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Exercice 1
1. On reconnaît une intégrale de Riemann en 0 avec exposant α = 3

2 > 1. Donc elle diverge.

2. Pour tout t ∈ R on a | sin t| ≤ 1, donc | sin t|t2 ≤ 1
t2 . L’intégrale de

1
t2 converge en +∞ (intégrale de Riemann avec α > 1).

D’après le théorème de comparaison pour les fonctions positives, l’intégrale de | sin t|t2 converge en +∞. Ainsi, l’intégrale
de sin t

t2 converge absolument, donc elle converge en +∞.

3. On a ln(1 + t) ∼0 t et sin t ∼0 t donc
ln(1+t)
(sin t)2 ∼0

1
t . L’intégrale de 1

t diverge en 0+ (intégrale de référence) et 1
t est

positif sur R+, donc d’après le théorème de comparaison pour les équivalents, l’intégrale de ln(1+t)
(sin t)2 diverge en 0+.

Erreur fréquente : oublier d’invoquer les théorèmes de comparaison, et oublier de vérifier leurs hypothèses, notamment la
positivité des fonctions. Encore quelques confusion entre le comportement de la fonction et celui de son intégrale. Il est
inutile de parler d’intégrale de Bertrand quand il n’y a pas de log, préférer les intégrales de Riemann (qui sont beaucoup
plus simples à étudier).

Exercice 2
1. On a F = O ∪ P ∪ I, et O, P , I sont représentés ci-dessous :

2. (a) On a F = {(x, y) ∈ R2 | y ≥ 0 et x2 + y ≤ 1} = g−1([0,+∞[) ∩ h−1(]−∞, 1]) avec g(x, y) = y et h(x, y) = x2 + y.
Comme ce sont des polynômes, g et h sont continues. De plus les intervalles ]−∞, 1] et [0,+∞[ sont des fermés de
R. Donc les images réciproques g−1([0,+∞[) et h−1(]−∞, 1]) sont des fermés. Finalement F est fermé car c’est
l’intersection de deux fermés.

(b) La suite des points An = (0, 1− 1
n ) est à valeurs dans O ∪ I, mais sa limite A = (0, 1) n’est pas dans O ∪ I. Cela

montre que la caractérisation séquentielle des fermés n’est pas vérifiée pour O ∪ I.
3. (a) Pour (x, y) ∈ F on a 0 ≤ y ≤ 1 car 1− x2 ≤ 1, et 0 ≤ 1− x2 donc x2 ≤ 1 et x ∈ [−1, 1]. Cela suffit à montrer que

F est borné.
(b) D’après 2a et 3a, F est un compact de R2. Par ailleurs f est continue car c’est un polynôme. Toute fonction

continue est bornée et atteint ses bornes sur un compact, donc f admet un maximum global et un minimum
global sur F .

4. (a) On calcule les dérivées partielles de f(x, y) = 3x2y + 2xy − 2x :

∂f

∂x
(x, y) = 6xy + 2y − 2,

∂f

∂x
(x, y) = 3x2 + 2x.

Les points critiques (x, y) de f sont donc les solutions du système 6xy + 2y − 2 = 0, 3x2 + 2x = 0. La deuxième
équation s’écrit x(3x + 2) = 0, donc x = 0 ou − 2

3 . En reportant dans la première équation on trouve : lorsque
x = 0, 2y − 2 = 0 donc y = 1 ; et lorsque x = − 2

3 , −2y − 2 = 0 donc y = −1. Finalement les points critiques sont
(0, 1) et (− 2

3 ,−1).
(b) On sait que f admet des extrémums globaux sur F d’après 3b. Par l’absurde, supposons que l’un de ces extrémums

soit atteint en un point A de O. En particulier, c’est un extrémum local sur O, et comme O est ouvert A est un
point critique. Mais f n’admet pas de point critique dans O d’après 4a : contradiction. Comme F = O ∪ P ∪ I,
on en déduit donc que les extrémums globaux de f sur F sont forcément atteints en des points de P ∪ I.

5. (a) Les points de I sont de la forme (x, 0) avec x ∈ [−1, 1] et on a f(x, 0) = −2x. La fonction (x 7→ −2x) est
strictement décroissante donc sur [−1, 1] elle atteint son maximum en x = −1 et minimum en x = 1. Donc sur I,
f admet 2 comme maximum, atteint en (−1, 0), et −2 comme minimum, atteint en (1, 0).

