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1. INTRODUCTION

Let I = Fy be the free group on N generators, and denote by /() the length
of a reduced word y € I'. In the founding paper [9], Haagerup proved that the
norm of the reduced group C*-algebra C;(I') can be controlled by Sobolev ¢2-
norms associated to [:

s 5 1/2
Vx € CT ||xlsr < Cllxllas = C (Syer [(1+1(7))°%, ?)

for suitable constants C, s > 0. This is remarkable since on the other hand the
norm of C;(I') always dominates the (non-weighted) ¢2>-norm on CI'. Moreover
the norm of C; (I') is a non-trivial and very interesting data, whereas the Sobolev
norms are easily computable.

In fact this phenomenon occurs in many more cases and we say that a dis-
crete group I' endowed with a length function [ has the Property of Rapid Decay
(Property RD) if the inequality above is satisfied on CI” for some constants C, s.
This general notion was introduced and studied by Jolissaint in [12], where many
examples are also presented.

Among the various applications of this property, let us mention the one con-
cerning K-theory, which is interesting from the point of view of noncommutative
geometry: thanks to the control on the norm of C;(I') provided by Property RD
one can prove that the K-theory of C;(I') equals the K-theory of certain dense
convolution subalgebras of rapidly decreasing functions on I' [11]. This fact was
notably used by V. Lafforgue in his approach to the Baum-Connes conjecture via
Banach KK-theory [14, 15].
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The foundations of the theory of discrete quantum groups are now very well
understood [25, 8, 20, 27], and it is a general motivation to figure out whether the
classical analytic properties of discrete groups are still relevant in the quantum
framework. In this article we address this question for the Property of Rapid
Decay.

As we will see, there is a quite natural way to extend the definition of Prop-
erty RD to discrete quantum groups, and one can prove that the applications to
K-theory still work in the general case. The natural candidates for interesting
quantum examples are the free quantum groups of Wang-Banica [21, 3], and we
will show that the unimodular ones indeed have Property RD: this is the quan-
tum analogue of the founding result of Haagerup.

The first section of this article summarizes definitions and facts about dis-
crete quantum groups that are needed in the sequel. In the second section we
give a definition of Property RD for discrete quantum groups, establishing the
equivalence between various characterizations that generalize the classical ones.

In the third section, we investigate the main known classes of examples.
Amenable discrete quantum groups have Property RD iff they have polynomial
growth and this is the case of duals of connected compact Lie groups, see Sec-
tion 4.1. On the other hand it turns out that Property RD implies unimodularity:
this results from a necessary condition that we introduce in Section 4.2. In Sec-
tion 4.3 we address the case of the free quantum groups. The previous necessary
condition is then sufficient — in the unitary case, this is an adaptation of the clas-
sical proof of Haagerup —, and it is true in the unimodular case — this is the
“purely quantum” part of the proof.

Finally we prove in the fourth section that the application to K-theory men-
tioned above still holds in the quantum case. We deal with the case of the Banach
algebras H, with s big enough, and also with F$°, which is a smaller dense sub-
algebra but not a Banach algebra anymore.

Let us conclude this introduction with a remark. In the original paper of
Haagerup the Property of Rapid Decay was used in conjunction with the fact
that / is conditionnally of negative type to show that C;(Fy) has the Metric Ap-
proximation Property — although it does not have the Completely Positive Ap-
proximation Property since Fy is not amenable. In the case of the free quantum
groups however one can show that the natural length, which satisfies Property
RD, is not conditionnally of negative type in the appropriate sense.
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2. NOTATION

In this section we introduce the notation and results about discrete quantum
groups that are needed in the article. Having in mind the study of the Property
of Rapid Decay;, it is natural to use the framework of Hopf C*-algebras [18]. The
global situation to be considered consists in two “dual” Hopf C*-algebras (S, J)
and ($,9) related by a multiplicative unitary V € M(S®S) of discrete type. In
fact this discrete situation can be axiomatized equally at the level of S, $ or V:

e (§,9) is a bisimplifiable unital Hopf C*-algebra [25, 27].

e Vis a regular multiplicative unitary with a unique co-fixed line [1].

e (S,0) is the completion of a multiplier Hopf *-algebra which is a direct
sum of matrix algebras [19, 20].

Notice also that these notions fit in the theory of locally compact quantum groups
[13], yielding exactly the discrete case. Moreover, they include many families of
interesting examples, such as discrete groups, duals of compact Lie groups and
their g-deformations, unitary and orthogonal free quantum groups. References
and basic facts about these examples will be presented along the text of the article
as they are investigated.

To be more precise, and since it will be convenient for Property RD to have
the C*-algebras S and S represented on the same Hilbert space right from the
begining, let us start from the multiplicative unitary. It is a unitary element of
B(H®H) for some Hilbert space H, such that V;,Vi3Vo3 = Vo3V, on HOH®H.
Regularity means that the norm closure of (id®B(H).)(XV) coincides with K(H),
where X is the flip operator, here on H®H. A co-fixed vector is an element e € H
such that V({®e) = {®e for all { € H. The Hopf C*-algebra (S, ) can then be
defined by

S = Lin{(w®id)(V) | w € B(H).} and
Va e Sd(a) =V(axl)V*".

It follows from the work of Baaj, Skandalis [1] and Podle$, Woronowicz [16] that
(S,0) is indeed a Hopf C*-algebra whith left and right Haar weights iy, hg.

The involutive monoidal category C of finite-dimensional unitary represen-
tations of S is a major tool when investigating in detail the properties of S and
S [26]. We will denote by H, the space of the representation a € C. Choosing a
complete set Irr C of representatives of the irreducible representations, we have

S~ P L(Ha).
a€lrr C
We will denote by S the algebraic direct sum of the matrix algebras L(H,), by
pa € S the central support of & € Irr C, and by ‘H the algebraic direct sum of the
f.-d. subspaces p,H.
The category of f.-d. representations of S can be endowed with a tensor
product a®p := (a®p) o § and with a conjugation which we describe now. Let
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(e;) be an orthonormal basis of H,. The conjugate object & of « € C is charac-
terized, up to equivalence, by the existence of a conjugation map j, : Hy — Ha,
{ +— { which is an anti-isomorphism such that ¢, : 1 — Y e;®¢; and t}, : {Q¢ —
(¢|¢) are resp. elements of Mor (1, a®&) and Mor (&®a, 1). If « is irreducible, the
conjugation map j, is unique up to a scalar and one can renormalize it in such a
way that Tr jiju = Tr (jija) "' and jzju = £1.

