UNIVERSITE DE CAEN 1* SEMESTRE 2015-2016

UFR SCIENCES MATHEMATIQUES
L2 MATHS ANALYSE

PARTIEL DU 4 NOVEMBRE

Exercice 1. Déterminer les natures des trois séries données par les termes généraux suivants :
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Exercice 2.

1. A Taide d’une intégration par parties, déterminer une primitive de la fonction
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2. En déduire une primitive de la fonction
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Exercice 3. Etudier la convergence de l'intégrale généralisée suivante :
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On n’oubliera pas d’étudier la convergence aux deuz bornes.
Il n’est pas conseillé de procéder & une intégration par parties.

Exercice 4. On considére les équations différentielles suivantes, de fonction inconnue z :
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Les questions 2 et 3 sont indépendantes.
1. Résoudre (Ejy) sur |1, +o0].
2. (a) Résoudre (F4) sur |1, +o0[.
(b) L’équation (F) admet-elle des solutions x telles que lim; 4o 2(t) =07
Admet-elle des solutions z telles que lim;_,1+ () =07
(c¢) Résoudre (F4) sur R entier.
Int

3. On note G : |1,4+00[ — R la primitive nulle en ¢ = 2 de la fonction g : t — m
(a) Reésoudre (E2) sur |1,4o0].
Pour donner la réponse on utilisera la fonction G, qu’on ne cherchera pas a calculer explicitement.

(b) Etudier la convergence de 'intégrale suivante :

(c) Montrer que toutes les solutions de (Es) sur |1, +oo[ ont une limite nulle en +oo.

(d) L’équation (F3) admet-elle des solutions bornées sur |1, +oo[?
Cette question est plus difficile. On pourra utiliser Uencadrement (t —1)/2 <lInt < (¢t — 1) valable sur [1,2].



