
L3 Maths, 1er semestre 2011�2012 Espaces métriques

Plan du cours

On suppose connues les propriétés élémentaires des nombres réels et des espaces vectoriels et,
uniquement pour les exemples, quelques propriétés élémentaires des fonctions réelles de la vari-
able réelle.

Notations :
� théorie des ensembles : A ∪B, A ∩B, cA pour A ⊂ X, F (A,B) = BA ;
� fonctions : C k([a, b]) ⊂ C ([a, b]) ⊂ F ([a, b] ,R) ;
� espaces vectoriels : L(E,F ), L(E), E∗.
� conventions dans R̄.

Chapitre 1. Distances et normes

I Espaces métriques

a) Dé�nitions
Dé�nitions. Distance, espace métrique. Variantes : pseudodistance (pas de séparabilité), écart
(pas de séparabilité, valeurs dans [0,+∞]). Distances équivalentes.
Exemples : distance usuelle sur R, distance usuelle sur C, distance euclidienne sur R2. Exemples
plus exotiques : distance � SNCF � sur R2 ' C : d(reiθ, seiφ) = |s− r| si θ ≡ φ mod 2π, r + s
sinon, avec r, s ≥ 0. Distance euclidienne sur N2 ⊂ R2, distance � de Manhattan � sur N2 :
d((m,n), (m′, n′)) = |m′ −m|+ |n′ − n|.
Exercice 1 : Véri�er que la distance de Manhattan est une distance.
Proposition : membre de gauche de l'inégalité triangulaire.

b) Cas ultramétrique
Dé�nitions. Valuation v : A → R ∪ {+∞} sur un anneau : v(a) = +∞ ⇔ a = 0, v(ab) =
v(a) + v(b), v(a + b) ≥ min(v(a), v(b)). Distance associée d(a, b) = exp(−v(a − b)), distance
ultramétrique. Proposition : la distance associée à une valuation est une distance ultramétrique.
Exemples : valuation des polynômes, valuation p-adique sur Q.
Exercice 2 : Véri�er que la valuation p-adique est une valuation.

c) Sous-ensembles
Dé�nition. Distance induite.
Dé�nition. Parties bornées, diamètre d'une partie. Proposition : la bornitude ne dépend pas du
point base, est équivalente à la �nitude du diamètre. Exemple : A = {(x, y) ∈ R2 | xy ≥ 1} est
non bornée, ainsi que cA.
Exercice 3 : Montrer qu'une réunion de deux parties bornées est bornée, et qu'une intersection
d'un nombre quelconque de parties bornées est bornée.
Dé�nition. Distance à une partie A ⊂ X. Proposition : |d(x,A)− d(y,A)| ≤ d(x, y).
Exercice 4 : On pose A = [0, 1]. Donner l'expression de d(x,A) pour tout x ∈ R, en distinguant
3 cas. Montrer que d(x,A) = 0 ssi x ∈ A. Est-ce encore vrai pour A = ]0, 1[ ?

II Espaces vectoriels normés

a) Dé�nitions
Dé�nitions. On �xe K = R ou C, on note | · | la valeur absolue ou le module. Norme sur un
K-espace vectoriel E, espace vectoriel normé. Distance associée. Proposition : c'est une distance.
Variante : semi-norme (pas de séparabilité). Normes équivalentes. Norme induite sur un sous-
espace.
Exemples. E = K a une seule norme, à un multiple près. Rappel : forme bilinéaire symétrique
dé�nie-positive sur un K-espace vectoriel, inégalité de Cauchy-Schwartz. Proposition : la racine
carrée de la forme quadratique est une norme. Norme euclidienne canonique sur Kn, distance
associée.
Exercice 5 : Montrer le membre de gauche de l'inégalité triangulaire pour une norme. Cela
montre que la norme est continue, et même 1-lipschitzienne.



