
Université de Caen 1er semestre 2015-2016
UFR Sciences Mathématiques
L2 Maths Analyse

Séries numériques

Exercice 1. Déterminer la nature des séries données par les termes généraux suivants :

– an =
cosn

n3
, – bn = sin e−n, – cn = n sin 1

n ,

– dn =
2n+ 3

2n
, – en =

√
n+ 1

n+ lnn
, – fn = arctann,

– gn =
1

n+ (−1)n
√
n
, – hn = ln

(
n2+n+1
n2+n−1

)
, – in =

(
n+3
2n+1

)lnn
,

– jn =
∫ π/2
0

(cos x)2

n2+(cos x)2 dx, – kn =
1

ln(n) ln(chn)
, – ln = arccos 3

√
1− n−2,

– mn =
(

cos 1√
n

)n
− 1√

e
, – nn = n−

√
2 sin(π4 + 1

n ).

Exercice 2. Soit (un)n une suite de réels positifs tels que la série (
∑
n un) converge.

a. Montrer que la série (
∑
n u

2
n) converge. Le résultat subsiste-t-il si on ne suppose plus les un positifs ?

b. Montrer que les séries (
∑
n
un
n2 ), (

∑
n

√
un
n ) convergent. Pour la deuxième on pourra utiliser Cauchy-Schwartz.

c. Montrer que la suite des produits Pn =
∏n
k=1(1 + uk) a une limite quand n tend vers +∞.

d. Soit (vn)n une autre suite de réels positifs tels que la série (
∑
n vn) converge.

Montrer que la série (
∑
n

√
unvn) converge.

Exercice 3. Déterminer la nature des séries données par les termes généraux suivants :

– an =
n2

(n− 1)!
, – bn =

(
n
2

)n, – cn =
(
n−1
2n+1

)n
,

– dn =
(
n−1
2n+1

)(−1)nn
, – en =

n!

n2n
, – fn =

(
1
2

)√n.
Exercice 4. Pour tout n ∈ N∗ on pose

un =
1× 3× 5× · · · × (2n− 1)

2× 4× 6× · · · × (2n)
et vn =

1× 3× 5× · · · × (2n− 3)

2× 4× 6× · · · × (2n)
.

a. Quelle est la limite de la suite un+1

un
?

Montrer que la suite (nun)n est croissante. En déduire la nature de la série (Σnun).
b. Quelle est la limite de la suite vn+1

vn
?

Montrer qu’on a (n+ 1)αvn+1 ≤ nαvn pour tout n et tout α ∈
]
0, 32
[
. En déduire la nature de la série (Σnvn).

Exercice 5. Étudier la nature des séries données par les termes généraux suivants :

an = (−1)n
lnn

n
, bn = sin

(
πn2

n+ 1

)
, cn =

(−1)n

n+ (−1)n−1
.

Exercice 6. Pour tout n ∈ N∗ on pose an = 1
ns et bn = (−1)n−1

ns .

a. Étudier la convergence des séries (
∑
n≥1 an) et (

∑
n≥1 bn), selon la valeur du paramètre réel s.

b. Lorsque s > 1, déterminer une relation entre ζ =
∑∞
n=1 an et η =

∑∞
n=1 bn.

c. Le paramètre s est maintenant un nombre complexe non nul.

(i) Montrer qu’on a b2n−1 + b2n =
−1+(1− 1

2n )s

(2n−1)s . En déduire un équivalent simple de b2n−1 + b2n.
On admet que le DL1(0) de (1 + t)α reste valable pour α ∈ C.

(ii) On écrit s = r + iθ. Déterminer la forme trigonométrique du complexe ns.
Montrer que (

∑
n≥1 b2n−1 + b2n) converge absolument si r > 0.

(iii) Étudier la convergence de la série (
∑
n≥1 bn) selon la valeur du paramètre complexe s.



