that the restriction of p⊗nδn−1 to pαS is an isometry. In
particular we can write

Lpα ≤ ||Lpα||pα = ||p⊗nδn−1(Lpα)||pα

≤ ||p⊗nδn−1(L)||pα ≤ Cnpα = CL0 pα.

Since this holds for any minimal central projection pα, the desired result is proved
with ε = 1/C.

LEMMA 3.4. Let L be a central length on (S, δ). Denote by T ⊂ N3 the set of
triples (k, l, n) such that δ(pn)(pk⊗pl) 6= 0.

1. δ(L) ≥ 1⊗L− L⊗1 and δ(L) ≥ L⊗1− 1⊗L.
2. T is stable under permutation and contains (n, n, 0) for any n ∈ N.
3. (k, l, n) ∈ T =⇒ |k− l| − 2 ≤ n ≤ k + l + 2.

Proof. 1. Let l be the length function on Irr C corresponding to L like in
Example 3.2.1. For the first inequality it is enough to prove that, for any inclusion
α ⊂ β⊗β′:

(pβ⊗pβ′)δ(pα)δ(L) ≥ (pβ⊗pβ′)δ(pα)(1⊗L− L⊗1)

⇐⇒ l(α) ≥ l(β′)− l(β).

This results from the equivalence α ⊂ β⊗β′ ⇐⇒ β′ ⊂ β̄⊗α and the fact that l is a
length function. Similarly the second inequality results from the other equivalent
inclusion β ⊂ α⊗β̄′.

2. First notice that the projections pn are central. Using the identity (2.3) and
the fact that κ(pn) = pn, we can write

δ(pn)(pk⊗pl) = δ(κ(pn))(pk⊗pl) = σ(κ⊗κ)δ(pn) · (pk⊗pl)
= σ(κ⊗κ) ((pl⊗pk)δ(pn)) ,

hence (k, l, n) ∈ T =⇒ (l, k, n) ∈ T . On the other hand, using the identities (2.2)
and (2.3) we have

(m⊗id)(κ⊗id⊗id)(id⊗δ) (δ(pn)(pk⊗pl)) =

= (m⊗id)(κ⊗id⊗id) (δ2(pn)(pk⊗δ(pl)))

= (pk⊗1) [(m⊗id)(κ⊗id⊗id)δ2(pn)] δ(pl)
= (pk⊗1)(1⊗pn)δ(pl)

hence (k, l, n) ∈ T =⇒ (k, n, l) ∈ T .



THE PROPERTY OF RAPID DECAY FOR DISCRETE QUANTUM GROUPS 7

3. By definition one has npn ≤ Lpn ≤ (n + 1)pn, so that

δ(L)δ(pn)(pk⊗pl) ≥ nδ(pn)(pk⊗pl) and

δ(L)δ(pn)(pk⊗pl) ≤ (L⊗1 + 1⊗L)δ(pn)(pk⊗pl)
≤ (k + l + 2)δ(pn)(pk⊗pl).

Now if (k, l, n) ∈ T , the projection δ(pn)(pk⊗pl) is non-zero and the above in-
equalities show that n ≤ k + l + 2. Applying this result to (k, n, l) and (n, l, k)
yields the two other inequalities of the statement.

3.2. DEFINITION. We now introduce the Property of Rapid Decay for discrete
quantum groups with respect to a central length. Like in the classical case, it is
mainly about controlling the norm of the reduced dual C∗-algebra by Sobolev
norms, which are much simpler. If L is a length on (S, δ) and s ∈ R+ we will use
the following notation, where e ∈ H is a co-fixed unit vector:

∀a ∈ S ||a||22 := hR(a∗a), ||a||2,s := ||(1 + L)sa||2 and

∀â ∈ Ŝ ||â||22 := ĥ(â∗ â) = ||âe||2, ||â||2,s := ||(1 + L)s âe||.

We will also denote by Hs
L (resp. Ĥs

L) the completion of S (resp. Ŝ) with re-
spect to the 2, s-norm. We have the norm inequalities ||a||2 ≤ ||a||2,s and ||a||2 =
||F (a)||2 ≤ ||F (a)|| and hence the following continuous embeddings:

Hs
L

F

� � // H
F

� � // S

Ĥs
L

� � // Ĥ Ŝ? _oo

PROPOSITION AND DEFINITION 3.5. Let L be a central length on the Hopf
C∗-algebra (S, δ) of a discrete quantum group. We say that (S, δ, L) has the Prop-
erty of Rapid Decay (Property RD) if one of the following equivalent conditions
is satisfied:

(i) ∃ C, s ∈ R+ ∀a ∈ S ||F (a)|| ≤ C||a||2,s
(ii) ∃ C, s ∈ R+ ∀â ∈ Ŝ ||â|| ≤ C||â||2,s

(iii) Ĥ∞
L :=

⋂
s≥0 Ĥs

L ⊂ Ŝ (as subspaces of H)
(iv) ∃ P ∈ R[X] ∀n ∈ N, a ∈ pnS ||F (a)|| ≤ P(n)||a||2
(v) ∃ P ∈ R[X] ∀n ∈ N, a ∈ pnS ∀k, l ∈ N ||plF (a)pk|| ≤ P(n)||a||2

We say that (S, δ) has Property RD if there exists a central length on it satisfying
one of these conditions.

Proof. (i) ⇐⇒ (ii) is clear because F is a bijection between S and Ŝ such that
Λ(a) = F (a)e. (ii) =⇒ (iii) is immediate whereas (iii) =⇒ (ii) follows, like in the
classical case, from the closed graph Theorem [6, §3, cor. 5] for the inclusion of the
Fréchet space Ĥ∞

L into Ŝ. Note that the family of closed balls centered in 0 with
respect to all the norms || · ||2,s forms a fundamental system of neighbourhoods
of 0 in Ĥ∞

L .
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(i) =⇒ (iv) =⇒ (v) are evident. For (iv) =⇒ (i), choose C, s ∈ R+ such that
P(n) ≤ C(n + 1)s for all n ∈ N. We have then ||F (a)|| ≤ C ∑(n + 1)s||pna||2
and, like in the classical case [9, lemma 1.5], we use the Cauchy-Schwartz in-
equality and the fact that (n + 1)s+1||pna||2 ≤ ||(L + 1)s+1 pna||2 to conclude that
||F (a)|| ≤ C′||a||2,s+1.

