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I. Soit f l'application linéaire de R3 dans R3 dé�nie par

f(x, y, z) = (−3x− 5y + 5z,−5x− 3y + 5z,−5x− 5y + 7z).

1. Montrer que le vecteur e′1 = (1, 1, 1) est vecteur propre de f . Quelle est la valeur propre associée ?

2. Donner une base de Ker(f − 2 id).
3. Montrer que 2 est valeur propre de f et donner une base (e′2, e

′
3) du sous-espace propre associé.

4. Écrire la matrice de f dans la base canonique et dans la base (e′1, e
′
2, e

′
3).

(On ne demande pas de véri�er que c'est e�ectivement une base.)

5. Calculer le polynôme caractéristique de f .

II. Soit A = {x ∈ R | sinx > cos x} et B = {x ∈ R | ex > ex2}.
1. Exprimer A et B comme des images réciproques.

2. Démontrer que A, B et A ∩B sont des ouverts de R.

3. Exprimer sin(x− π
4 ) en fonction de sinx et cos x.

En déduire la forme explicite de A ∩ [0, 2π] puis de A.

4. Expliciter B sous la forme d'un intervalle.

5. Déterminer l'adhérence A ∩B de A ∩B et montrer que c'est un compact de R.

III. On considère la fonction f : R → R dé�nie par f(x) = sin 1
x pour x 6= 0, et f(0) = 0.

1. Déterminer f−1({ 1
2}).

2. Trouver une suite (xn)n∈N qui décroît vers 0 et telle que f(xn) = 1
2 pour tout n.

3. En déduire que f n'est pas continue en 0.
4. Qu'en est-il si on pose f(0) = 1

2 au lieu de 0 ?

IV. Soit f et g deux applications continues de R dans R. Pour tout x ∈ R on pose

ϕ(x) = max(f(x), g(x)).

1. Montrer que pour tous a, b ∈ R on a max(a, b) = 1
2 (a + b + |a− b|).

2. Montrer que la fonction ϕ : R → R dé�nie par ϕ(x) = max(f(x), g(x)) est continue.
3. Montrer que A = {x ∈ R | ϕ(x) /∈ Z} est un ouvert de R.

4. Soit I = [−|ϕ(0)|, |ϕ(0)|]. Montrer que B = {x ∈ I | ϕ(x) ∈ I} est un compact non vide de R.