b) Espaces produits et espaces de fonctions
Dé�nition : normes N1, N2, N∞ sur un produit �ni d'espaces vectoriels normés. Proposition :
ce sont bien des normes, elles sont équivalentes. Remarque : il y a des notions correspondantes
pour les produits d'espaces métriques. Variantes : normes Np, 1 ≤ p < +∞. Généralisation :
produits in�nis (dénombrables).
Exemples. On retrouve la norme euclidienne canonique sur Kn. La distance de Manhattan par
restriction à N2 ⊂ (R2, N1). Espaces `p(N) = `p(N,K). Les normes N1, N2, N∞ ne sont pas
équivalentes sur le sous-espace (de dim. in�nie) des suites à support �ni.
Exemples reliés : normes Np, 1 ≤ p ≤ +∞, sur C (I,R) où I est un intervalle borné de R.
Exercice 6 : Calculer les normes N1, N2, N∞ des fonctions fn : x 7→ max(1 − nx, 0) dé�nies
sur [0, 1]. En déduire que ces normes ne sont pas équivalentes sur C ([0, 1] ,R).
Espace des fonctions bornées Fb(X,E), pour X ensemble et E evn. Norme de la convergence
uniforme.

c) Norme d'opérateur
Dé�nition. Opérateur borné, norme d'opérateur (ou subordonnée) ‖f‖ = ‖f‖E→F = ‖f‖N→P ,
le sous-espace L′(E,F ) ⊂ L(E,F ). Cas particulier : E′ = L′(E,K) ⊂ E∗. Attention : l'opérateur
f ∈ L(E,F ) est borné ssi sa restriction à la boule unité est une fonction bornée. Aucun opérateur
non nul sur un K-ev n'est borné en tant que fonction.
Proposition : la norme d'opérateur est une norme sur L′(E,F ). Proposition : la notion d'opéra-
teur borné ne change pas si on remplace les normes sur E, F par des normes équivalentes ;
la norme subordonnée est remplacée par une norme équivalente. Proposition : ‖g ◦ f‖E→G ≤
‖g‖F→G‖f‖E→F , cas E = F = G.
Exemples. On munit E = C∞([0, 1]) ⊂ C ([0, 1]) de la norme N∞. Alors M : E → E donnée par
M(f) = (x 7→ xf(x)) est bornée et ‖M‖ = 1. Par contre D : f 7→ f ′ ne l'est pas.
Exercice 7 : Avec les mêmes notation, montrer que T ∈ L(E) donné par T (f) = (x 7→ 2f(x/2))
est borné, et calculer sa norme d'opérateur.

Application : normes sur Mk,l(K). On dispose des normes Np en identi�ant Mk,l(K) ' Kkl. On
dispose de plusieurs normes subordonnées en identi�ant Mk,l(K) ' L(Kl,Kk) et en choisissant
des normes sur Kl et Kk. Exemples : calcul de ‖M‖N1

, ‖M‖N2
, ‖M‖N∞ , ‖M‖N2→N2

pour une
matrice antidiagonale 2× 2. Proposition : on a ‖M‖N∞→N1

≤ ‖M‖N1
, donc tous les opérateurs

de L(Kl,Kk) sont bornés lorsque Kk, Kl sont munis d'une norme parmi N1, N2, N∞.
Remarque. On montrera au chapitre 4. que sur un espace vectoriel de dimension �nie, toutes
les normes sont équivalentes. La proposition précédente montre donc que toutes les applications
linéaires sont bornées en dimension �nie.
Exercice 8 : Calculer ‖In‖N1

, ‖In‖N2
, ‖In‖N∞ , ‖In‖N1→N1

, ‖In‖N∞→N∞ . Ici In ∈ Mn(K) est
la matrice identité.

Chapitre 2. Topologie métrique

Remarque : applications et distances. Applications isométriques, lipschitziennes. Isomorphismes
d'espaces métriques : bijections isométriques. Bijections bilipschitziennes. On va étudier une
notion plus faible que le caractère lipschitzien : la continuité. Homéomorphisme : bijection bi-
continue.