For (v) =⇒ (iv) we will follow the proof of [9, lemma 1.4], using the results of
Lemma 3.4. Let a be an element of pnS . According to the following computation,
we have plF (a)pk 6= 0 =⇒ (k, l, n) ∈ T :

plF (a)pk = (id⊗hR)((pl⊗1)V∗(pk⊗a))
= (id⊗hR)(V∗δ(pl)(pk⊗pna)).

As a result we can write, for any ξ ∈ H:

||F (a)ξ||2 = ∑
l
||plF (a)ξ||2 ≤ ∑

l
(∑k ||plF (a)pkξ||)2

≤ P(n)2||a||22 ∑
l
(∑(k,l,n)∈T ||pkξ||)2.

Moreover by Lemma 3.4 the cardinal of {p | (n, q, p) ∈ T } is bounded above
by 2 min(q, n) + 5 ≤ 2n + 5. Using this estimate twice and the Cauchy-Schwartz
inequality we obtain

∑
l
(∑(k,l,n)∈T ||pkξ||)2 ≤ ∑

l
(2n + 5)(∑(k,l,n)∈T ||pkξ||2)

≤ (2n + 5)2 ∑k ||pkξ||2 = (2n + 5)2||ξ||2.

Finally ||F (a)|| ≤ (2n + 5)P(n)||a||2 and Condition (iv) is satisfied.

REMARK 3.6. Conditions (i)–(iv) are still equivalent if L is a non-central
length on (S, δ) and hence they can be used to define a Property RD with re-
spect to non-central lengths. Besides, if L′ is a central length on (S, δ) such that
L′ ≥ εL for some ε > 0, it is easy to check that the Property RD for L implies
the Property RD for L′. Now, assume that (S, δ) is finitely generated and choose
a word length L0 on it. The preceeding observations and Lemma 3.3 show that
(S, δ) has Property RD, possibly with respect to a non-central length, if and only
if (S, δ, L0) has Property RD. As a result, the use of central lengths for the study
of Property RD is not a restriction in the finitely generated case.

EXAMPLE 3.7. When the C∗-algebra S is commutative, it is of the form c0(Γ)
with Γ a discrete group, and the coproduct δ is given by the formula δ( f )(α, β) =
f (αβ). Then the notions of length and of Property RD studied in this paper co-
incide with the classical notions introduced by Jolissaint [12] after the founding
paper of Haagerup [9] about the convolution algebras of the free groups. For a
recent account on Property RD for discrete groups, including examples, counter-
examples and more references, we refer the reader to [17, chapter 7].
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4. SPECIAL CASES AND QUANTUM EXAMPLES

4.1. THE AMENABLE CASE. For amenable discrete groups, Property RD is equiv-
alent to polynomial growth [12, cor. 3.1.8]. In this section we extend this result to
the case of discrete quantum groups. The main motivation is the study of duals
of compact Lie groups and their q-deformations: as a matter of fact these discrete
quantum groups are all amenable [4, cor. 6.2].

DEFINITION 4.1. Let L be a central length on the Hopf C∗-algebra (S, δ) of a
discrete quantum group. Denote by (pn) the corresponding sequence of spectral
projections. We say that (S, δ, L) has polynomial growth if

∃ P ∈ R[X] ∀n ∈ N hR(pn) ≤ P(n).

REMARK 4.2. Let l be the length function on Irr C associated to L, and recall
that we denote by mα the quantum dimension of α ∈ Irr C. From the expression
of hR given in Section 2 we see that

hR(pn) = ∑{m2
α | l(α) ∈ [n, n + 1[} ∈ [0, +∞].

In particular this implies that hR(pn) = hL(pn). Moreover, put

sn := Card{α ∈ Irr C | l(α) ∈ [n, n + 1[} and

Mn := sup{mα | l(α) ∈ [n, n + 1[}.

The previous expression shows that (S, δ, L) has polynomial growth iff the se-
quences (sn) and (Mn) have polynomial growth. In the case of a discrete group,
Mn = 1 for each n and one recovers the classical notion of polynomial growth
with respect to l.

LEMMA 4.3. Let L be a central length on the Hopf C∗-algebra (S, δ) of a non-
unimodular discrete quantum group. Then (S, δ, L) does not have polynomial growth.
Moreover if L is a word length the sequences (||pnF||)n and (||pnF−1||)n grow geomet-
rically.

Proof. Let us first notice that L can be assumed to be a word length, even
for the first assertion. As a matter of fact, the non-unimodularity implies the
existence of an irreducible representation α ∈ Irr C such that pαF 6= pα. By
restricting to the “subgroup generated by α”, see [22, section 2], one can assume
that D = {α, ᾱ} generates C. By Lemma 3.3 one can moreover assume that L is
the word length associated to D: as a matter of fact if εL′ ≤ L with L′ having
polynomial growth, then L has polynomial growth.

Now letD be the generating subset defining the word length L. The equality
Tr pαF = Tr pαF−1 shows that the greatest eigenvalue of pαF is greater than or
equal to 1, with equality iff pαF = pα. Let α be the element of D such that pαF
has the greatest eigenvalue λ. Because δ(F) = F⊗F, the n-th power λn is an
eigenvalue of

p⊗n
α δn−1(F) = ∑{p⊗n

α δn−1(pβF) | β ⊂ α⊗n}.
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Since the maps p⊗n
α δn−1(pβ · ) are injective ∗-homomorphisms which have pair-

wise orthogonal ranges when β varies, we conclude that one of the pβF admits
λn as an eigenvalue. In the same way one sees that the eigenvalues of pβF, with
β ⊂ α⊗n−1, are less than λn−1. As a result ||pnF|| = λn and λ > 1 by non-
unimodularity. In particular (S, δ, L) does not have polynomial growth. One
proceeds in the same way for ||pnF−1||, using a minimal eigenvalue of the pαF,
α ∈ D.

PROPOSITION 4.4. Let L be a central length on the Hopf C∗-algebra (S, δ) of a
discrete quantum group.

