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Exercice 1.

1. Comme les fk sont à valeurs positives, la suite de fonctions (Sn)n est croissante. De plus Sn est
continue pour tout n car c’est une somme finie de fonctions continues. Par hypothèse, (Sn)n converge
simplement vers S et S est continue. Enfin [0, 1] est compact. Donc, d’après le théorème de Dini, il y
a convergence uniforme.

2. Les fk sont bien continues et positives car sur [0, 1] on a tk+1 ≤ tk. Il reste à vérifier la convergence
simple de la série et à calculer la somme. Pour t = 1 on a fk(t) = 0 pour tout k, donc la série
converge et S(1) = 0. Pour t ∈ [0, 1[ on reconnait le DSE de − ln(1− t) : S(t) = (1− t)

∑∞
k=1

1
k t
k =

(t− 1) ln(1− t). En particulier S est continue sur [0, 1[, et également en 1 par croissances comparées :
limt→1(t − 1) ln(1 − t) = 0 = S(1). On peut donc appliquer la question précédente pour obtenir la
convergence uniforme. En fait il y a même convergence normale.

3. À nouveau les fonctions fk sont positives, et continues (par croissances comparées en 0). On a fk(1) = 0
pour tout k donc S(1) = 0. Pour t ∈ [0, 1[ on a une simple somme géométrique qui converge :
S(t) = − ln(t)

∑∞
k=1 t

k = t ln(t)/(t−1). Comme ln(t) ∼1 t−1, on a limt→1 S(t) = 1 6= S(1). La limite
simple S n’est pas continue en 1, donc le théorème de Dini ne s’applique pas. De plus, comme les fk
sont continues les sommes partielles Sn le sont aussi et on ne peut pas avoir convergence uniforme,
sinon la limite S serait également continue.

Exercice 2.

1. Soit x ∈ λB ∩ Eλ(T ). Cela signifie que ‖x‖ ≤ λ et T (x) = λx. On a alors x = T (y) avec y = x/λ, et
‖y‖ = ‖x‖/|λ| ≤ 1. Donc x ∈ T (B) et on a démontré l’inclusion demandée.

2. Le sous-espace propre Eλ(T ) est le noyau de T − λId qui est continue car c’est le cas de T , donc
Eλ(T ) est un fermé. C’est également le cas de la boule fermée λB, donc de l’intersection λB ∩Eλ(T ).
D’après la question précédente, ce fermé est inclus dans T (B), donc dans son adhérence qui est
compacte. Cela implique que λB ∩ Eλ(T ) est compact. Enfin, comme Eλ(T ) est un sous-espace on
a λ−1Eλ(T ) = Eλ(T ), donc λ−1(λB ∩ Eλ(T )) = B ∩ Eλ(T ). Comme l’application de dilatation est
continue, on en déduit que B ∩ Eλ(T ) est compact.

3. L’ensemble B∩Eλ(T ) = {x ∈ Eλ(T ) | ‖x‖ ≤ 1} est la boule unité fermée de Eλ(T ). Elle est compacte,
donc d’après le théorème de Riesz Eλ(T ) est de dimension finie.

Exercice 3.

1. Le théorème qui permet d’affirmer que K est bornée est le « théorème des bornes » : toute fonction
réelle continue sur un compact est bornée (et atteint ses bornes). On peut aussi invoquer le fait que
l’image continue d’un compact est un compact, et que les compacts sont bornés. Le théorème qui
permet d’affirmer que K est uniformément continue est le théorème de Heine : toute application
continue sur un compact est uniformément continue.

2. Pour toute f ∈ C([0, 1] ,R) et s ∈ [0, 1] on a, grâce à l’inégalité triangulaire et la positivité de
l’intégrale :

|T (f)(s)| ≤
∫ 1

0
|K(s, t)||f(t)|dt ≤

∫ 1

0
‖K‖∞‖f‖∞dt = ‖K‖∞‖f‖∞.

En prenant le sup sur s on obtient ‖T (f)‖∞ ≤ ‖K‖∞‖f‖∞. Cela montre que T est une application
linéaire bornée, donc continue, et que ‖T‖ ≤ ‖K‖∞.



3. On applique la continuité uniforme de K : il existe α > 0 tel que pour tous (s, t), (s′, t′) ∈ [0, 1]2

tels que d((s, t), (s′, t′) ≤ α on ait |K(s, t) −K(s′, t′)| ≤ ε. En particulier pour s, s′ ∈ [0, 1] tels que
|s− s′| ≤ α on a d((s, t), (s′, t)) = |s− s′| ≤ α pour tout t ∈ [0, 1], donc

|T (f)(s)− T (f)(s′)| =
∣∣∣∣∫ 1

0
(K(s, t)−K(s′, t))f(t)dt

∣∣∣∣
≤
∫ 1

0
|K(s, t)−K(s′, t)||f(t)|dt ≤

∫ 1

0
ε‖f‖∞dt = ε‖f‖∞.