I Limites et continuité

a) Suites convergentes
Dé�nition : convergence d'une suite dans un espace métrique, un espace vectoriel normé. Com-
paraison avec la dé�nition pour les suites réelles, comment s'y ramener en considérant dn =
d(xn, l). Proposition : unicité de la limite, ne dépend pas de la distance à équivalence près.
L'unicité n'est plus vraie si on a seulement une pseudo-distance.
Proposition : convergence dans un espace produit. Proposition : limite d'une combinaison linéaire
de suites. Exemple : convergence dans Kn.
Exercice 1 : On considère la suite Pn = (cos 1

n , sin
1
n ) dans R2. Calculer la distance de Pn

à P = (1, 0) pour la distance usuelle, la distance de Manhattan et la distance SNCF. A-t-on
limPn = P ? Question subsidiaire : (Pn)n converge-t-elle pour la distance SNCF?

b) Fonctions continues
Dé�nition : continuité de f : A → A′ en a ∈ A, continuité de f sur A, sur une partie de A.
Remarque : ne dépend pas des distances à équivalence près. Exemples : continuité de d( · , · ) sur
(A×A, d1), continuité des projections canoniques sur un espace produit.



Proposition : continuité d'une fonction à valeurs dans un espace produit. Proposition : caractéri-
sation séquentielle de la continuité. Méthode pour montrer qu'une fonction n'est pas continue.
Rappels. Continuité de composées, sommes (A′ evn), produits, quotients (A′ = K). Lemme des
gendarmes (A′ = R). Exemples : continuité des polynômes, de f : (x, y) 7→ cos(x+ y).
Exercice 2 : On munit R2 d'une distance équivalente à la distance usuelle. Montrer soigneuse-
ment que f : R2 → R2, (x, y) 7→ (xy − 2y2, x exp(y)) est continue sur R2.

II Ouverts et fermés

a) Dé�nitions
Dé�nition : B(a, r), B̄(a, r), S(a, r). Exemples : boules dans R2 muni de N1, N2, N∞, de la
distance SNCF. Boules dans R, dans N.
Dé�nition : ouverts, fermés (complémentaires d'ouverts), frontière Fr(A) = {a ∈ A | ∀r > 0
B(a, r) rencontre A et cA}. Proposition : Fr(A) = Fr(cA), A est ouvert ssi A∩ Fr(A) = ∅, fermé
ssi Fr(A) ⊂ A. Interprétation � graphique �.
Exemples : R∗+ × R ⊂ R2, intervalles de R, {0} ⊂ N, B(a, r), B̄(a, r). Exemple : FrQ = R ssi
tout intervalle ouvert non vide contient un rationnel et un irrationnel.
Exercice 3 : On considère R2 munit de la distance associée à N1, et A = {(x, y) | x+ y > 0}.
Pour a = (x, y) ∈ A, donner le rayon maximal d'une boule ouverte de centre a incluse dans A.
Dé�nitions : intérieur, fermeture de A (en utilisant Fr(A)), densité.

b) Propriétés générales
Proposition : réunions et intersections d'ouverts, de fermés. Contre-exemples dans R. Exemple :
Z ⊂ R est fermé. Dé�nition : notion abstraite de topologie. Remarque : la topologie d'un espace
métrique est séparée, ce n'est pas le cas en général.
Exercice 4 : Montrer que {n2 | n ∈ N} est un fermé de R.
Dé�nition : distances topologiquement équivalentes. Proposition : équivalentes ⇒ top. équiva-
lentes. Exemples : R muni de d usuelle, de f ◦d avec f(x) = x/(1 +x) (mêmes boules) ; R2 muni
de N1, N2, N∞ (boules di�érentes), de la distance SNCF.
Proposition : produit d'ouverts, ouverts pour une distance induite. Exemples : pavés ouverts et
fermés de Rn, ]0, 1] est un fermé de R∗.

c) Lien avec la continuité
Rappel : images réciproque et directe.
Proposition : caractérisation topologique de la continuité (globale). Remarque : ainsi la notion
de continuité ne dépend des distances qu'à équivalence topologique près. Remarque : rien pour
l'image directe.
Application : construction d'ouverts et de fermés. Exemple : {(x, y) ∈ R2 | cos(x+ y) > exp(x)}
est un ouvert.
Exercice 5 : En utilisant la fonction (t 7→ sin(πt)), montrer que Z est un fermé de R.
Lemme : si Z est un fermé contenant Y , alors Z contient Ȳ (passer aux complémentaires).
Proposition : deux fonctions continues égales sur une partie dense sont égales partout. Exemple :
Q et cQ sont denses dans R, f continue et additive de R dans R est de la forme f(x) = ax.

