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Intégration

Exercice 1.
a. On considère la fonction f : [0, 1]→ R telle que f(x) = 1 si x ∈ Q et f(x) = 0 sinon.

La fonction f est-elle intégrable au sens de Riemann ? Rappeler pourquoi.
b. On considère la fonction g : [0, 1]→ R telle que g(x) = 0 si x /∈ Q, et g(pq ) =

1
q pour 0 ≤ p ≤ q entiers premiers

entre eux. On fixe un nombre premier P .
(i) Trouver une fonction en escalier h telle que g(x) ≤ h(x) pour tout x ∈ [0, 1], et h(x) ≤ 1

P sauf pour un
nombre fini de points x ∈ [0, 1].

(ii) Montrer que g est intégrable au sens de Riemann. Que vaut
∫ 1

0
g(x)dx ?

Exercice 2. Soit f : [0, 1]→ R une fonction croissante.
On fixe n ∈ N et on pose ak = k

n pour k = 0, . . . , n.
a. On définit des fonctions g, h : [0, 1]→ R en posant g(1) = h(1) = f(1), et pour tout k = 0, . . . , n− 1 :

∀ x ∈ [ak, ak+1[ g(x) = f(ak) et h(x) = f(ak+1).

Déterminer
∫ 1

0
g(x)dx et

∫ 1

0
h(x)dx en fonction des valeurs f(ak).

b. Montrer que f est intégrable au sens de Riemann.
c. Exemple. On considère la fonction f définie par f(0) = 0, f(1) = 1 et

∀r ∈ N∗ ∀x ∈
[

1
r+1 ,

1
r

[
f(x) =

1

r
.

Montrer que f est intégrable au sens de Riemann. Est-elle continue par morceaux ?

Exercice 3. Calculer les intégrales suivantes en utilisant des sommes de Riemann : I =
∫ 1

0
tdt, J =

∫ x
0
etdt.

Exercice 4. Calculer la limite des suites suivantes :

An =
1

n

n∑
k=1

sin

(
kπ

n

)
, Bn =

n∑
k=1

k

k2 + n2
, Cn =

n∑
k=1

n

k2 + n2
,

Dn =
1

n2

n∑
k=1

√
k(n− k), En =

n∑
k=0

n+ 1

k2 + n2
, Fn =

2n∑
k=n

1

k
, Gn =

n∏
k=1

n

√
1 +

k

n
.

Donner un équivalent de Hn =
∑n
k=1

√
k.

Exercice 5. Soit f : [0, 1]→ R une fonction continue. Montrer que

lim
n→∞

n∏
k=1

(
1 + 1

nf
(
k
n

))
= exp

∫ 1

0

f(x)dx.

On pourra utiliser l’encadrement x− x2 ≤ ln(1 + x) ≤ x, valable pour tout x ≥ − 1
2 .

Exercice 6. Soit f : [a, b]→ R une fonction continue et n ∈ N un entier fixé. On suppose qu’on a

∀k ∈ {0, . . . , n}
∫ b

a

xkf(x)dx = 0.

On veut montrer que f s’annule au moins n+ 1 fois sur [a, b].
On note a ≤ x1 < · · · < xp ≤ b les points où f change de signe.

a. Quelle conclusion veut-on obtenir dans le cas n = 0 ? Le résultat est-il vrai dans ce cas ?

b. Montrer qu’on a
∫ b
a
P (x)f(x)dx = 0 pour tout polynôme P de degré inférieur ou égal à n.

c. Posons P =
∏p
i=1(X − xi). En supposant que p ≤ n, montrer qu’on a P (x)f(x) = 0 pour tout x ∈ [a, b].

d. Conclure.



Exercice 7. Soit f : [a, b]→ R une fonction continue.
Montrer qu’on a

∫ b
a
|f | = |

∫ b
a
f | si et seulement si f est positive sur [a, b] ou négative sur [a, b].

Indication. Pour la réciproque on distinguera les deux cas
∫ b
a
f ≥ 0,

∫ b
a
f ≤ 0.

On remarquera également qu’on a |y| − y ≥ 0 et |y|+ y ≥ 0 pour tout y ∈ R.