1. If (S, δ) is amenable and (S, δ, L) has Property RD, then (S, δ, L) has polyno-
mial growth.

2. If (S, δ, L) has polynomial growth, then (S, δ, L) has Property RD.

Proof. 1. By hypothesis there exists a continuous co-unit ε̂ on (Ŝ, δ̂). Let us
show that x := (ε̂⊗id)(V) equals the identity: one has

x2 = (ε̂⊗ε̂⊗id)(V13V23) = (ε̂⊗ε̂⊗id)(δ̂⊗id)(V) = (ε̂⊗id)(V) = x,

but on the other hand x is unitary because ε̂ is a ∗-character. Hence (ε̂⊗id)(V) =
id and, by definition of F , ε̂ ◦ F = hR. As a result we can write, like in the
classical case:

∀a ∈ S |hR(a)| = |ε̂F (a)| ≤ ||F (a)|| ≤ C||a||2,s,

for the constants C, s ∈ R+ given by Property RD. Applying this to the projections
pn gives the desired result:

hR(pn) ≤ C||(1 + L)s pn||2 ≤ C(2 + n)s
√

hR(pn),

hence hR(pn) ≤ C2(2 + n)2s for all n ∈ N.
2. Let a ∈ pnS , in particular we have a = pa for some central projection

p ∈ S. We consider the linear functional ahR := hR( · a) defined on the C∗-algebra
S and we first assume that it is positive. One can then write

||F (a)|| = ||(id⊗ahR)(V∗)|| ≤ ||ahR||.
Let (ui) be an approximate unit of S, we have ahR(ui) = ahR(ui p) and, by taking
limits, ||ahR|| = ahR(p) = hR(a). As a result

||F (a)|| ≤ hR(a) = hR(pna) ≤ (hR(pn)hR(a∗a))1/2 ≤
√

P(n) ||a||2.

The general case follows by decomposing a ∈ pnS into a linear combination
∑3

k=0 ikak of 4 positive elements: the negative and positive parts of Im a and Re a.
Since (S, δ) is necessarily unimodular according to Lemma 4.3, hR is a trace and
one can check that ||a||2 = (∑ ||ak||22)1/2, which is greater than (∑ ||ak||)/2.

EXAMPLE 4.5. Let G be a compact group and take S = C∗(G), δ(Ug) =
Ug⊗Ug. Then (S, δ) is the Hopf C∗-algebra of a discrete quantum group which is
called the dual of G. By definition, C identifies in this case with the category of the
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finite-dimensional unitary representations of G. Besides, Ŝ identifies with C(G)
and F coincides with the Fourier transform of [7, §8, no1]. The finitely generated
case corresponds to the case of compact Lie groups.

Let G be a connected compact Lie group and choose a maximal torus T ⊂ G.
Following [7], we denote by X the dual group of T, by R ⊂ X the set of roots of
G, by W the Weyl group of (G, T) acting on X and by w0 the longest element of
W. We moreover choose a subset of positive roots R+ ⊂ R and denote by X++
the associated set of dominant weights. Taking the highest weight of irreducible
representations defines a canonical identification between Irr C and X++.

Let || · || be a W-invariant definite-positive quadratic form on X⊗ZR. Its
restriction l to Irr C ' X++ is in fact a length function: in our identification, we
have α ⊂ β⊗β′ =⇒ α ≤ β + β′, and because such inequalities are conserved by
scalar product against dominant weights we obtain

||α||2 ≤ (α|β + β′) ≤ ||β + β′||2 ≤ (||β||+ ||β′||)2.

Moreover, ||ᾱ|| = || − w0(α)|| = ||α|| and ||1C || = ||0X || = 0. We denote by L the
length function on (S, δ) associated to l.

It is clear by definition of L that (sn) has polynomial growth. Moreover
Mn, which is the maximal dimension of the representations of length n, is also
polynomialy growing by the dimension formula of H. Weyl:

dim β = ∏α∈R+

〈β + ρ, Kα〉
〈ρ, α〉 ,

where 2ρ = ∑α∈R+ α and the 〈 · , Kα〉 are linear forms on X. As a result, duals of
connected compact Lie groups have Property RD. In fact with little more work
[7, §8, thm. 1] one can see that Ĥ∞

L coincides in this case with C∞(G), which is
evidently included in C(G).

On the other hand the q-deformations of simple compact Lie groups are usu-
ally non-unimodular, hence their duals do not have Property RD by Lemma 4.3
and Proposition 4.4. This is for instance the case of the duals of the compact quan-
tum groups SUq(N) for q ∈]0, 1[, N ≥ 3. For N = 2, the quantum group SUq(2)
is defined for q ∈ [−1, 1] \ 0 and is non-unimodular for |q| < 1. For q = −1 it has
the same semi-ring of representations and the same dimension map as SU(2),
hence it has Property RD: this is a first non-commutative, non-cocommutative
example.

4.2. THE NON-UNIMODULAR CASE. We have remarked in the previous section
that Property RD is not conserved by non-unimodular deformations. In this sec-
tion we will see that Property RD is in fact uncompatible with non-unimodularity.
This will result from the geometric necessary condition (4.1) for Property RD
which we will also use in the next section.

To move smoothly to the geometric point of view, let us use the notion of
convolution of elements of S [16]. For a, b ∈ S , we denote by Conv(a⊗b) the
unique element c ∈ S satisfying the relation (ahR⊗bhR) ◦ δ = chR, where xhR :=
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hR( · x). This clearly defines a linear map Conv : S⊗algS → S , which is related
to the Fourier transform in the following way:

F (a)F (b) = (id⊗bhR⊗ahR)(V∗
13V∗

12)
= (id⊗bhR⊗ahR)(id⊗δ)(V∗) = F (Conv(b⊗a)).

In particular this yields the equality F (a)Λ(b) = Λ(Conv(b⊗a)). Moreover it is
easy to check from the definition that

Conv(δ(s) a⊗b) = s Conv(a⊗b) and Conv(a⊗b δ(s)) = Conv(a⊗b) s,

using for the second equality the KMS property of hR. In particular we have
pγConv(a⊗b) = Conv(δ(pγ)(a⊗b)δ(pγ)) and pγConv(x⊗y) is a multiple of pγ

for any x, y ∈ Z(S), because it is then central.