d) Lien avec les limites
Proposition : caractérisation topologique de la convergence. Remarque : ainsi la notion de con-
vergence ne dépend des distances qu'à équivalence topologique près.
Proposition : caractérisation séquentielle des ouverts et des fermés. Justi�cation de la terminolo-
gie. Méthode pour montrer qu'une partie n'est pas ouverte, pas fermée. Lemme : a ∈ Ā ⇔ il
existe une suite dans A qui tend vers a ⇔ d(a,A) = 0 ; Ā est le plus petit fermé contenant A.
Exercice 6 : Montrer que A = { 1n | n ∈ N∗} n'est pas fermé dans R. Que dire de A ∪ {0} ?

III Cas des espaces vectoriels normés

a) Sous-espaces
Proposition : la fermeture d'un sev est un sev. Exemple : sous-espaces des suites presque �nies,
des suites qui tendent vers 0, dans `∞ ; sous-espace des fonctions continues dans l'espace des
fonctions bornées Fb(X,E), si X est un espace métrique.
Exercice 7 : Montrer que le sous-espace {f | f(0) = 0} ⊂ C ([0, 1]) est fermé pour la norme de
la convergence uniforme.



b) Applications linéaires
Proposition : Une application linéaire f : E → E′ entre evn est continue ssi elle est bornée.
Corollaire : deux normes sont équivalentes ssi elles sont topologiquement équivalentes.
Remarque : noyau fermé. Proposition : une forme linéaire est bornée ssi son noyau est fermé.
Exemple : sous-espace des suites à limite nulle parmi les suites convergentes.

Exercice 8 : Montrer que le sous-espace {f |
∫ 1

0
f = 0} ⊂ C ([0, 1]) est fermé pour la norme de

la convergence uniforme.

Chapitre 3. Espaces complets

I Théorie générale

a) Dé�nition
Suites de Cauchy. Exemple : suites convergentes, suites adjacentes dans R et Q. Remarque : une
suite de Cauchy est bornée. Espaces complets, espaces de Banach. Exemple : R est complet �
par dé�nition, cf plus loin. Conséquence : théorème des suites adjacentes dans R. Exemple : Q
n'est pas complet, la suite dé�nie par x0 = 2 et xn+1 = xn/2 + 1/xn est une suite de Cauchy
rationnelle qui converge vers

√
2 /∈ Q. Exemple : ]0, 1[ n'est pas complet.

Exercice 1 : étudier cette suite, en particulier, montrer que un+1 ≥
√

2, puis que (un)n est
décroissante (sans récurrence).

b) Propriétés
Proposition : si X ⊂ Y est complet pour la distance induite, il est fermé. La réciproque est vraie
si Y est complet. Proposition : distances équivalentes, espaces isométriques. Contre-exemple :
d′(x, y) = |1/x − 1/y| sur [1,+∞[ est topologiquement équivalente à d mais (n)n est une suite
de Cauchy qui ne converge pas pour d′.
Proposition : un produit cartésien d'espaces complets est complet pour l'une des distances pro-
duit. Exemple : C est complet, Kn est un espace de Banach pour N1, N2, N∞.
Exercice 2 : Montrer que N× [0, 1] est complet pour la distance induite par la distance eucli-
dienne canonique sur R2.

c) Espaces fonctionnels
Proposition. L'espace des fonctions bornées Fb(X,E), où X est un ensemble et E un espace de
Banach, est un espace de Banach pour la norme de la convergence uniforme. Exemple : `∞(N,R).
Corollaire : si X est un espace métrique et E est un espace de Banach, l'espace des fonctions
continues bornées Cb(X,E) est un espace de Banach pour la norme de la convergence uniforme.
Exemple : C ([0, 1]).
Exercice 3 : montrer que E = {f ∈ C ([0, 1]) | f(0) = 0} est un espace de Banach pour la
norme de la convergence uniforme.
Proposition. Si E est un espace vectoriel normé et F est un espace de Banach, l'espace L′(E,F )
est un espace de Banach pour la norme d'opérateur. Cas particulier : si E est un evn, E′ est un
espace de Banach.