4. Fixons s ∈ [0, 1] et montrons que T (B) est équicontinue en s. Pour cela on fixe ε > 0 et on prend le
réel α > 0 fourni par la question précédente. Tout élément de T (B) s’écrit T (f) avec ‖f‖∞ ≤ 1. Pour
tout élément de cette forme, et tout réel s′ ∈ [0, 1] tel que |s− s′| < α, on a |T (f)(s)− T (f)(s′)| ≤ ε
d’après la question précédente. Cela montre l’équicontinuité en s.
Par ailleurs T (B) ⊂ C([0, 1] ,R) et [0, 1] est compact. Pour appliquer le théorème d’Ascoli il reste
à vérifier que {T (f)(s) | f ∈ B} est d’adhérence compacte dans R, c’est-à-dire borné, pour tout
s ∈ [0, 1]. Cela résulte de la majoration de la deuxième question : pour f ∈ B on a |T (f)(s)| ≤
‖K‖∞‖f‖∞ ≤ ‖K‖∞.

Grâce à l’exercice 2 on peut conclure en particulier que les sous-espaces propres de l’opérateur à noyau continu
K, agissant sur C([0, 1] ,R), sont de dimension finie, sauf peut-être pour la valeur propre nulle.

Exercice 4.

1. La forme linéaire ϕi : E → R, y = (yj)j 7→ yi est continue car |ϕi(y)| = |yi| ≤
∑∞

j=0 |yj | = ‖y‖1.
Comme (xk)k converge faiblement vers 0, on doit avoir limk∞ xk,i = limk∞ ϕi(xk) = ϕi(0) = 0.

2. Pour tout i on a limk∞ xk,i = 0, donc il existe un rang Ki tel que |xk,i| ≤ ε/5(A+1) pour tout k ≥ Ki.
On fixe alors k ≥ max(K,K0, . . . ,KA) et on a

∑A
i=0 |xk,i| ≤

∑A
i=0 ε/5(A+1) = ε/5. Pour cet indice k

on a xk ∈ E, autrement dit la série (
∑

i∈N |xk,i|) converge. Ses restes tendent donc vers 0 et il existe
ainsi un rang B tel que

∑∞
i=β+1 |xk,i| ≤ ε/5 pour tout β ≥ B. Il suffit alors de choisir α ≥ max(A,B).

3. On a supposé que ‖xk‖1 > ε pour tout k, c’est donc encore vérifié par la suite extraite. On a alors∑αl+1

i=αl+1 |yl,i| = ‖yl‖1 −
∑αl

i=0 |yl,i| −
∑∞

i=αl+1+1 |yl,i| ≥ ε− ε/5− ε/5 = 3ε/5.

4. On a |ϕ(z)| = |
∑∞

i=0 sizi| ≤
∑∞

i=0 |si||zi| =
∑∞

i=0 |zi| = ‖z‖1, donc ϕ est une forme linéaire continue.

5. Notons S1 =
∑αl

i=0 siyl,i, S2 =
∑αl+1

i=αl+1 siyl,i, S3 =
∑∞

i=αl+1+1 siyl,i. Par définition des si, les termes
apparaissant dans S2 sont siyl,i = sgn(yl,i)yl,i = |yl,i|. On a donc |S2| = S2 ≥ 3ε/5 d’après la
question 3. Par ailleurs on a |S1| ≤

∑αl
i=0 |si||yl,i| =

∑αl
i=0 |yl,i| ≤ ε/5 par construction de (yl)l, et

de même |S3| ≤ ε/5. On a alors |ϕ(yl)| = |
∑∞

i=0 siyl,i| = |S1 + S2 + S3| ≥ |S1| − |S2| − |S3| ≥
3ε/5− ε/5− ε/5 = ε/5.
Mais (yl)l est une suite extraite de (xk)k, donc elle converge encore faiblement vers 0, et comme ϕ est
continue on devrait avoir ϕ(yl)→ 0, ce qui contredit la minoration précédente.

Les suites convergentes sont donc les mêmes pour la topologie faible et pour la topologie normique sur `1(N,R).
C’est bien sûr une propriété très particulière à l’espace `1. Cela n’implique pas que les deux topologies sont
égales (car la seconde n’est pas métrisable).