LEMMA 4.6. Let γ ⊂ β⊗α be an inclusion without multiplicity, with α, β, γ ∈
Irr C. Then we have

∀x ∈ pβS⊗pαS ||pγConv(x)||2 =

√
mβmα

mγ
||δ(pγ)xδ(pγ)||2.

Proof. Let λ ∈ C be the scalar such that pγConv(pβ⊗pα) = λpγ. By the
hypothesis on the inclusion γ ⊂ β⊗α, for any x ∈ pβS⊗pαS there exists y ∈ pγS
such that δ(pγ)xδ(pγ) = δ(y)(pβ⊗pα). We have then the following equalities :
pγConv(x) = Conv(δ(pγ)xδ(pγ)) = ypγConv(pβ⊗pα) = λy. As a result

||pγConv(x)||22 = λ̄ hR(y∗pγConv(x)) = λ̄ (hR⊗hR)(δ(y∗)δ(pγ)x)

= λ̄ (hR⊗hR)(δ(pγ)x∗δ(pγ)x) = λ̄ ||δ(pγ)xδ(pγ)||22.

We obtain the desired value of λ by the following computation:

λ m2
γ = λ hR(pγ) = hR(pγConv(pβ⊗pα)) = (hR⊗hR)(δ(pγ)(pβ⊗pα))

= mβmα(Tr⊗Tr)((F⊗F)δ(pγ)) = mβmαmγ.

Let us now fix a central length L on (S, δ) and denote by l the associated
length function on Irr C. In view of the link between convolution and Fourier
transform, we have for any a ∈ pαS, b ∈ pβS:

||pγF (a)pβΛ(b)|| = ||pγConv(b⊗a)||2.

As a result Lemma 4.6 gives a necessary condition for caracterization (v) of Prop-
erty RD to be fulfilled: there should exist a polynomial P ∈ R[X] such that one
has, for any inclusion γ ⊂ β⊗α without multiplicity and a ∈ pαS, b ∈ pβS:

(4.1) ||δ(pγ)(b⊗a)δ(pγ)||2 ≤
√

mγ

mβmα
P(bl(α)c) ||b⊗a||2.

Let us observe that this last condition is of geometric nature: it concerns
the relative position in Hβ⊗Hα of the cone of decomposable tensors and of the
γ-homogeneous subspace. To emphasize this point of view we will now work
in the identifications pαS ' L(Hα) and use the twisted Hilbert-Schmidt norms
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||x||2HS = Tr (Fx∗x) on L(Hα), which only differs from the 2-norm on pαS by a
coefficient mα. In particular, Inequality (4.1) can equivalently be expressed with
the twisted Hilbert-Schmidt norms.

Inequality (4.1) must in particular be satisfied for γ = 1C . In this case
we have β = ᾱ, the inclusion is automatically multiplicity free and it is real-
ized by tᾱ, up to a scalar. Since ||tᾱ|| =

√
mα, we have ||δ(pγ)(b⊗a)δ(pγ)||HS =

|t∗ᾱ(b⊗a)tᾱ|/mα and our necessary condition now reads: ∀α ∈ Irr C, a ∈ L(Hα),
b ∈ L(Hᾱ)

(4.2) |t∗ᾱ(b⊗a)tᾱ| ≤ P(bl(α)c)||b⊗a||HS.

The left-hand side has an even simpler expression, which comes from the defini-
tion of the morphisms tᾱ and holds in fact even if α is not irreducible. Let (ei) be
an orthonormal basis of Hᾱ and put ā = j∗ᾱajᾱ for a ∈ L(Hα), for any such a and
b ∈ L(Hᾱ) we have

(4.3) t∗ᾱ(b⊗a)tᾱ = ∑(ei|bej)(ēi|aēj) = Tr ā∗b.

PROPOSITION 4.7. Let L be a central length on the Hopf C∗-algebra (S, δ) of a
discrete quantum group. If (S, δ, L) has Property RD, then (S, δ) is unimodular.

Proof. Let λ ∈ R+ be an eigenvalue of pnF, there exists a corresponding unit
eigenvector ξ ∈ Hᾱ for some α ∈ Irr C with l(α) ∈ [n, n + 1[. We take b = pξ , the
orthogonal projection onto Cξ, and a = p̄ξ . According to (4.3), the left-hand side
of (4.2) equals then Tr pξ = 1. On the other hand we have

||pξ ||2HS = Tr Fpξ = λ and

|| p̄ξ ||2HS = Tr Fj∗pξ jj∗pξ j = Tr F−2 pξ F−1 pξ = λ−3.

Hence the condition (4.2) reads in this particular case λ ≤ P(n). Taking the supre-
mum over the eigenvalues λ shows that ||pnF|| ≤ P(n) for all n. This is impossi-
ble for a non-unimodular discrete quantum group by Lemma 4.3.

4.3. THE FREE QUANTUM GROUPS. We will mainly study the case of the duals of
the orthogonal free quantum groups Ŝ = Ao(Q), with Q ∈ GL(N, C). Recall that
Ao(Q) is the C∗-algebra generated by N2 generators uij and the relations making
U = (uij) unitary and QŪQ−1 equal to U [24, 21]. As usual, we will assume
that Q̄Q is a scalar matrix, so that the fundamental corepresentation U is irre-
ducible. When N = 2, the discrete quantum groups in consideration correspond
in fact to the duals of the quantum groups SUq(2) [3, section 5], which we have
already studied. Moreover the dual of Ao(Q) is unimodular iff Q is a multiple of
a unitary matrix, and up to an isomorphism one can then assume that Q = IN or
Q =

( 0
−Ik

Ik
0

)
[5].

It is known that C identifies to the representation theory of SU(2) [2]: the
irreducible representations αn = ᾱn are indexed by integers n ∈ N in such a way
that α0 = 1C and α1⊗αn ' αn−1 ⊕ αn+1. In particular we have l(αn) = n with
respect to D = {α1} and the sequence of quantum dimensions (mn)n satisfies the
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recursive equation m1mn = mn−1 + mn+1. Moreover m0 = 1 and m1 is strictly
greater than 2 when N ≥ 3, hence in this case mn = rn(1 − sn+1)/(1 − s) for
some r > 1 and s = r−2 < 1 [23, lemma 2.1].