II Applications

a) Équivalence des normes
Théorème. Soit E un espace vectoriel normé de dimension �nie. Alors toutes les normes sur E
sont équivalentes et E est complet.
Corollaires : les sous-espaces de dimension �nie sont fermés, les applications linéaires sont con-
tinues en dimension �nie.
Exercice 4 : Soit (fn)n ∈ C ([0, 1])N une suite de fonctions polynômiales de degré N , qui
converge uniformément vers une fonction g. Montrer que g est polynômiale, de degré inferieur
ou égal à N .

b) Points �xes
Dé�nition : application contractante, strictement contractante, uniformément strictement con-
tractante.
Théorème : une application f : X → X uniformément strictement contractante avec X complet
admet un unique point �xe, limite de toute suite récurrente xn+1 = f(xn).
Application : Cauchy-Lipschitz (ou Picard-Lindelöf). Existence de solution locale pour x′ =
f(x, t), x′(0) = 0, avec f continue, α-lipschitzienne par rapport à x sur P = [−a, a]× [−b, b]. On
considère Φ(x) = (t 7→

∫ t
0
f(x(s), s)ds) sur C ([−c, c] , [−a, a]) avec c < α−1, c < b, c < a/M où

M est un majorant de f sur P .



Exemple. Si f : R2 → R est de classe C1 et |(∂f/∂x)(x, t)| < M pour tout (x, t), alors f est
uniformément lipschitzienne par rapport à x. L'équation x′ = exp(x2 + t2) admet une unique
solution sur

[
− 1

18 ,
1
18

]
(en prenant a = b = 1).

Exercice 5 : Montrer que l'équation x′ = cos(x+ t) admet une unique solution sur
[
− 1

2 ,
1
2

]
.

c) Prolongement et complétion
Dé�nition : application uniformément continue. Lemme : image u-continue d'une suite de Cauchy,
de deux suites telles que d(xn, yn)→ 0.
Proposition. Soit X un espace métrique, Y ⊂ X une partie dense, X ′ un espace métrique
complet, et f : Y → X ′ uniformément continue. Alors il existe une fonction uniformément
continue g : X → X ′ telle que g = f sur Y . Remarque : unicité.
Proposition. Soit (X, d) un espace métrique. Il existe un espace métrique complet (X ′, d′) tel que
X soit isométrique à une partie dense de X ′ (munie de la distance induite par d′). Remarque :
unicité. Idée : on plonge x dans Cb(X,R) par φx(y) = d(x, y) − d(x0, y). Exemple : R et Q,
remarque sur la dé�nition de R.
Proposition : le complété d'un evn E est un evn qui contient E comme un sous-espace dense.
Exemples : espaces `p(R), Lp(R).

Chapitre 4. Compacité et connexité

I Espaces compacts

a) Dé�nition
Dé�nition : sous-suites (xϕ(n))n ou (xn′)n de (xn)n, valeurs d'adhérences. Proposition : (xn)n
converge ssi toutes ses sous-suites convergent vers une même limite. Une suite de Cauchy converge
ssi elle admet une sous-suite convergente. Proposition : x est va de (xn)n ssi pour tout ε > 0 il
existe une in�nité d'indices n tels que d(xn, x) ≤ ε. Exemples : (n2)n, (1/n)n, ((−1)n)n, (cosn)
(en admettant la structure des sous-groupes de R et l'irrationnalité de π).
Exercice 1 : Quelles sont les valeurs d'adhérence de la suite 1/(1 + (−1)n + 1/n) ?
Dé�nition : espace compact, localement compact. Remarque : distance topologiquement équiv-
alentes, critère de Borel-Lebesgue, admis et non utilisé dans la suite, qui est la bonne dé�nition
pour les espaces topologiques généraux.
Exemple : d'après le théorème de Bolzano-Weierstraÿ, [a, b] est compact. Démonstration utilisant
la complétude de R : étant donnée (xk), on construit par dichotomie (an), (bn) adjacentes avec
a0 = a, b0 = b, et [an, bn] contient une in�nité de termes de (xk).

b) Propriétés
Proposition. Si X est compact, X est complet. Si X est compact, X est borné (car les suites
convergentes sont bornées).
Proposition (Y ⊂ X). Si Y est compact, Y est fermé. Si X est compact et Y est fermé, Y est
compact. Proposition : produit �ni de compacts.
Corollaire : dans un (Rn, N∞) de dimension �nie, les compacts sont exactement les fermés bornés.
Par équivalence des normes, cela reste vrai dans tout espace vectoriel normé de dimension �nie.
Exemples : dans R2, ]0, 1[

2
, R× [0, 1] ne sont pas compacts, {(x, y) | |x|+ y2 ≤ 1} est compact.