The positive invertible maps j;j, do not depend on the normalized j, and
describe the non-trivial interplay between the involution of C and its hilbertian
structure. Putting them together, we obtain the modular element, a positive un-
bounded multiplier F € S" such that p,F = j;j. for every a € Irr C. One
can show that 6(F) = F®F, this is equivalent to the fact that the restrictions of
Jazp = Z o (ju®jp) to the irreducible subspaces of Hy®Hg are normalized conju-
gation maps if ju, jg are so.

The Haar weights of (S, ) admit the following simple expressions in terms
of F:

(2.1) Va € pyS ~ L(Hy) hi(a) = m,Tr (F1a) and hg(a) = m,Tr (Fa),

where the positive number m, = Tr p,F = Tr p,F~! is called the quantum di-
mension of «. We say that (S, ) is unimodular if F = 1.

The antipode ¥ : S — S is a linear and antimultiplicative map such that
k(pa) = pa forall & € C, and the co-unit € € S’ equals the trivial representation
1¢ € Irr C. Let us recall from [16] the following classical identities:

(2.2) mo (k®id) 0 6 = mo (id®x) 0 § = 1gg,
(2.3) (e®id) 0§ = (id®e) od =idand d ok = 0 o (k®K) 0 4,
where m : S®S — S is the product of S and 0 : S®S — S®S is the flip map.

The reduced dual Hopf C*-algebra of (S,d) will play an important role in
this paper. It is defined from the left leg of the multiplicative unitary V under
consideration:

$ = Lin{(id®w)(V) | w € B(H).} and

Vae $4(a) =V*(12a)V.
The pair (5, 4) is then the (unital) Hopf C*-algebra of a compact quantum group
[27]. In particular it admits a two-sided Haar state /1 which is in our setting the
vector state associated to any co-fixed unit vector e € H. We say that (S,0) is
amenable if (5,4) admits a continuous co-unit.

We will consider the Fourier transform defined on the dense subspace S C
S in the following way:

Va € S F(a) = (id®hg)(V*(1®a)) € S,

and we denote by & the image of F, a dense subspace of S. Observe that other
choices are possible for the definition of F. One can check that our choice makes
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F isometric with respect to the GNS norms associated to hg and /. More pre-
cisely, let e be a co-fixed unit vector for V and put A(a) = F(a)e for a € S, this
defines a GNS map A for hg such that A(ab) = aA(b) and V(ARA)(a®b) =
(A®A)(d(a)(1®D)) forany a, b € S.

All the unbounded operators we have used in this introduction are of an
almost trivial kind: they are self-adjoint and affiliated to S or S®S. Due to the
very special structure of S, operators affiliated to S, which are closed by defini-
tion, admit H as a core and they form a *-algebra S”7 which identifies with the
algebra [T cir ¢ L(Ha) of (algebraic) multipliers of the Pedersen ideal S. More-
over in this case symmetry implies self-adjointness. Notice that one can apply
*x-homomorphisms such as J and ¢ to elements of S”, but also proper maps such
as the antipode x [16].

3. THE PROPERTY OF RAPID DECAY

3.1. LENGTHS. Before introducing the Property of Rapid Decay it is necessary
to discuss the notion of length for discrete quantum groups. In particular we
establish at Lemmas 3.3 and 3.4 some elementary properties of these lengths.

DEFINITION 3.1. Let (S,6) be the Hopf C*-algebra of a discrete quantum
group. A length on (S,6) is an unbounded multiplier L € S” such that L > 0,
e(L) =0,x(L)jp = Ljyy and 6(L) < 1®L + L®1. Given such a length, we denote
by pn € M(S) the spectral projection of L associated to the interval [n, n + 1], for
neN.

EXAMPLE 3.2.

1. A complex-valued function / on Irr C will be called a length function if

we have for any a, B, p’ € Irr C

I() >0,1(1¢) =0,I(a) = I(«x) and

a C BpRB = I(a) <I1(B)+1(B).
It is easy to observe that L = Y I(«)p, is then a central length on (S, 9),
and that all of these are obtained in this way. Notice that &« C fRp’ <
(Pp®@pp)d(pa) # 0, by definition of the representation fp'.

2. We say that (S, 9) is finitely generated if there exists a finite subset D =
D C Irr C, not containing 1¢, such that any element of Irr C is contained
in a multiple tensor product of elements of D. The distance to the origin
in the classical Cayley graph associated to ($,D), in the sense of [23],
defines then a length function on Irr C with values in N given by

(o) =min{k e N|3Bq,...,Br € Da C f1®--- @Bk}

The corresponding central length Ly on (S, d) is called the word length
of (S, 6) with respect to D.
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LEMMA 3.3. Let Ly and L be lengths on (S,0), and assume that Ly is a word
length. Then there exists € > 0 such that Ly > €L.

Proof. Using the spectral projections of Lo, put p = pp+ p1 € Z(S) and
C = ||Lp||. For any n € N* we have then
pP"e" L) < PPN (LR1®- - +1QLRI® - - + -+ + 181® - - - ®L) < Cn.

Take & € Irr C such that I(a) = n : we have p®"6"~!(p,) # 0. The C*-algebra p,S
being simple, this implies that the restriction of p®"6"~! to p,S is an isometry. In
particular we can write

Lpa < |ILpallpe = 11P™"0" (Lpa)llpa
[1P"8" (L) |pa < Crpo = CLopa.

IN

Since this holds for any minimal central projection p,, the desired result is proved
withe =1/C. 1

LEMMA 3.4. Let L be a central length on (S,5). Denote by T C N3 the set of
triples (k,1,n) such that 6(pn) (px®p;) # 0.

1. 5(L) > 1®L — L@l and 6(L) > L1 — 1&L.

2. T is stable under permutation and contains (n,n,0) for any n € N.

3. (kl,n)eT = |k—1|-2<n<k+I1+2

Proof. 1. Let I be the length function on Irr C corresponding to L like in
Example 3.2.1. For the first inequality it is enough to prove that, for any inclusion
a C pRPB":

(pp@pp)o(pa)d(L) = (pp@pp)d(pa)(1QL — L&1)
= la) > 1) -1P)
This results from the equivalence « C RS’ <= B’ C B« and the fact that [ is a
length function. Similarly the second inequality results from the other equivalent
inclusion B C a®p'.