Exercice 7. Étudier la convergence des séries de termes généraux suivants :

un = ln

(
1 +

(−1)n

n

)
, vn = ln

(
1 +

(−1)n√
n

)
, wn =

(−1)n√
nα + (−1)n

, xn =
(−1)n

nα + (−1)nnβ
.

Comparer la convergence de
(∑

n
(−1)n√

n

)
et
(∏

n(1 + (−1)n√
n

)
)
.

Exercice 8. Calculer les sommes suivantes :

A =

∞∑
n=1

1

n(n+ 1)
, B =

∞∑
n=2

(
1√
n− 1

+
1√
n+ 1

− 2√
n

)
, C =

∞∑
n=3

2n− 1

n3 − 4n
.

Exercice 9.
a. Calculer

∑∞
n=1

1
1+2+···+n .

b. Calculer
∑∞
n=1

(
1
n + 1

n+1 −
4

2n+1

)
. On rappelle que

∑∞
n=1

(−1)n
n = − ln 2.

c. Calculer
∑∞
n=1

1
12+22+···+n2 .

Exercice 10.
a. Calculer, pour tout x 6= r, la somme s(x) =

∑n
k=0

xk

rk
. Exprimer s′(x) comme une somme.

b. Calculer les sommes suivantes :

A =
∞∑
k=0

1

4k
, B =

∞∑
k=0

k

3k
, C =

∞∑
k=0

k2

5k
.

Exercice 11. On rappelle que ez =
∑∞
n=0

zn

n! pour tout z ∈ C. Calculer les sommes suivantes :

A =

∞∑
n=0

1

n!
, B =

∞∑
n=0

(−1)n

n!
, C =

∞∑
n=0

1

(2n)!
, Dk =

∞∑
n=0

1

(kn)!
,

E =

∞∑
n=0

n

n!
, F =

∞∑
n=0

n− 1

n!
, G =

∞∑
n=0

(n+ 1)2

n!
.

Exercice 12. Soit (xn)n la suite définie par x0 > 1 et la relation de récurrence xn+1 = xn + x2n.
a. Démontrer que la suite (xn)n tend vers +∞.
b. On pose un = 2−n lnxn et vn = un+1 − un. Montrer que vn = o(2−n).
c. Démontrer que la série (

∑
n vn) converge. On note S sa somme. Montrer que un+1 − u0 = S + o(2−n).

d. En déduire qu’il existe α > 0 tel que xn ∼ α2n .

Exercice 13. On définit une suite (un)n par la donnée de u0 > 0 et la relation de récurrence un+1 = un + 1
un

.

a. Montrer que la suite (un)n tend vers +∞, puis que lim(u2n+1 − u2n) = 2.

b. À l’aide d’une série télescopique, en déduire que un ∼
√

2n.
c. On pose vn = u2n − 2n. En utilisant la question précédente, déterminer un équivalent simple de vn+1 − vn.
d. On rappelle que

∑n
k=1

1
k ∼ ln(n). Déterminer un équivalent simple de vn.

e. Montrer que

un =
√

2n+

√
2

8

lnn√
n

+O

(
1√
n

)
.

Exercice 14. Soit (pk)k la suite ordonnée des nombres premiers. On souhaite étudier la série (
∑
k

1
pk

). Pour tout
n ∈ N∗ on pose Vn =

∏n
k=1(1− 1

pk
)−1.

a. Montrer que la suite (Vn)n converge ssi la suite (lnVn)n converge.
En déduire que la suite (Vn)n converge ssi la série (

∑
k

1
pk

) converge.

b. Démontrer que Vn =
∏n
k=1

(∑∞
j=1 p

−j
k

)
. En déduire que Vn ≥

∑n
j=1

1
j . Conclure.

c. Pour α ∈ R, quelle est la nature de la série (
∑
k

1
pαk

) ?
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Exercice 15.
a. On pose Hn =

∑n
k=1

1
k , un = Hn − ln(n) et vn = 1

n .
(i) Montrer que (

∑
(vn+1 − vn)) converge.