Proposition : image continue d'un compact. Corollaire : une fonction continue sur un fermé borné
de Kn est bornée et atteint ses bornes.
Exercice 2 : montrer que l'ensemble {x exp(y) | x2 + y2 ≤ 1} admet un min et un max.

c) Applications
Théorème : équivalence des normes en dimension �nie, par compacité.
Théorème de Heine : la continuité sur un compact est uniforme (par l'absurde et suites extraites).
Polynômes de Bernstein Bn(f) =

∑n
k=0 f(k/n)CknX

k(1−X)n−k. Lemme : Bn(1) = 1, Bn(id) =

X, Bn(·2) = ((n− 1)X2 +X)/n (en utilisant k
nC

k
n = Ck−1n−1), et en développant :∑n

k=0(X − k
n )2CknX

k(1−X)n−k = X(1−X)/n.

Téorème de Stone-Weierstraÿ. On majore |f(x)−Bn(f)(x)| en distinguant les termes |x− k
n | ≤ δ,

où δ est un module de continuité pour ε/2, et en forçant l'utilisation de l'identité ci-dessus pour
les autres termes.

II Espaces connexes

Remarque : topologie et distances induites. Les ouverts de la distance induite sur A sont exacte-
ment les intersections des ouverts avec A. Si A est un ouvert, ce sont exactement les ouverts
inclus dans A.



a) Propriétés topologiques
Dé�nition : espace connexe, partie connexe. Exemple : [0, 1] ∪ [2, 3] n'est pas connexe. Proposi-
tion : X est connexe ssi toute application continue de X dans {0, 1} est constante.
Exercice 3 : montrer que R privé d'un point n'est pas connexe.
Propositions. Une réunion de connexes qui se rencontrent deux-à-deux est connexe. L'image
continue d'un connexe est connexe. La fermeture d'une partie connexe est connexe. Un produit
cartésien d'espaces connexes est connexe.
Dé�nition : composantes connexes.
Proposition. Les composantes connexes forment une partition en parties connexes et fermées.
Dé�nition : espace discret, totalement discontinu. Exemples : Z, Q, R \ Z, R.

b) Connexité et réels
Proposition : R est connexe. Corollaire : les parties connexes de R sont les intervalles.
Application : Les ouverts de R sont réunions disjointes d'intervalles ouverts.
Application : Théorème des valeurs intermédiaires. Si X est connexe et f : X → R continue
prend les valeurs a et b, alors elle prend toutes les valeurs entre a et b.
Dé�nition : connexité par arcs. Remarque : connexe par arcs ⇒ connexe. On peut montrer que
la réciproque est vraie pour les parties ouvertes dans les evn.
Exercice 4 : montrer que R2 privé d'un point est connexe par arcs.
Remarque. R et R2 ont tous les deux la � puissance du continu � : on peut trouver une bijection
de l'un vers l'autre. Les exercices 3 et 4 montrent qu'on ne peut trouver de bijection de R vers
R2 qui soit continue, ainsi que son inverse.



Pré-requis : continuité des formes linéaires à noyau fermé, complétude de (Kn, N1), stabilité de
la complétude par changement de norme équivalente.

Théorème. Soit E un espace vectoriel normé de dimension �nie. Alors : i) toutes les normes
sur E sont équivalentes, et ii) E est complet.