2. First notice that the projections p; are central. Using the identity (2.3) and

the fact that x(p,) = pn, we can write
S(pu)(pe@pr) = 6(k(pn))(Pc@p1) = o(k2K)5(pu) - (Pk®p1)
= o(k@x) ((p1®pr)d(pn)),
hence (k,I,n) € T = (I,k,n) € 7. On the other hand, using the identities (2.2)
and (2.3) we have
(m®id) (k@id@id) (id®d) (8(pn)(pr&p;)) =

= (meid)(x@idid) (6*(pa) (Pk8(p1)))

= (px®1) [(m®id) (k@id®id)s* (pa)] 6(p1)

= (P®1)(1®pn)é(p1)
hence (k,I,n) € T = (k,n,1) € T.
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3. By definition one has np, < Lp, < (n+ 1)py, so that

S(L)o(pn)(px@p1) = né(pu)(pr@p;) and
S(L)3(pn)(px@pr) < (L1 +1QL)6(pa) (prp1)
< (k+142)5(pn) (pe®p1)-
Now if (k,I,n) € T, the projection é(p,)(pr®p;) is non-zero and the above in-

equalities show that n < k + 1+ 2. Applying this result to (k,n,1) and (n,1, k)
yields the two other inequalities of the statement. 1

3.2. DEFINITION. We now introduce the Property of Rapid Decay for discrete
quantum groups with respect to a central length. Like in the classical case, it is
mainly about controlling the norm of the reduced dual C*-algebra by Sobolev
norms, which are much simpler. If L is a length on (S,4) and s € R we will use
the following notation, where e € H is a co-fixed unit vector:

VaeS l|a|[5 := hr(a*a), ||a]|2s := ||(1 + L)%a||, and
vie8  ||al|3 = h(a*a) = ||ae|% ||a||2s := ||(1 + L)%ae]|.
We will also denote by H; (resp. H}) the completion of S (resp. &) with re-

spect to the 2, s-norm. We have the norm inequalities ||a||, < ||a||2s and ||a]|2 =
[|F(a)|]2 < ||F(a)|| and hence the following continuous embeddings:

L
Iz lF
B g <8

PROPOSITION AND DEFINITION 3.5. Let L be a central length on the Hopf
C*-algebra (S, 6) of a discrete quantum group. We say that (S, 6, L) has the Prop-
erty of Rapid Decay (Property RD) if one of the following equivalent conditions
is satisfied:

() 3C,5 € Ry Va e S ||F(@)]| < Cllalls
(i) 3C,s € Ry Va € S ||a|] < Cl|a|as
(il)) H® := N0 H; C S (as subspaces of H)
(iv) 3P eR[X]Vn €N, a € p,S||F(a)|| < P(n)l|a||»
(v) 3PeRX]VneN, a€ p,SVk1eN||pF(a)pll < P(n)||all
We say that (S, d) has Property RD if there exists a central length on it satisfying
one of these conditions.

Proof. (i) <= (ii) is clear because F is a bijection between S and S such that
A(a) = F(a)e. (ii) = (iii) is immediate whereas (iii) = (ii) follows, like in the
classical case, from the closed graph Theorem [6, §3, cor. 5] for the inclusion of the
Fréchet space H{° into S. Note that the family of closed balls centered in 0 with
respect to all the norms || - ||2,; forms a fundamental system of neighbourhoods
of 0in H°.
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(i) = (iv) = (v) are evident. For (iv) = (i), choose C,s € R such that
P(n) < C(n+1)* for all n € N. We have then ||F(a)|| < CY(n+ 1)°||pnall2
and, like in the classical case [9, lemma 1.5], we use the Cauchy-Schwartz in-
equality and the fact that (1 + 1)*!||pual|2 < ||(L +1)**!ppal|, to conclude that
[[F @) < C'Mlallz,s+1-

For (v) = (iv) we will follow the proof of [9, lemma 1.4], using the results of
Lemma 3.4. Let a be an element of p,,S. According to the following computation,
we have p;F(a)py # 0= (k,I,n) € T:

pF(@)pr = (1dehg)(pe1)V*(pr2a))
= (id®hg)(V*o(p1) (pr@pna)).

As a result we can write, for any ¢ € H:

I F (@)l lelliﬂzf(a)éll2 < ;(Zk IpF(@)pic)?
P(n)]all3 (S mer 1IN

l

IN

Moreover by Lemma 3.4 the cardinal of {p | (1,4, p) € 7 } isbounded above
by 2min(g,n) + 5 < 2n + 5. Using this estimate twice and the Cauchy-Schwartz
inequality we obtain

Y (Ewimer lIpel))? Y (21 +5) (S imyer |Ipedl )

! 1
(21 +5)* T [ pig | = (20 +5)% [~

Finally ||F(a)|| < (2n+5)P(n)||al|2 and Condition (iv) is satisfied. &

IN

IN

REMARK 3.6. Conditions (i)-(iv) are still equivalent if L is a non-central
length on (S,d) and hence they can be used to define a Property RD with re-
spect to non-central lengths. Besides, if L’ is a central length on (S, 6) such that
L' > €L for some € > 0, it is easy to check that the Property RD for L implies
the Property RD for L’. Now, assume that (S, d) is finitely generated and choose
a word length Ly on it. The preceeding observations and Lemma 3.3 show that
(S,6) has Property RD, possibly with respect to a non-central length, if and only
if (5,6, Lo) has Property RD. As a result, the use of central lengths for the study
of Property RD is not a restriction in the finitely generated case.

EXAMPLE 3.7. When the C*-algebra S is commutative, it is of the form cy(I")
with I' a discrete group, and the coproduct ¢ is given by the formula §(f)(a, ) =
f(aB). Then the notions of length and of Property RD studied in this paper co-
incide with the classical notions introduced by Jolissaint [12] after the founding
paper of Haagerup [9] about the convolution algebras of the free groups. For a
recent account on Property RD for discrete groups, including examples, counter-
examples and more references, we refer the reader to [17, chapter 7].
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4. SPECIAL CASES AND QUANTUM EXAMPLES

4.1. THE AMENABLE CASE. For amenable discrete groups, Property RD is equiv-
alent to polynomial growth [12, cor. 3.1.8]. In this section we extend this result to
the case of discrete quantum groups. The main motivation is the study of duals
of compact Lie groups and their g-deformations: as a matter of fact these discrete
quantum groups are all amenable [4, cor. 6.2].

DEFINITION 4.1. Let L be a central length on the Hopf C*-algebra (S, ) of a
discrete quantum group. Denote by (p;) the corresponding sequence of spectral
projections. We say that (S, d, L) has polynomial growth if

3P e R[X]Vn € Nhr(pn) < P(n).

REMARK 4.2. Let [ be the length function on Irr C associated to L, and recall
that we denote by m, the quantum dimension of « € Irr C. From the expression
of hr given in Section 2 we see that

hr(pn) = Z{mi | l(a) € [n,n+ 1]} € [0, 4o0].
In particular this implies that hg (p,) = hp(pn). Moreover, put
sy := Card{a € Irr C | I(x) € [n,n+1[} and
M, == sup{my | l(«) € [n,n +1[}.