In the case of the orthogonal free quantum groups, there is only one irre-
ducible representation of a given length, and consequently (4.1) is equivalent to
Property RD. More precisely we have by Lemma 4.6

||plF (a)pkΛ(b)|| = ||plConv(b⊗a)||2 =
√

mkmn

ml
||δ(pl)xδ(pl)||2,

for a ∈ pnS and b ∈ pkS. As a result caracterization (v) of Property RD is satisfied
iff we have, for any integers k, l, n and every a ∈ pnS, b ∈ pkS:

(4.4) ||δ(pl)(b⊗a)δ(pl)||2 ≤
√

ml
mnmk

P(n) ||b||2 ||a||2.

Let us remark that the numerical coefficient in the right-hand side tends to
zero as n goes to infinity. Hence the free quantum group under consideration has
Property RD iff the cone of decomposable tensors in Hk⊗Hn is “asymptotically
far” from the subspace equivalent to Hl . Like in Section 4.2, we will study this
geometric condition in the identifications pnS ' L(Hn) and using the twisted
Hilbert-Schmidt norms.

For any representation α ∈ C we have ᾱ = α, recall that we denote by
tα : C = H1C → Hα⊗Hα the morphism associated to a normalized conjugation
map on Hα. For any Hilbert spaces H, H′ we will also call tα the map id⊗tα⊗id :
H⊗H′ → H⊗Hα⊗Hα⊗H′. When α = α⊗n

k we use the conjugation map jα⊗n
k

=
Σ ◦ (jα⊗j

α⊗n−1
k

) and the notation tn
k := tα.

LEMMA 4.8. Let L be the word length induced by D = {α1} on the dual of some
Ao(Q) with N ≥ 3. Then (S, δ, L) has Property RD iff there exists P ∈ R[X] such that
for all k, l, n ∈ N, a ∈ L(Hn), b ∈ L(Hk):

||tq∗
1 δ(pl)(b⊗a)δ(pl)tq

1||HS ≤ P(n) ||b||HS ||a||HS,

where we put q = (n + k− l)/2 and the norm in the left-hand side is the twisted Hilbert-
Schmidt norm on L(Hk−q⊗Hn−q).

Proof. We have (b⊗a)δ(pl)tq
1 = (b⊗a)(pk⊗pn)tq

1δ(pl). Since (pk⊗pn)tq
1 :

Hk−q⊗Hn−q → Hk⊗Hn is a morphism, it is a multiple of an isometry on the high-
est homogeneous subspace Hl ' δ(pl)(Hk−q⊗Hn−q). In view of the characteri-
zation of Property RD given by Inequality (4.4), the proof reduces to controlling
the norm of (pk⊗pn)tq

1δ(pl). To do so we notice that

(pk⊗pn)tq
1 = (pk⊗pn)t1 ◦ (pk−1⊗pn−1)t1 ◦ · · · ◦ (pk−q+1⊗pn−q+1)t1.
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Now, the norm of each morphism Tp,p′ := (pp+1⊗pp′+1)t1 on the subspace of
Hp⊗Hp′ equivalent to Hl is given by [23, prop. 2.3]:

||Tp,p′δ(pl)||2 =
mp+1

mp

(
1−

mp−qmp′−q−1

mp+1mp′

)
=:

mp+1

mp
Nl

p,p′ ,

with q = p+p′−l
2 . So the numeric quantity we have to control is the following one:

mk
mk−q

√
ml

mnmk
· (Nl

k−q,n−q · · ·Nl
k−2,n−2Nl

k−1,n−1).

Using the explicit expression of mp given at the beginning of the section, it is a
boring but easy exercise to check that this quantity is bounded from above and
from below by two non-zero constants independant of k, l, n.

THEOREM 4.9. Let Q ∈ MN(C) be an invertible matrix with Q̄Q ∈ CIN and
N ≥ 3. Then the dual of Ao(Q) has Property RD with respect to the natural word length
iff Q is unitary up to a scalar.

Proof. We have already seen that the dual of Ao(Q) does not have Property
RD when Q /∈ CU(N), and hence we restrict to the case Q ∈ U(N). Then F = 1
and in particular there is no twisting in the Hilbert-Schmidt structures. Let (eI)
be a orthonormal basis of L(H⊗q), ie a basis such that Tr (e∗I eJ) = δI,J for all I, J.
We put ēI = j∗eI j ∈ L(H⊗q), in our unimodular case (ēI) is again an orthonormal
basis.

Take a ∈ L(Hn) and b ∈ L(Hk). We consider Hn (resp. Hk) as the highest
homogeneous subspace of H⊗n

1 (resp. H⊗k
1 ) and we simply denote by pn (resp. pk)

the corresponding orthogonal projection. Write pnapn = ∑ ēI⊗aI and pkbpk =
∑ bI⊗eI with aI ∈ L(Hn−q), bI ∈ L(Hk−q). We have, using the identity (4.3):

tq∗
1 (b⊗a)tq

1 = (id⊗tq∗
1 ⊗id)(pkbpk⊗pnapn)(id⊗tq

1⊗id)

= ∑ bI ⊗ tq∗
1 (eI⊗ēJ)tq

1 ⊗ aJ = ∑ bI⊗aI .

From this we get a first upper bound for the left-hand side of the inequality of
Lemma 4.8: since δ(pl) ∈ L(Hk⊗Hn) is an orthogonal projection,

||δ(pl)tq∗
1 (b⊗a)tq

1δ(pl)||HS ≤ ||tq∗
1 (b⊗a)tq

1||HS = ||∑ bI⊗aI ||HS.

We then use the triangle and the Cauchy-Schwartz inequalities:

||∑ bI⊗aI ||2HS ≤
(

∑ ||bI ||HS||aI ||HS
)2 ≤ ∑ ||bI ||2HS ∑ ||aI ||2HS.

Since (eI), (ēI) are orthonormal bases, we have ||a||2HS = ∑ ||aI ||2HS and ||b||2HS =
∑ ||bI ||2HS. Hence the above estimate shows that the condition of Lemma 4.8 for
Property RD is fulfilled with P = 1.
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We will now address briefly the case of the unitary free quantum groups
Au(Q) with N ≥ 3. Its definition is similar to the one of Ao(Q), using the re-
lations that make U and QŪQ−1 unitary but not equal anymore. The corepre-
sentation U can then be considered as a representation of S. It comes out that
the result of Theorem 4.9 also holds for the duals of these quantum groups, the
heuristic reason being that Au(Q) is a mixing of the geometry of Ao(Q) and of
the combinatorics of the free group F2.