Démonstration. Montrons d'abord que i) ⇒ ii), pour un evn (E, ‖ · ‖) �xé. Soit (ei) une base de
E : elle dé�nit un isomorphisme f : Kn → E, (λi) 7→

∑
λiei. Transportons la norme N1 de Kn

sur E via f , i.e. on pose ‖
∑
λiei‖1 =

∑
|λi|. Alors f est un isomorphisme isométrique entre

(E, ‖ · ‖1) et (Kn, N1) qui est complet, donc (E, ‖ · ‖1) est complet. Comme toutes les normes
sur E sont équivalentes, (E, ‖ · ‖) est également complet.
Pour montrer i) on procède par récurrence sur n = dimE. Pour n = 1 on a un résultat plus
fort : les normes sur E = D sont multiples l'une de l'autre. En e�et, soit ‖ · ‖ et ‖ · ‖′ deux
normes sur D, et e un vecteur directeur de D. Tout vecteur v ∈ D s'écrit sous la forme v = λe
avec λ ∈ K, on a alors ‖v‖ = |λ|‖e‖ et ‖v‖′ = |λ|‖e‖′, donc ‖v‖ = ‖v‖′ × (‖e‖/‖e‖′) pour tout
v. Cela montre également que (D, ‖ · ‖) est isométriquement isomorphe à K, muni de sa norme
canonique, via l'application (λ 7→ λe/‖e‖).
Supposons maintenant le résultat démontré pour tout K-evn de dimension n, et soit E un K-evn
de dimension n+ 1. Fixons également une décomposition E = H ⊕D, où D est de dimension 1.
Soit ‖ · ‖ une norme sur E. On va montrer que ‖ · ‖ est équivalente à la norme ‖ · ‖1 dé�nie par
‖v‖1 = ‖h‖+ ‖d‖, où v = h+ d est l'unique décomposition de v dans la somme directe H ⊕D.
Comme toutes les normes sur H sont équivalentes par hypothèse de récurrence, cela démontrera
que toutes les normes sont équivalentes sur E. Remarquons qu'une inégalité est claire : on a
‖v‖ = ‖h+ d‖ ≤ ‖h‖+ ‖d‖ = ‖v‖1.
Notons p la projection sur D associée à la décomposition E = H ⊕D, i.e. p(h+ d) = d. Comme
la droite D est de dimension 1, elle est isométriquement isomorphe à K, donc p s'interprète
également comme une forme linéaire sur E. Son noyau est clairement H. Par hypothèse de
récurrence, H est complet, donc fermé dans E. Donc p est bornée. On a alors ‖v‖1 = ‖(1 −
p)(v)‖+ ‖p(v)‖ ≤ ‖v‖+ 2‖p(v)‖ ≤ (1 + 2‖p‖)‖v‖.

La preuve reste valable pour tout K-ev de dimension �nie, où K est un corps valué complet non
discret. Par exemple le corps des séries formelles de Laurent K = k((x)) est complet pour tout
corps k, mais n'est localement compact que si k est �ni.



Lemme. Soit A une partie non vide et majorée de R et M = supA. Si A est fermé, M ∈ A. Si
A est ouvert, M /∈ A.

Proposition. R est connexe.

Démonstration. En e�et le Lemme montre que R ne contient pas de partie non vide, majorée,
ouverte et fermée. Supposons maintenant que A ⊂ R est une partie ouverte et fermée, di�érent
de ∅ et de R. Soit a ∈ A et b /∈ A, et supposons par exemple a < b. Alors A′ = A ∩ ]−∞, b] =
A ∩ ]−∞, b[ est ouverte, fermée, non vide, majorée, ce qui est impossible.

Corollaire. Les parties connexes de R sont les intervalles.

Démonstration. Tout intervalle est connexe car il peut s'écrire à partir d'images continues de
R. Par exemple [−1, 1] = {max(−1,min(1, x)) | x ∈ R}, ]−1, 1[ = {x/(1 + |x|) | x ∈ R}. Par des
transformations a�nes on obtient tous les intervalles de ces types, puis en faisant des réunions on
obtient les autres types : par exemple ]a, b] = ]a, b[∪ [c, b] si c ∈ ]a, b[, et ]a,+∞[ =

⋃
n ]a, a+ n[.