The previous expression shows that (S, 4, L) has polynomial growth iff the se-
quences (s,) and (M,,) have polynomial growth. In the case of a discrete group,
M, = 1 for each n and one recovers the classical notion of polynomial growth
with respect to [.

LEMMA 4.3. Let L be a central length on the Hopf C*-algebra (S,d) of a non-
unimodular discrete quantum group. Then (S, 6, L) does not have polynomial growth.
Moreover if L is a word length the sequences (||pnF||)n and (||pnF~1||)n grow geomet-
rically.

Proof. Let us first notice that L can be assumed to be a word length, even
for the first assertion. As a matter of fact, the non-unimodularity implies the
existence of an irreducible representation « € Irr C such that poF # px. By
restricting to the “subgroup generated by a”, see [22, section 2], one can assume
that D = {a, &} generates C. By Lemma 3.3 one can moreover assume that L is
the word length associated to D: as a matter of fact if el < L with L’ having
polynomial growth, then L has polynomial growth.

Now let D be the generating subset defining the word length L. The equality
Tr poF = Tr poF~! shows that the greatest eigenvalue of p,F is greater than or
equal to 1, with equality iff p,F = p,. Let a be the element of D such that p,F
has the greatest eigenvalue A. Because 6(F) = F®F, the n-th power A" is an
eigenvalue of

p"0"H(F) = T{p"0" T (ppF) | B C &M}
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Since the maps p5"6"~!(pg - ) are injective *-homomorphisms which have pair-
wise orthogonal ranges when f varies, we conclude that one of the pgF admits
A" as an eigenvalue. In the same way one sees that the eigenvalues of pgF, with
B C a®"~1, are less than A" 1. As a result ||[p,F|| = A" and A > 1 by non-
unimodularity. In particular (S,d, L) does not have polynomial growth. One
proceeds in the same way for ||p,F~!||, using a minimal eigenvalue of the p,F,
xeD. 1

PROPOSITION 4.4. Let L be a central length on the Hopf C*-algebra (S,6) of a
discrete quantum group.
1. If (S, 0) is amenable and (S, 8, L) has Property RD, then (S, 8, L) has polyno-
mial growth.
2. If (S, 6, L) has polynomial growth, then (S, , L) has Property RD.

Proof. 1. By hypothesis there exists a continuous co-unit £ on ($,4). Let us
show that x := (é®id) (V') equals the identity: one has

x? = (2eid) (VisVas) = (2éid)(dwid) (V) = (é2id) (V) = x,
but on the other hand x is unitary because £ is a *-character. Hence (é®id) (V) =
id and, by definition of F, €0 F = hgr. As a result we can write, like in the
classical case:
Va € S |hr(a)| = [eF(a)| < |[F(a)]| < Clla

for the constants C, s € R given by Property RD. Applying this to the projections
pn gives the desired result:

hr(pn) < Cll(1+ L)’ pall2 < C(2+1)°\/hr(pn),

hence hg(py) < C*(2+n)* foralln € N.

2. Leta € p,S, in particular we have a = pa for some central projection
p € S. We consider the linear functional ahg := hg( - a) defined on the C*-algebra
S and we first assume that it is positive. One can then write

|7 (a)]| = [|(id®ahg) (V)] < ||ahg]|-

Let (u;) be an approximate unit of S, we have ahg (u;) = ahg(u;p) and, by taking
limits, ||ahg|| = ahr(p) = hr(a). As a result

|7 (@)]] < hr(a) = hr(pua) < (ir(pu)hr(a*a))'? < /P(n) ||a]2.

The general case follows by decomposing a € p,S into a linear combination
ZI%:O i¥ay. of 4 positive elements: the negative and positive parts of Im a and Re a.
Since (S, ) is necessarily unimodular according to Lemma 4.3, I is a trace and
one can check that ||a||p = (X ||ax||3)!/?, which is greater than (¥ ||ax|[)/2.

2,5/

EXAMPLE 4.5. Let G be a compact group and take S = C*(G), d(Uy) =
U®Uy. Then (S, 9) is the Hopf C*-algebra of a discrete quantum group which is
called the dual of G. By definition, C identifies in this case with the category of the
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finite-dimensional unitary representations of G. Besides, S identifies with C(G)
and F coincides with the Fourier transform of [7, §8, n°1]. The finitely generated
case corresponds to the case of compact Lie groups.

Let G be a connected compact Lie group and choose a maximal torus T C G.
Following [7], we denote by X the dual group of T, by R C X the set of roots of
G, by W the Weyl group of (G, T) acting on X and by wjy the longest element of
W. We moreover choose a subset of positive roots Ry C R and denote by X
the associated set of dominant weights. Taking the highest weight of irreducible
representations defines a canonical identification between Irr C and X, 4.

Let || - || be a W-invariant definite-positive quadratic form on X®zR. Its
restriction / to Irr C ~ X is in fact a length function: in our identification, we
have v C P = a < B+ B/, and because such inequalities are conserved by
scalar product against dominant weights we obtain

][> < (alp+ ") < |IB+ 11> < (1Bl + [1B']])*

Moreover, ||&|| = || — wo(a)|| = ||| and ||1¢|| = ||0x|| = 0. We denote by L the
length function on (S, §) associated to I.

It is clear by definition of L that (s,) has polynomial growth. Moreover
M,,, which is the maximal dimension of the representations of length 7, is also
polynomialy growing by the dimension formula of H. Weyl:

(B+p, Ka)
(o, )

where 20 = ¥ cr, « and the (-, K,) are linear forms on X. As a result, duals of
connected compact Lie groups have Property RD. In fact with little more work
[7, §8, thm. 1] one can see that H® coincides in this case with C*(G), which is
evidently included in C(G).

On the other hand the g-deformations of simple compact Lie groups are usu-
ally non-unimodular, hence their duals do not have Property RD by Lemma 4.3
and Proposition 4.4. This is for instance the case of the duals of the compact quan-
tum groups SU;(N) for g4 €]0,1[, N > 3. For N = 2, the quantum group SU,(2)
is defined for g € [—1,1] \ 0 and is non-unimodular for |g| < 1. For g = —1 it has
the same semi-ring of representations and the same dimension map as SU(2),
hence it has Property RD: this is a first non-commutative, non-cocommutative
example.

7

dimﬁ = HIXGR+

4.2. THE NON-UNIMODULAR CASE. We have remarked in the previous section
that Property RD is not conserved by non-unimodular deformations. In this sec-
tion we will see that Property RD is in fact uncompatible with non-unimodularity.
This will result from the geometric necessary condition (4.1) for Property RD
which we will also use in the next section.