Let us recall the structure of C from [3]: Irr C can be identified with the
free monoid on two generators U, Ū in such a way that the involutive semi-ring
structure is given by αU = Ūᾱ, Uα = ᾱŪ and the recursive identities

αU⊗Uβ = αUUβ, αU⊗Ūβ = αUŪβ⊕ α⊗β.

In particular the word length of the free monoid coincides with the word length
on Irr C associated to the generating subset D = {U, Ū}.

THEOREM 4.10. The dual of Au(Q), with Q ∈ GLN(C) and N ≥ 3, has Prop-
erty RD with respect to the natural word length iff Q is unitary up to a scalar.

Proof. Like in the orthogonal case mU is the geometric mean of Tr Q∗Q and
Tr (Q∗Q)−1 and hence the dual of Au(Q) is unimodular iff Q ∈ CU(N). When
this is not the case, we already know that Property RD is not satisfied. Moreover
in the unimodular case Q can be replaced with IN without changing the discrete
quantum group under consideration.

One can then follow the arguments of the orthogonal case to check that the
necessary condition (4.1) is still satisfied. As a matter of fact Lemma 4.8 relies on
the technical result [23, prop. 2.3] which holds in the unitary case for represen-
tations β̄, α of the form UŪU · · · , with respective lengths k, n. The reduction to
this case is straightforward because α′UUŪU · · · ' α′U⊗UŪU · · · , compare [23,
rem. 6.4.2]. In this way one obtains for Au(IN) the existence of a positive constant
C such that

∀ α, β, γ ∈ Irr C, a, b ∈ S ||pγF (pαa)Λ(pβb)||2 ≤ C ||pαa||2||pβb||2.(4.5)

Because the combinatorics of the free monoid Irr C is analogous (and in fact sim-
pler for our purposes) to the one of the free group, one can show that this property
is in fact sufficient, by adapting the ideas of [9, lemma 1.3] in the following way.

Let us fix n, k, l ∈ N, a ∈ pnS, b ∈ pkS, and put q = n−k−l
2 . For any α, β,

γ ∈ Irr C such that pγF (pαa)Λ(pβb) is non zero, there is an inclusion γ ⊂ β⊗α,
and hence we can write α = τα′, β = β′τ̄ and γ = β′α′ with l(τ) = q. Moreover,
all triples (τ, α′, β′) with l(τ) = q, l(α′) = n − q and l(β′) = k − q are obtained
exactly once in this way. Using this “change of indices” one can prove Property
RD via the last characterization of Definition 3.5. We compute indeed, for a ∈ pnS
and b ∈ pkS :
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||plF (a)Λ(b)||2 =
∣∣∣∣∣∣ ∑

l(γ)=l
∑

l(α)=n
l(β)=k

pγF (pαa)Λ(pβb)
∣∣∣∣∣∣2

= ∑
l(α′)=n−q
l(β′)=k−q

∣∣∣∣∣∣ ∑
l(τ)=q

pβ′α′F (pτα′ a)Λ(pβ′ τ̄b)
∣∣∣∣∣∣2,

because the projections pβ′α′ are mutually orthogonal for different values of β′,
α′. We use then the triangle inequality, (4.5) and the Cauchy-Schwartz inequality:

||plF (a)Λ(b)||2 ≤ C2 ∑
α′ , β′

(
∑
τ

||pτα′ a||2||pβ′ τ̄b||2
)2

≤ C2 ∑
α′ , β′

(
∑
τ
||pτα′ a||22

)(
∑
τ
||pβ′ τ̄b||22

)
= C2||a||22||b||22.

5. K-THEORY

In this section we will check that the classical applications of Property RD to
K-theory still hold in the quantum case. More precisely, if (S, δ, L) has Property
RD we will prove that the subspaces Ĥ∞

L and Ĥs
L, for s big enough, are subalge-

bras of Ŝ having the same K-theory as Ŝ: compare [11, thm. A] and [14, prop. 1.2]
respectively. Of course we restrict ourselves to unimodular discrete quantum
groups, since we have seen in Section 4.2 that unimodularity is necessary for
Property RD to hold.

In fact following the methods of [10] and [14] this goes down to establishing
some norm inequalities, which we do at Proposition 5.2 and Proposition 5.5. In
particular in this section the difficulties of the quantum generalization are only
of technical nature. However, after having presented a definition and quantum
examples, it is also important to know that the applications are still working.

5.1. THE FRÉCHET ALGEBRA Ĥ∞
L . Let L be a closed operator on H admitting

H as a core. For any bounded x ∈ B(H), the commutator [L, x] is a priori an
unbounded operator which needs not to be closable nor densely defined. Let
Dom D ⊂ B(H) be the subspace of operators x such that xH ⊂ Dom L and
[L, x] is bounded on H, and let us denote by D(x) ∈ B(H) the closure of [L, x],
for x ∈ Dom D. This defines an unbounded linear map D : Dom D → B(H).
Because L is closed, it is a standard fact that D is a closed derivation.

LEMMA 5.1. Let L be a length on the Hopf C∗-algebra (S, δ) of a discrete quantum
group. If p0 has finite rank, we have Ŝ ∩Dom Dk ⊂ Ĥk

L (as subspaces of H).

Proof. Let e ∈ H be a co-fixed unit vector for V and Λ : a 7→ F (a)e the
associated GNS map for hR. Since ε(L) = 0 we have Le = 0: one can indeed
check that Λ(pε) is a multiple of e, using the expression of V on the image of
Λ⊗Λ. In particular we have D(x)e = Lxe for any x ∈ Dom D.
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It is easy to check by induction that for any x ∈ Dom Dk we have xe ∈
Dom Lk and Dk(x)e = Lk(xe): if this holds, let x be in the domain of Dk+1,
we have Dk(x) ∈ Dom D so that Dk(x)e = Lk(xe) ∈ Dom L, and hence xe ∈
Dom Lk+1. Moreover Dk+1(x)e = D(Dk(x))e = LDk(x)e = Lk+1xe. In particular
if â ∈ Ŝ ∩Dom Dk, then ae ∈ Dom Lk.