Exercice 8. Soit f : [a, b]→ R une fonction continue telle que
∫ b
a
f(x)2dx+

∫ b
a
f(x)4dx = 2

∫ b
a
f(x)3dx.

Montrer que f est constante sur [a, b], égale à 0 ou à 1. Indication : factoriser le polynôme X4 − 2X3 +X2.

Exercice 9. Pour chaque n ∈ N on définit une fonction fn :
[
0, π2

]
→ R, x 7→ (n+ 1)(cosx)n sinx.

a. Calculer
∫ π

2

0
fn(x)dx pour tout n.

b. On fixe x ∈
[
0, π2

]
. Déterminer la limite de la suite (fn(x))n, que l’on notera f(x).

On dit que la suite de fonctions (fn)n converge simplement (ou point par point) vers la fonction f .

c. A-t-on limn∞
∫ π

2

0
fn(x)dx =

∫ π
2

0
f(x)dx ?

Exercice 10. Pour chaque n ∈ N on considère la fonction fn : [1, e]→ R, x 7→ x2(lnx)n. On pose In =
∫ e
1
fn(x)dx.

a. Justifier l’intégrabilité de fn sur [1, e].
b. Déterminer la limite f(x) = limn∞ fn(x), pour tout x ∈ [1, e].

La fonction f est elle-continue sur [1, e] ? est-elle intégrable ?
c. Montrer que la suite (In)n est décroissante et en déduire qu’elle converge.
d. En majorant x3 par e3 sur [1, e], donner un majorant de fn sur [1, e], et en déduire un majorant de In.
e. Quelle est la limite de la suite (In)n ? A-t-on limn∞

∫ e
1
fn(x)dx =

∫ e
1
f(x)dx ?

Exercice 11. Pour chaque n ∈ N on étudie la fonction fn : [0, 1]→ R, x 7→ xn − xn+1.
a. Déterminer la limite f(x) = limn∞ fn(x), pour tout x ∈ [0, 1].

On a ainsi |f(x)− fn(x)| → 0 pour tout x.
b. Étudier la fonction fn sur [0, 1], pour tout n.
c. Montrer qu’il existe une suite (an)n qui tend vers 0 et telle que |f(x)− fn(x)| ≤ an pour tout x ∈ [0, 1].

On dit que la suite de fonctions (fn)n converge uniformément vers la fonction f .

d. On pose In =
∫ 1

0
fn(x)dx. Montrer sans calcul supplémentaire que (In)n converge, et déterminer sa limite.

Exercice 12. Pour chaque n on définit une fonction fn : [0, 1]→ R, x 7→ 1
1+xn . On pose In =

∫ 1

0
fn(x)dx.

a. Déterminer la limite (simple) f de la suite de fonctions (fn)n.
b. Montrer que la suite (In)n est croissante. Converge-t-elle ?
c. Montrer que 1− fn(x) est majoré par xn pour tout x ∈ [0, 1]. En déduire la limite de la suite (In)n.

d. A-t-on limn∞
∫ 1

0
fn(x)dx =

∫ 1

0
f(x)dx ?

La convergence de la suite de fonctions (fn)n vers f est-elle uniforme ?
e. Justifier l’identité suivante :

1− In =
ln 2

n
− 1

n

∫ 1

0

ln(1 + xn)dx.

f. En déduire le développement asymptotique In = 1− ln 2
n + o( 1n ).

Exercice 13. On considère les intégrales de Wallis Wn =
∫ π

2

0
(cosx)ndx.

a. Montrer que la suite (Wn)n est positive et décroissante.
b. À l’aide d’une intégration par parties, montrer que Wn+2 = n+1

n+2Wn.

c. Trouver un encadrement de Wn

Wn+1
qui permette de montrer que Wn ∼Wn+1.

On utilisera les deux questions précédentes.
d. À l’aide de la question b, donner une expression de Wn sans intégrale.

On distinguera selon la parité de n.
e. Simplifier le produit WnWn+1 et en déduire que Wn ∼

√
π
2n .

f. Application. On admet la formule de De Moivre n! ∼ C
√
n(ne )

n.
En exprimant W2n à l’aide de factorielles, déterminer la valeur de la constante C.