To move smoothly to the geometric point of view, let us use the notion of
convolution of elements of S [16]. For a, b € S, we denote by Conv(a®b) the
unique element ¢ € S satisfying the relation (ahg®bhg) o § = chr, where xhg :=
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hr( - x). This clearly defines a linear map Conv : S®,,S — S, which is related
to the Fourier transform in the following way:
F(a)F(b) = (idd@bhr@ahg)(Vi3V)
= (id®bhr®ahg)(id®d)(V*) = F(Conv(b®a)).
In particular this yields the equality F(a)A(b) = A(Conv(b®a)). Moreover it is
easy to check from the definition that
Conv(d(s) a®b) = s Conv(a®b) and Conv(a®b (s)) = Conv(a®b) s,

using for the second equality the KMS property of hg. In particular we have
pyConv(a®b) = Conv(d(p)(a®b)d(p,)) and p,Conv(x®y) is a multiple of p,
forany x, y € Z(S), because it is then central.

LEMMA 4.6. Let v C PR« be an inclusion without multiplicity, with «, B, v €
Irr C. Then we have

mﬁm,x
Vx € ppS@puS |[pyConv(x)|[2 = T, [16(p)x6(py) 2.

Proof. Let A € C be the scalar such that p,Conv(pg®ps) = Ap,. By the
hypothesis on the inclusion v C B®ua, for any x € pgS®p,S there exists y € p,S
such that 6(py)x5(py) = 8(y)(pp®pa). We have then the following equalities :
pyConv(x) = Conv(6(py)xd(py)) = yp,Conv(pg®@pa) = Ay. As a result

lpyConv(x)[l7 = Ahr(y*pyConv(x)) = A (hr@hg)(5(y*)é(py)x)

= A (hr@®hR)(8(py)x"(py)x) = A ||6(py)x8(py) 13-
We obtain the desired value of A by the following computation:

Ami = Ahr(py) = hr(pyConv(pp@pa)) = (hr®hr) (8(py) (Pp©Pa))
= mpmy(Tr@Tr) ((FRF)(py)) = mpiigiiy. &
Let us now fix a central length L on (S, ) and denote by [ the associated

length function on Irr C. In view of the link between convolution and Fourier
transform, we have for any a € p,S, b € pﬂs:

[Py F (@) ppA(D)]| = ||pyConv(b&a)]2.

As aresult Lemma 4.6 gives a necessary condition for caracterization (v) of Prop-
erty RD to be fulfilled: there should exist a polynomial P € R[X] such that one
has, for any inclusion y C f®a without multiplicity and a € paS, b € pgS:

@) 8(p) 0Pl < o[ PUIE)) 1ozl

Let us observe that this last condition is of geometric nature: it concerns
the relative position in Hg®H, of the cone of decomposable tensors and of the
v-homogeneous subspace. To emphasize this point of view we will now work
in the identifications p,S ~ L(H,) and use the twisted Hilbert-Schmidt norms
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||x|[3;s = Tr (Fx*x) on L(H,), which only differs from the 2-norm on p,S by a
coefficient m,. In particular, Inequality (4.1) can equivalently be expressed with
the twisted Hilbert-Schmidt norms.

Inequality (4.1) must in particular be satisfied for v = 1¢. In this case
we have B = &, the inclusion is automatically multiplicity free and it is real-
ized by tz, up to a scalar. Since ||tz|| = /1y, we have ||6(py)(b®a)d(py)||Hs =
|tz (b®a)tz|/m, and our necessary condition now reads: Vo € Irr C, a € L(Hy),
b € L(Ha)

(4.2) |tz (b@a)ta| < P([1(w)])]|bal|ps.

The left-hand side has an even simpler expression, which comes from the defini-
tion of the morphisms t; and holds in fact even if « is not irreducible. Let (¢;) be
an orthonormal basis of Hz and put @ = j}ajz for a € L(H,), for any such a and
b € L(Hz) we have

(4.3) 7 (bRa)ty = Z(ei|be]»)(e‘,»|ae‘j) =Tra*b.

PROPOSITION 4.7. Let L be a central length on the Hopf C*-algebra (S,6) of a
discrete quantum group. If (S, 9, L) has Property RD, then (S, ) is unimodular.

Proof. Let A € R be an eigenvalue of p,, F, there exists a corresponding unit
eigenvector ¢ € H for some & € Irr C with [(a) € [n,n + 1[. We take b = pg, the
orthogonal projection onto C¢, and a = pz. According to (4.3), the left-hand side
of (4.2) equals then Tr p; = 1. On the other hand we have

lpellis = TrFps = Aand

1Pelltis = TrFj*peifpei = Te F2peFtpg = A2
Hence the condition (4.2) reads in this particular case A < P(n). Taking the supre-
mum over the eigenvalues A shows that ||p,F|| < P(n) for all n. This is impossi-
ble for a non-unimodular discrete quantum group by Lemma 4.3. 1

4.3. THE FREE QUANTUM GROUPS. We will mainly study the case of the duals of
the orthogonal free quantum groups S = A,(Q), with Q € GL(N, C). Recall that
A,(Q) is the C*-algebra generated by N? generators u;j and the relations making
u= (uij) unitary and QUQ~! equal to U [24, 21]. As usual, we will assume
that QQ is a scalar matrix, so that the fundamental corepresentation U is irre-
ducible. When N = 2, the discrete quantum groups in consideration correspond
in fact to the duals of the quantum groups SU,(2) [3, section 5], which we have
already studied. Moreover the dual of A,(Q) is unimodular iff Q is a multiple of
a unitary matrix, and up to an isomorphism one can then assume that Q = Iy or
Q= (5% Bl

It is known that C identifies to the representation theory of SU(2) [2]: the
irreducible representations «, = &, are indexed by integers n € N in such a way
that ag = 1¢ and a1 ®ay, =~ a1 @ a1 1. In particular we have I(x,) = n with
respect to D = {a; } and the sequence of quantum dimensions (1, ), satisfies the
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recursive equation mym, = my,_q + m,,1. Moreover my = 1 and m; is strictly
greater than 2 when N > 3, hence in this case m, = (1 —s"t1)/(1 —s) for
somer > 1ands =r2 < 1[23,lemma 2.1].