Now observe that L(1− p0) ≤ (1 + L)(1− p0) ≤ 2L(1− p0). Hence if p0 has
finite rank we have Dom Lk = Dom (1 + L)k. This concludes the proof because
Ĥk

L = Dom (1 + L)k by definition.

PROPOSITION 5.2. Let L be a central length on the Hopf C∗-algebra (S, δ) of a
unimodular discrete quantum group. For any k ∈ N we have Ŝ ⊂ Dom Dk. Moreover
if (S, δ, L) has Property RD with constants s, C we have

∀k ∈ N, â ∈ Ŝ ||Dk(â)|| ≤ 4C||â||2,s+k.

Proof. Proceeding by induction, we assume that the result holds for k − 1.
For â ∈ Ŝ it is clear that Dk−1(â) stabilizes H, and hence [L, Dk−1(â)] is defined
on H as well as its adjoint. We denote this operator by Dk(â) and we want to
show that it is bounded. For a ∈ S it is easy to check by induction that

Dk(F a) = (id⊗hR)(V∗(δ(L)− L⊗1)k(1⊗a)).

Note that this is just the definition ofF (a) for k = 0, and use the identity (L⊗1)V∗

= V∗δ(L) to proceed to the induction. Using the expression of V on the image of
Λ⊗Λ recalled in Section 2 we obtain

Dk(F a)∗Λ(b) = (Λ⊗hR)((1⊗a∗)(δ(L)− L⊗1)kδ(b)).

We first assume that a, b ∈ S are positive. By the first point of Lemma 3.4
and since δ(b) commutes to δ(L)− L⊗1 on H⊗H we have

−(1⊗Lk)δ(b) ≤ (δ(L)− L⊗1)kδ(b) ≤ (1⊗Lk)δ(b).

Because hR is central, this yields

(id⊗hR)((1⊗a)(δ(L)− L⊗1)kδ(b)) ≤ (id⊗hR)((1⊗aLk)δ(b))

and similarly with the left inequality. But one can check that, for a central weight
ϕ, inequalities of the form −s ≤ t ≤ s with t = t∗ ∈ S and s ∈ S+ imply the
inequality ||t||ϕ ≤ ||s||ϕ of the GNS norms. As a result we obtain

||Dk(F a)∗Λ(b)||2 ≤ ||F (Lka)∗Λ(b)||2 ≤ ||F (Lka)|| ||b||2.

This result is then easily generalized to any b ∈ S , exactly like in the proof
of Proposition 4.4. Hence we have shown that Dk(F a) is bounded. Moreover if
Property RD is satisfied we have the following estimate on its norm:

||Dk(F a)|| ≤ 2 ||F (Lka)|| ≤ 2C ||Lka||2,s ≤ 2C ||a||2,s+k.

Again this can be generalized to any a ∈ S and we get the estimate of the state-
ment, with â = F (a).
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COROLLARY 5.3. Let (S, δ) be the Hopf C∗-algebra of a unimodular, finitely gen-
erated discrete quantum group with Property RD, and L a word length on it. Then Ĥ∞

L
is dense in Ŝ and coincides with

⋂
Dom Dk ∩ Ŝ. In particular it is a dense subalgebra

which is stable under holomorphic functional calculus in Ŝ, and the inclusion Ĥ∞
L ⊂ Ŝ

induces isomorphisms in K-theory.

Proof. Let s be an exponent realizing Property RD, and k ∈ N. Let â be an
element of Ĥk+s

L : there exists a sequence ân in Ŝ converging to â in the (2, k + s)-
norm. It is easy to check by induction that â ∈ Dom Dl and Dl ân → Dl â for
l = 0, . . . , k. As a matter of fact, (ân)n converges in particular in the (2, l + s)
norm, hence by Proposition 5.2 the sequence Dl ân = D(Dl−1 ân) has a limit in
B(H). Since Dl−1 ân → Dl−1 â and D is closed, this implies that Dl−1 â ∈ Dom D
and Dl ân → Dl â.

Hence we have proved that Ĥk+s
L ⊂ Dom Dk ∩ Ŝ for all k. Because we are

using a word length, the hypothesis of Lemma 5.1 is satisfied and we also have
Dom Dk ∩ Ŝ ⊂ Ĥk

L. This proves that Ĥ∞
L =

⋂
Dom Dk ∩ Ŝ. This subspace is dense

because it contains Ŝ . It is then a general fact for closed derivations that Ĥ∞
L

is a dense subalgebra stable under holomorphic functional calculus in Ŝ, cf [10,
thm. 1.2]. This implies in turn that the canonical inclusion induces isomorphisms
in K-theory, cf e.g. [17, prop. 8.14] for a recent statement of this classical result.

5.2. THE BANACH ALGEBRAS Ĥs
L . We start with a Lemma which is proved using

the same techniques as for Proposition 5.2:

LEMMA 5.4. Let L be a central length on the Hopf C∗-algebra (S, δ) of a unimod-
ular discrete quantum group. For any (ai) ∈ Sn

+ and s, t ≥ 0 we have

||F (a1) · · · F (an)||2,s+t ≤ nt ∑i ||F (a1) · · · F ((1 + L)tai) · · · F (an)||2,s.

Proof. Using the identity (id⊗κ)(V) = V∗ and the fact that hRκ−1 = hR in
the unimodular case, one sees that F (a)∗ = F (κ(a∗)). Since κ(S+) = S+ by
unimodularity and κ(L∗) = L by hypothesis, this allows to replace on both sides
of the statement the first n − 1 terms F (·) by F (·)∗. In this way we avoid using
κ in the rest of the proof. We have indeed, using the identity V12V13 · · ·V1n =
(id⊗δn−2)(V):

F (a1)∗ · · · F (an−1)∗F (an)e = F (a1)∗ · · · F (an−1)∗Λ(an)

= (Λ⊗h⊗n−1)((1⊗a1⊗ · · ·⊗an−1)δn−1(an)).