Inversement, soit I une partie connexe non vide de R. Posons a = inf I ou −∞, b = sup I ou
+∞, de sorte que I est contenu dans l'adhérence de ]a, b[. Il su�t de montrer que ]a, b[ ⊂ I.
Supposons que ce n'est pas le cas, et �xons x ∈ ]a, b[ qui n'est pas dans I. Alors I est la réunion
disjointe de I ∩ ]−∞, x[ et I ∩ ]x,+∞[, qui sont deux ouverts de I, donc I est contenu dans un
des deux intervalles, par exemple ]x,+∞[. Mais alors inf I ≥ x > a, ce qui contredit la dé�nition
de a.

Corollaire. Tout ouvert de R s'écrit comme réunion disjointe d'intervalles ouverts.

Démonstration. On écrit U comme réunion disjointe de ses composantes connexes, qui sont des
intervalles. Supposons que l'un de ces intervalles, disons ]a, b], n'est pas ouvert, et soit ε > 0 tel
que ]b− ε, b+ ε[ ⊂ U . Alors ]a, b+ ε[ est une partie connexe de U , ce qui contredit le fait que
]a, b] soit une composante connexe de U .



Démonstrations à apprendre pour le partiel

Proposition. Soit (A, d) un espace métrique et X une partie de A. Pour tous points a, b de A
on a |d(a,X)− d(b,X)| ≤ d(a, b).

Proposition. Soit E un R-espace vectoriel muni d'une forme bilinéaire symétrique dé�nie-
positive B(v, w) = v · w, et ‖v‖ =

√
v · v la forme quadratique associée. On a l'inégalité de

Cauchy-Schwartz : |v · w| ≤ ‖v‖ × ‖w‖. De plus ‖ · ‖ est une norme sur E.

Proposition. Soit E, F deux espaces vectoriels normés, et L′(E,F ) l'espace des applications
linéaires bornées de E vers F . La norme d'opérateur dé�nit une norme sur L′(E,F ).

Proposition. Soit (E,N) un espace vectoriel normé. On note ‖T‖ la norme d'opérateur de
T ∈ L′(E). Pour tous S, T ∈ L′(E) on a ‖S ◦ T‖ ≤ ‖S‖ × ‖T‖.

Proposition. Soit (A, d), (A′, d′) des espaces métriques et a ∈ A. Une application f : A → A′

est continue en a si et seulement si on a lim f(xn) = f(a) pour tout suite (xn)n∈N à valeurs dans
A qui converge vers a.

Proposition. Soit (A, d) un espace métrique. Une partie X ⊂ A est ouverte si et seulement si
X ∩ Fr(X) = ∅, fermée si et seulement si Fr(X) ⊂ X.

Proposition. Soit (A, d) un espace métrique. La réunion d'un nombre quelconque d'ouverts de
A est un ouvert. L'intersection d'un nombre �ni d'ouverts de A est un ouvert.

Proposition. Soit A, B des espaces métriques. Une application f : A → B est continue sur A
si et seulement f−1(Y ) est un ouvert de A pour tout ouvert Y ⊂ B.



Démonstrations à apprendre pour l'examen

Proposition. Soit X, Y des espaces métriques. Une application f : X → Y est continue sur X
si et seulement f−1(O) est un ouvert de X pour tout ouvert O ⊂ Y .

Proposition. Soit E, F des espaces vectoriels normés. Une application linéaire f : E → F est
continue ssi elle est bornée.

Proposition. Soit E un espace vectoriel normé. Une forme linéaire ϕ ∈ E∗ est continue ssi son
noyau est fermé.

Proposition. Soit X1, ..., Xn des espaces métriques complets. Alors le produit cartésien X =
X1 × · · · ×Xn, muni d'une distance produit, est complet.

Proposition. Soit X, Y des espaces métriques et f : X → Y une application continue. Si X
est compact, alors f(X) est compact pour la distance induite par celle de Y .

Proposition. Soit X, Y des espaces métriques compacts. Alors X × Y , muni d'une distance
produit, est compact.

Proposition. (Théorème de Heine) Soit X, Y des espaces métriques et f : X → Y une appli-
cation continue. Si X est compact, alors f est uniformément continue.

Proposition. Soit X un espace métrique. L'ensemble des composantes connexes de X forme
une partition de X en parties connexes et fermées.