In the case of the orthogonal free quantum groups, there is only one irre-
ducible representation of a given length, and consequently (4.1) is equivalent to
Property RD. More precisely we have by Lemma 4.6

mkmn
m

|| p1F (@) prAb)|] = [|p1Conv (ba)||2 = [16Cp1)x6(pi)ll2,

fora € p,Sand b € p;S. As a result caracterization (v) of Property RD is satisfied
iff we have, for any integers k, [, n and every a € p,S, b € p;S:

(4.4 18(p) (b@m)3(p1)l[2 < [ === P(n) |[b]|2[a] |-
nlti

Let us remark that the numerical coefficient in the right-hand side tends to
zero as n goes to infinity. Hence the free quantum group under consideration has
Property RD iff the cone of decomposable tensors in H ®H,, is “asymptotically
far” from the subspace equivalent to H;. Like in Section 4.2, we will study this
geometric condition in the identifications p,S ~ L(H,) and using the twisted
Hilbert-Schmidt norms.

For any representation « € C we have & = «, recall that we denote by
ty : C = Hy, — Hy®H, the morphism associated to a normalized conjugation
map on H,. For any Hilbert spaces H, H' we will also call f, the map id®#,®id :
H@H' — H®H,®H,®H'. When & = a}" we use the conjugation map jlen =

X o (ju®j,en-1) and the notation t}l := t,.
k

LEMMA 4.8. Let L be the word length induced by D = {a1} on the dual of some
Ao(Q) with N > 3. Then (S, 8, L) has Property RD iff there exists P € R[X] such that
forallk,1,n € N,a € L(Hy), b € L(Hy):

1676 (p1) (b2a)d (p1)t]| s < P(n) [0] s |lal | s,

where we put q = (n +k — 1) /2 and the norm in the left-hand side is the twisted Hilbert-
Schmidt norm on L(Hy_;®@Hy—q).

Proof. We have (b®a)d(p))t] = (b®a)(pr@pn)tié(p1). Since (pr@pa)t] :
Hy_;®Hp—q — Hy®Hy is a morphism, it is a multiple of an isometry on the high-
est homogeneous subspace H; >~ §(p;)(Hi_q®Hyn—q). In view of the characteri-
zation of Property RD given by Inequality (4.4), the proof reduces to controlling
the norm of (px®pn)t]é(p;). To do so we notice that

(Pk@pn)t] = (pr@pn)ts © (Pr-1®Pn—1)t1 © -+ © (Pk—g11®Pn—g4+1)t1-
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Now, the norm of each morphism T}, ,y := (pp+1®p,4+1)t1 on the subspace of
H,®H, equivalent to H; is given by [23, prop. 2.3]:

Mpy1 Mp—qMp'—q—1 Mpi1
T, & 2__F 1— = N
T, 6(p1)| ", ( Tyt ol

/_
with g = %l So the numeric quantity we have to control is the following one:

s m;

. (N! ...N! N! .
my_g \| mumy ( k—qn—q k—2,n—-2 kfl,nfl)
Using the explicit expression of m,, given at the beginning of the section, it is a
boring but easy exercise to check that this quantity is bounded from above and
from below by two non-zero constants independant of k, [, n. 1

THEOREM 4.9. Let Q € My(C) be an invertible matrix with QQ € Cly and
N > 3. Then the dual of A,(Q) has Property RD with respect to the natural word length
iff Q is unitary up to a scalar.

Proof. We have already seen that the dual of A,(Q) does not have Property
RD when Q ¢ CU(N), and hence we restrict to the case Q € U(N). Then F =1
and in particular there is no twisting in the Hilbert-Schmidt structures. Let (eg)
be a orthonormal basis of L(H®7), ie a basis such that Tr (eje;) = d; forall I, J.
We put ¢ = j*e;j € L(H®1), in our unimodular case (&) is again an orthonormal
basis.

Take a € L(H,) and b € L(Hy). We consider H, (resp. Hy) as the highest
homogeneous subspace of Hi@” (resp. Hi@k) and we simply denote by pj, (resp. py)
the corresponding orthogonal projection. Write pyap, = ) é;®a; and prbpy =
Y bi®e; with ay € L(Hy—q), by € L(Hg_,). We have, using the identity (4.3):

I (boa)t] = (idot] ®id)(pbpr@paaps) (id@t]®id)
= Yot (et ®aj =L bi®a.

From this we get a first upper bound for the left-hand side of the inequality of
Lemma 4.8: since 6(p;) € L(Hy®H,) is an orthogonal projection,

16(pn)t]" (b@a)t18(p1)l s < |It] (b@a)t]||ns = || br®ar]|us.

We then use the triangle and the Cauchy-Schwartz inequalities:

2
1= bi®ar|[Hs < (T1bilmsllarl|us)” < Z1il13s T lar]|s-

Since (e;), (&) are orthonormal bases, we have ||a||2, = ¥ ||a;||%; and | |b]|%,g =
Y ||b1][3;5- Hence the above estimate shows that the condition of Lemma 4.8 for
Property RD is fulfilled with P = 1. 1
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We will now address briefly the case of the unitary free quantum groups
Au(Q) with N > 3. Its definition is similar to the one of A,(Q), using the re-
lations that make U and QUQ~! unitary but not equal anymore. The corepre-
sentation U can then be considered as a representation of S. It comes out that
the result of Theorem 4.9 also holds for the duals of these quantum groups, the
heuristic reason being that A, (Q) is a mixing of the geometry of A,(Q) and of
the combinatorics of the free group F,.

Let us recall the structure of C from [3]: Irr C can be identified with the
free monoid on two generators U, U in such a way that the involutive semi-ring
structure is given by all = Ua, Ux = all and the recursive identities

aURUPB = aUUPB, aURUP = aUUP & a®p.

In particular the word length of the free monoid coincides with the word length
on Irr C associated to the generating subset D = {U, U}.

THEOREM 4.10. The dual of A,(Q), with Q € GLN(C) and N > 3, has Prop-
erty RD with respect to the natural word length iff Q is unitary up to a scalar.

Proof. Like in the orthogonal case m; is the geometric mean of Tr Q*Q and
Tr (Q*Q) ! and hence the dual of A,(Q) is unimodular iff Q € CU(N). When
this is not the case, we already know that Property RD is not satisfied. Moreover
in the unimodular case Q can be replaced with Iy without changing the discrete
quantum group under consideration.

One can then follow the arguments of the orthogonal case to check that the
necessary condition (4.1) is still satisfied. As a matter of fact Lemma 4.8 relies on
the technical result [23, prop. 2.3] which holds in the unitary case for represen-
tations f, a of the form UUU - - -, with respective lengths k, n. The reduction to
this case is straightforward because o’ uudau---~s'uxuud - - -, compare [23,
rem. 6.4.2]. In this way one obtains for A, (Iy) the existence of a positive constant
C such that

45) Ve pByelrC abeS||pyF(paa)Appb)ll2 < Cllpaallal|ppbll2-

Because the combinatorics of the free monoid Irr C is analogous (and in fact sim-
pler for our purposes) to the one of the free group, one can show that this property
is in fact sufficient, by adapting the ideas of [9, lemma 1.3] in the following way:.