(ii) Montrer que un+1 − un ∼ vn+1 − vn.
(iii) Montrer que (

∑
(un+1 − un)) converge.

(iv) En déduire l’existence d’une constante γ telle que Hn = ln(n) + γ + o(1).
Ce nombre γ est appelé constante d’Euleur.

b. On pose An =
∑n
k=1

(−1)k
k .

(i) Vérifier que A2n = Hn −H2n.
(ii) En déduire que limA2n = − ln(2).

(iii) Montrer que
∑∞
n=1

(−1)k
k = − ln(2).

Exercice 16. (Partiel 2014)
On considère la suite réelle (xn)n∈N définie par x0 = 1 et la relation de récurrence xn+1 = xn +

√
xn.

a. Étudier le sens de variation de la suite (xn)n, et en déduire que limn→∞ xn = +∞.
b. (i) Donner un équivalent simple de

√
1 + t− 1 quand t→ 0.

(ii) En déduire que lim
x→∞

(√
x+
√
x−
√
x
)

= 1
2 .

c. On pose un =
√
xn+1 −

√
xn pour tout n ∈ N et on va étudier la série (

∑
n≥0 un).

On note Sn =
∑n
k=0 uk les sommes partielles de cette série.

(i) α. Exprimer un en fonction de xn seul, puis déterminer la limite de la suite (un)n.
Qu’obtient-on comme équivalent simple de la suite (un)n ?

β. Quelle est la nature de la série
(∑

n≥0 un
)
?

Donner un équivalent simple de la suite des sommes partielles Sn.
(ii) α. Exprimer xn à l’aide des sommes partielles Sn de la série (

∑
un).

β. Déduire des questions précédentes un équivalent simple de la suite (xn)n.
d. On pose vn =

√
xn − 1

2n pour tout n ∈ N.
(i) Montrer que vn+1 − vn ∼ − 1

8
√
xn

. On pourra utiliser un DL2(0) de
√

1 + t.

(ii) Quelle est la nature de la série (
∑
n≥1(vn+1 − vn)) ? En déduire un équivalent de la suite (vn)n.

On rappelle que Hn ∼ ln(n), où on note Hn =
∑n
k=1

1
k .

(iii) Déterminer α, β ∈ R tels que xn = αn2 + βn ln(n) + o(n ln(n)).

Exercice 17. Pour n, p ∈ N∗ on pose an,p = 1
n2−p2 si n 6= p et an,n = 0.

a. Montrer que pour tout p fixé, la série (
∑
n an,p) converge.

b. Vérifier que an,p = 1
2p ( 1

n−p −
1

n+p ).

c. Calculer
∑∞
n=p+1 an,p et

∑p−1
n=1 an,p.

d. En déduire que pour tout p fixé on a
∑∞
n=1 an,p = 3

4p2 .

e. Montrer que la série (
∑
p(
∑∞
n=1 an,p)) converge.

En admettant que
∑∞
k=1

1
k2 = π2

6 , calculer
∑∞
p=1

∑∞
n=1 an,p.

f. Comparer an,p et ap,n. Quelle est la valeur de
∑∞
n=1

∑∞
p=1 an,p ?

g. La famille (an,p)n,p est-elle sommable ?

Exercice 18. On fixe a ∈ C tel que |a| < 1 et on pose up,q = ap(2q−1).
a. Justifier la convergence des séries (

∑
p≥1 up,q) et (

∑
q≥1 up,q) et déterminer leurs sommes.

b. Montrer que la série (
∑
p≥1

|a|p
1−|a|2p ) converge.

c. Montrer que la famille (up,q)p,q≥1 est sommable et en déduire que
∞∑
n=1

an

1− a2n
=

∞∑
n=1

a2n−1

1− a2n−1
.