Like in the classical case the proof relies on the following elementary in-
equality. For t ≥ 0 the function ft : x 7→ (1 + x)t is growing on R+ and hence we
have, for any (xi) ∈ Rn

+:

(1 + ∑ xi)t ≤ nt(1 + ∑ xi
n )t

≤ nt(1 + max xi)t ≤ nt ∑(1 + xi)t.
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We apply this inequality to the following iterated version of the first point of
Lemma 3.4, whose right-hand side is a sum of n commuting terms:

L⊗1⊗ · · ·⊗1 ≤ 1⊗L⊗1⊗ · · ·+ . . . + 1⊗ · · ·⊗1⊗L + δn−1(L)

=⇒ ft(L)⊗1⊗n−1 ≤ nt
(

1⊗ ft(L)⊗1⊗n−2 + . . . + δn−1( ft(L))
)

.

This inequality can be multiplied by ( fs(L)⊗1⊗n−1)δn−1(an), which is pos-
itive and commutes to all the terms. Applying moreover the positive functional
id⊗hRa1⊗ · · ·⊗hRan−1 we obtain

( fs+t(L)⊗h⊗n−1)((1⊗a1⊗ · · ·⊗an−1)δn−1(an)) ≤
≤ nt( fs(L)⊗h⊗n−1)((1⊗ ft(L)a1⊗a2⊗ · · ·⊗an−1)δn−1(an)) +

+ . . . + nt( fs(L)⊗h⊗n−1)((1⊗a1⊗ · · ·⊗an−1)δn−1( ft(L)an)).

Since hR is tracial, this inequality between positive elements of S implies the in-
equality of their 2-norms and finally, by the triangle inequality, the inequality of
the statement.

PROPOSITION 5.5. Let L be a central length on the Hopf C∗-algebra (S, δ) of
a unimodular discrete quantum group. Assume that (S, δ, L) has Property RD with
exponent s0. For any s ≥ s0, Ĥs

L is a Banach subalgebra of Ŝ. Moreover for any t ≥ 0
there exists a constant Ks,t > 0 such that

∀â ∈ Ŝ ∃C > 0 ∀n ∈ N ||ân||2,s+t ≤ CKn
s,t||â||n2,s.

Proof. We first apply Lemma 5.4 with n = 2 and s = 0. Taking into account
the unimodular fact that ||â∗||2 = ||â||2 for â ∈ Ŝ, we obtain

||F (a1)F (a2)||2,t ≤ 2t||F (a2)|| ||F ((1 + L)ta1)||2 +

+2t||F (a1)|| ||F ((1 + L)ta2)||2

for a1, a2 ∈ S+. By definition we have ||F ((1 + L)tai)||2 = ||F (ai)||2,t and using
moreover Property RD, which holds for any exponent t ≥ s0, we get

||F (a1)F (a2)||2,t ≤ 2t+1C||F (a1)||2,t||F (a2)||2,t.

Now this extends to any a, a′ ∈ S like in the proof of Proposition 4.4. This proves
that ||ââ′||2,t ≤ 2t+3C||â||2,t||â′||2,t for any â, â′ ∈ Ŝ and hence the first statement.

Fix s ≥ s0 and let Ks ≥ 1 be such that ||ââ′||2,s ≤ Ks||â||2,s||â′||2,s for any â,
â′ ∈ Ŝ . We get from Lemma 5.4, for any (ai) ∈ Sn

+ and t ≥ 0:

||F (a1) · · · F (an)||2,s+t ≤(5.1)

≤ ntKn−1
s ∑i ||F (a1)||2,s · · · ||F (ai)||2,s+t · · · ||F (an)||2,s.

Now let b be an element of S and write again the “canonical decomposition”
b = ∑3

k=0 ikbk, where the elements bk ∈ S+ are the positive and negative parts of
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Re b and Im b. Using the triangle and Cauchy-Schwartz inequalities as well as
(5.1) we write

||F (b)n||22,s+t ≤ (∑(kj)j
||F (bk1) · · · F (bkn)||2,s+t)2

≤ (∑i,(kj)j
ntKn

s ||F (bk1)||2,s · · · ||F (bki
)||2,s+t · · · ||F (bkn)||2,s)2

≤ n2tK2n
s n4n ∑i,(kj)j

||F (bk1)||
2
2,s · · · ||F (bki

)||22,s+t · · · ||F (bkn)||
2
2,s.

As already mentioned we have ||b||22,s = ∑ ||bk||22,s because hR is tracial. Hence
the last upper bound has the right form:

n2t+1(2Ks)2n ∑i ||F (b)||22,s · · · ||F (b)||22,s+t · · · ||F (b)||22,s =

= n2t+2(2Ks)2n||F (b)||22,s+t ||F (b)||2n−2
2,s .

COROLLARY 5.6. Let L be a central length on the Hopf C∗-algebra (S, δ) of a uni-
modular discrete quantum group. Assume that (S, δ, L) has Property RD with exponent
s0. Then the canonical inclusion of Banach algebras Ĥs

L ⊂ Ŝ induces isomorphisms in
K-theory for any s ≥ s0.

Proof. The proof goes exactly like in [14, prop. 1.2]. Denote by ρs(â) the
spectral radius of â in Ĥs

L. Taking the nth-root and letting n go to infinity in the
estimate of Proposition 5.5, we see that ρs+t(â) ≤ Ks,t||â||2,s for any â ∈ Ŝ . Ap-
plying this to ân and repeating the same process yields ρs+t(â) ≤ ρs(â), hence â
has the same spectral radius in all the Banach algebras Ĥs

L with s ≥ s0.
We use then an interpolation inequality for our Sobolev spaces which results

from Hölder’s inequality for the series ∑α (1 + l(α))2s||pαa||22, as in the classical
case. We obtain more precisely, for s′ > s ≥ 0:

∀n ∈ N ||ân|| ≥ ||ân||2 ≥ ||ân||s
′/(s′−s)

2,s ||ân||−s/(s′−s)
2,s′ ,

if â ∈ Ŝ is such that ρs′(â) 6= 0. Again this yields an inequality between spectral
radii, which reads ρŜ(â) ≥ ρs(â) = ρs′(â) when s, s′ ≥ s0. Since Ĥs

L is dense in Ŝ,
this proves that it is stable under holomorphical calculus.
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