Letus fixn, k,I € N,a € p,S,b € pS, and put g = ”*Tk*l For any &, 8,
7y € Trr C such that p, F(paa)A(pgb) is non zero, there is an inclusion v C p®a,
and hence we can write « = T/, B = B'T and v = f'a’ with I(T) = g. Moreover,
all triples (7,a/, ') with I(t) = ¢, I(¢) = n —qg and I(B’') = k — g are obtained
exactly once in this way. Using this “change of indices” one can prove Property
RD via the last characterization of Definition 3.5. We compute indeed, fora € p,S
and b € p;S:
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2

IPF@ADIE = || L ¥ prF(pan)Alpgb)|
I(y)=l l(a)=n
1(p)=k

2

7

= > H D pﬁ’a’]:(pm’“)/\(}?ﬁrfb)‘

k—q

because the projections pg, are mutually orthogonal for different values of g/,
a’. We use then the triangle inequality, (4.5) and the Cauchy-Schwartz inequality:

InF@ABIE < Y (Llipaallalppbll)

D(/,’B/ T
2 2 2\ _ 2 2

< Y (ZllpewalB) (Tllppebl ) = CllalBlI6/5
0(’,,3’ T T

5. K-THEORY

In this section we will check that the classical applications of Property RD to
K-theory still hold in the quantum case. More precisely, if (S,J, L) has Property
RD we will prove that the subspaces H{° and H3, for s big enough, are subalge-
bras of $ having the same K-theory as 5: compare [11, thm. A] and [14, prop. 1.2]
respectively. Of course we restrict ourselves to unimodular discrete quantum
groups, since we have seen in Section 4.2 that unimodularity is necessary for
Property RD to hold.

In fact following the methods of [10] and [14] this goes down to establishing
some norm inequalities, which we do at Proposition 5.2 and Proposition 5.5. In
particular in this section the difficulties of the quantum generalization are only
of technical nature. However, after having presented a definition and quantum
examples, it is also important to know that the applications are still working.

5.1. THE FRECHET ALGEBRA H?. Let L be a closed operator on H admitting
H as a core. For any bounded x € B(H), the commutator [L, x] is a priori an
unbounded operator which needs not to be closable nor densely defined. Let
Dom D C B(H) be the subspace of operators x such that xH C Dom L and
[L, x] is bounded on H, and let us denote by D(x) € B(H) the closure of [L, x],
for x € Dom D. This defines an unbounded linear map D : Dom D — B(H).
Because L is closed, it is a standard fact that D is a closed derivation.

LEMMA 5.1. Let L be a length on the Hopf C*-algebra (S, §) of a discrete quantum
group. If po has finite rank, we have S N Dom D¥ C H¥ (as subspaces of H).

Proof. Let e € H be a co-fixed unit vector for V and A : a — F(a)e the
associated GNS map for hg. Since (L) = 0 we have Le = 0: one can indeed
check that A(pe) is a multiple of e, using the expression of V on the image of
ARA. In particular we have D(x)e = Lxe for any x € Dom D.
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It is easy to check by induction that for any x € Dom D* we have xe €
Dom LF and D¥(x)e = L¥(xe): if this holds, let x be in the domain of D**1,
we have D¥(x) € Dom D so that D¥(x)e = L¥(xe) € Dom L, and hence xe €
Dom LK1, Moreover D¥*1(x)e = D(D¥(x))e = LD*(x)e = L¥*!xe. In particular
if 4 € S N Dom DF, then ae € Dom L.

Now observe that L(1 — pg) < (1+L)(1—po) < 2L(1— pp). Hence if py has
finite rank we have Dom L¥ = Dom (1 + L). This concludes the proof because
A = Dom (1 + L)* by definition.

PROPOSITION 5.2. Let L be a central length on the Hopf C*-algebra (S,6) of a
unimodular discrete quantum group. For any k € N we have S C Dom D¥. Moreover
if (S, 6, L) has Property RD with constants s, C we have

vk €N, &€ & [|D"(a)|| < 4C|I4] o5k

Proof. Proceeding by induction, we assume that the result holds for k — 1.
For 4 € S it s clear that D¥~1(4) stabilizes H, and hence [L, D*~1()] is defined
on ‘H as well as its adjoint. We denote this operator by D*(4) and we want to
show that it is bounded. For a € § it is easy to check by induction that
DN(Fa) = (idohg)(V*(6(L) — Le1)¥(1a)).

Note that this is just the definition of F (a) for k = 0, and use the identity (L®1)V*
= V*6(L) to proceed to the induction. Using the expression of V on the image of
A®A recalled in Section 2 we obtain

DF(Fa)*A(b) = (A®hg)((1®a*)(6(L) — Le1)*5(b)).

We first assume that a, b € S are positive. By the first point of Lemma 3.4
and since 6(b) commutes to 6(L) — L®1 on HQH we have

—(10LMé(b) < (8(L) — Le1)ké(b) < 1LF)s(b).

Because hy, is central, this yields
(idohg)((1®a)(6(L) — Lo1)k6(b)) < (idohg)((10aL*)s(b))
and similarly with the left inequality. But one can check that, for a central weight
¢, inequalities of the form —s < t < switht = t* € S and s € S imply the
inequality |[¢||, < |[s||, of the GNS norms. As a result we obtain
IDY(Fa)* A(b) ]2 < [|F(LFa)*Ab)||2 < [|F (L a)]| [[b]2-

This result is then easily generalized to any b € S, exactly like in the proof
of Proposition 4.4. Hence we have shown that D¥(Fa) is bounded. Moreover if
Property RD is satisfied we have the following estimate on its norm:

|ID"(Fa)|| < 2 ||F(LRa)|| < 2C ||L*a

2,5 <2C ||aH2,s+k~

Again this can be generalized to any a2 € S and we get the estimate of the state-
ment, withd = F(a). 1
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COROLLARY 5.3. Let (S, ) be the Hopf C*-algebra of a unimodular, finitely gen-
erated discrete quantum group with Property RD, and L a word length on it. Then H®
is dense in § and coincides with (Y Dom DX N S. In particular it is a dense subalgebra
which is stable under holomorphic functional calculus in S, and the inclusion H?® C S
induces isomorphisms in K-theory.

Proof. Let s be an exponent realizing Property RD, and k € N. Let 4 be an
element of Hk+s there exists a sequence 4, in S converging to 4 in the (2,k + s)-
norm. It is easy to check by induction that @ € Dom D' and D'a, — D'a for
I =0,...,k. As a matter of fact, (4,), converges in particular in the (2,1 + s)
norm, hence by Proposition 5.2 the sequence D', = D(D'~'4,) has a limit in
B(H). Since D'~'4,, — D''a and D is closed, this implies that D' 14 € Dom D
and D'a, — D'a.

Hence we have proved that Hf*s C Dom D¥N S for all k. Because we are
using a word length, the hypothesis of Lemma 5.1 is satisfied and we also have
Dom D* NS C H¥. This proves that H®® = (1 Dom D¥ N S. This subspace is dense
because it contains S. It is then a general fact for closed derivations that aye
is a dense subalgebra stable under holomorphic functional calculus in S, of [10,
thm. 1.2]. This implies in turn that the canonical inclusion induces isomorphisms
in K-theory, cf e.g. [17, prop. 8.14] for a recent statement of this classical result.

5.2. THE BANACH ALGEBRAS I:Iz We start with a Lemma which is proved using
the same techniques as for Proposition 5.2:

LEMMA 5.4. Let L be a central length on the Hopf C*-algebra (S, ) of a unimod-
ular discrete quantum group. For any (a;) € S and s, t > 0 we have

1F(a1) -+ Flan)llosee < n' L || F(ar) - F((L+L)'ag) - F(an)

Proof. Using the identity (id®@x)(V) = V* and the fact that hgx~! = hy in
the unimodular case, one sees that F(a)* = F(«x(a*)). Since x(S4+) = S; by
unimodularity and «(L*) = L by hypothesis, this allows to replace on both sides
of the statement the first n — 1 terms F () by F(-)*. In this way we avoid using
x in the rest of the proof. We have indeed, using the identity VipVi3---Vy,, =
(id®ds™2)(V):

Fla)" - Flana) Flan)e = Flar)* - F(an-1)"Alan)
= (A" D) ((100® - - - ®a,_1)0" (ay)).

Like in the classical case the proof relies on the following elementary in-
equality. For t > 0 the function f; : x — (1 + x)' is growing on R, and hence we
have, for any (x;) € R’

(1+Xx) n(1+y %)

<
< n'(1+maxx;) <n'Y(1+x)"
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We apply this inequality to the following iterated version of the first point of
Lemma 3.4, whose right-hand side is a sum of # commuting terms:
LR1®---®1 <1QLR1®- - +...+1® - @1RL + 6" 1(L)
— AR <t (1® FUL)@1%2 4 4+ om7Y( ft(L))) .

This inequality can be multiplied by (f;(L)®@1%"~1)§"~1(a,), which is pos-
itive and commutes to all the terms. Applying moreover the positive functional
id®hra1® - - - ®hra, 1 we obtain

(fsrt (L)H ) (10m@ - - ©a,1)8" (an)) <
< (f(L)@h D ((AfH(L)m®n® - - ®a,-1)8" " (an)) +
A (f(L)E Y (10a1® - - - ®@a,_1)8" L (fi(L)ay)).
Since hp is tracial, this inequality between positive elements of S implies the in-

equality of their 2-norms and finally, by the triangle inequality, the inequality of
the statement. &

PROPOSITION 5.5. Let L be a central length on the Hopf C*-algebra (S,0) of
a unimodular discrete quantum group. Assume that (S,6,L) has Property RD with
exponent so. For any s > so, H; is a Banach subalgebra of S. Moreover for any t > 0
there exists a constant K > 0 such that
Vi€ §3C > 0Vn € N |[[a"||ps1+ < CKE,lla][5 .

Proof. We first apply Lemma 5.4 with n = 2 and s = 0. Taking into account
the unimodular fact that ||a*||> = ||a]|> for & € §, we obtain

1F(a) F(a2)lloe < 2| F(a2) || [|F((1+ L) ar)][2 +
+2|F(an) [ |F((1+ L) a2)| |2

for a1, ap € Sy. By definition we have || F((1+ L)a;)||2 = ||F(a;)||2+ and using
moreover Property RD, which holds for any exponent t > s¢, we get

|| F(a1)F (a2)||oe < 2871C||F (a1)

F(az)

2,t 2.t

Now this extends to any 4, a’ € S like in the proof of Proposition 4.4. This proves
that ||ad’||2; < 2143C||a||2,]|d’| |2 for any &, @’ € S and hence the first statement.

Fix s > sp and let K; > 1 be such that ||4d’||2s < Ks||d||2,5]|@'||2,s for any 4,
' € S. We get from Lemma 5.4, for any (g;) € S” and t > 0:

1) | F(ar) - - Fan)| 254t <
< KIS F @) las - 1F @) st [1F (an) 25

Now let b be an element of S and write again the “canonical decomposition”
b= Zi:o i*by, where the elements by € S, are the positive and negative parts of
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Re b and Im b. Using the triangle and Cauchy-Schwartz inequalities as well as
(5.1) we write

IF®)" s < (T Hmfwhy~fwh>
< (B K )
< HZtKZ"n‘l” Xi (k) ||-7:(bk1 Hj:(bk)

)2
H‘F(bkn) 2,5)2
||f(bkn) %s

As already mentioned we have |[b][3, = ¥ ||bk||3, because /g is tracial. Hence
the last upper bound has the right form:

n K T F O 1FO)sye - |FO)Es =
= n? 22K | F(0)|Bay |IF0)| 32w

COROLLARY 5.6. Let L be a central length on the Hopf C*-algebra (S, 8) of a uni-
modular discrete quantum group. Assume that (S, 6, L) has Property RD with exponent
so. Then the canonical inclusion of Banach algebras H; C S induces isomorphisms in
K-theory for any s > s.

Proof. The proof goes exactly like in [14, prop. 1.2]. Denote by ps(4) the
spectral radius of 4 in . Taking the n'-root and letting 1 go to infinity in the
estimate of Proposmon 5 5, we see that ps(4) < Kg||a||2s for any 4 € S. Ap-
plying this to 4" and repeating the same process yields Ps+t( ) < ps(@), hence @
has the same spectral radius in all the Banach algebras H; with s > sj.

We use then an interpolation inequality for our Sobolev spaces which results
from Holder’s inequality for the series Y, (14 1(a))%||paal|3, as in the classical
case. We obtain more precisely, for s’ > s > 0:

- w1118/ (' =8) || ant 11 —5/ (s'=$)
Vi e N([a"|] = [1a"|]2 > [1a"]15. ¢ a1, 5 ),

if 2 € S is such that py(4) # 0. Again this yields an inequality between spectral
radii, which reads pg(4) > ps(4) = py () when's,s’ > so. Since Hj is dense in S,
this proves that it is stable under holomorphical calculus. &
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