(b) Les points de P sont de la forme (x, 1−x2) avec x ∈ [−1, 1] et on a f(x, 1−x2) = ϕ(x) = (3x2+2x)(1−x2)−2x =
−3x4 − 2x3 + 3x2. Étudions cette fonction : on a ϕ′(x) = −12x3 − 6x2 + 6x = −6x(2x2 + x− 1). Les racines du
trinôme 2x2 + x− 1 sont −1 et 1

2 et on peut tracer le tableau de variation :



x −1 0 1
2 1

−6x + 0 − −
2x2 + x− 1 0 − − 0 +

ϕ′(x) 0 − 0 + 0 −
ϕ(x) 2 ↘ 0 ↗ 5

16 ↘ −2

Les extrémums globaux de ϕ sur [−1, 1] sont 2 et −2, atteints respectivement en −1 et 1, donc les extrémums
globaux de f sur P sont 2 et −2, atteints respectivement en (−1, 0) et (1, 0). De plus f admet sur P un minimum
local en (0, 0) et un maximum local en ( 12 ,

3
4 ).

(c) D’après 4b les extrémums globaux de f sur F sont atteints sur P ∪ I. Le maximum global de f sur P vaut 2,
celui sur I vaut également 2, atteint au même point (−1, 0). Donc le maximum global de f sur F est 2, atteint en
(−1, 0). De même, le minimum global de f sur F est −2, atteint en (1, 0).

Erreurs fréquentes :
— remplacer les inégalités 0 ≤ y ≤ 1 − x2 dans la définition de F par des inégalités non équivalentes, par exemple

0 ≤ x2 + y ≤ 1 (il faut ajouter x2 au trois membres de l’encadrement), ou 0 ≤ y ≤ 1, −1 ≤ x ≤ 1 (ces inégalités
décrivent un rectangle qui contient F mais n’est pas égal à F ) ;

— oubli de l’hypothèse de continuité pour l’image réciproque d’un fermé, ou pour le théorème des bornes sur un compact ;
— confusion entre la notion de fonction bornée et celle de partie bornée dans R2, notion d’image réciproque pas bien

comprise ;
— la relation entre extrémums locaux et points critiques n’est vraie que pour l’étude sur un ouvert.

Exercice 3
1. La fonction f est continue sur R2 \ {(0, 0)} car c’est le quotient

— du polynôme x2y + x3, qui est continu, et
— de l’expression x2 + |y|, qui est continue car c’est le cas des polynômes et de la fonction « valeur absolue ».
Pour être encore plus précis, la fonction ((x, y) 7→ |y|) est la composée de la projection ((x, y) 7→ y), qui est continue,
et de la fonction valeur absolue (t 7→ |t|).

2. (a) Pour |y| ≤ 1 on a y2 ≤ |y| donc x2 + |y| ≥ x2 + y2 = ‖(x, y)‖22. Pour tout y on a y2 ≥ 0, donc x2 ≤ x2 + y2,
et en appliquant la fonction « racine carrée », qui est croissante, aux deux membres de cette inégalité on obtient
|x| ≤ ‖(x, y)‖2. De même |y| ≤ ‖(x, y)‖2.

(b) Fixons ε > 0. Il faut trouver α > 0 tel que d((x, y), (0, 0)) ≤ α ⇒ d(f(x, y), f(0, 0)) ≤ ε. Or on a, en appliquant
l’inégalité triangulaire puis les inégalités de la question précédente :

d(f(x, y), f(0, 0)) = |f(x, y)− 0| = |x
2y + x3|
x2 + |y|

≤ x2|y|+ |x|3

x2 + |y|
≤ ‖(x, y)‖

3
2 + ‖(x, y)‖32
‖(x, y)‖22

= 2‖(x, y)‖2.

On pose alors α = ε
2 > 0. Pour ‖(x, y)‖2 = d((x, y), (0, 0)) ≤ α, l’inégalité ci-dessus montre que d(f(x, y), f(0, 0)) ≤

2α = ε. On a bien démontré la continuité de f en (0, 0).
3. La première application partielle de f en (0, 0) est g1 : x 7→ f(x, 0) = x. Elle est dérivable en 0, donc f admet une

dérivée partielle par rapport à x en (0, 0), égale à g′1(0) = 1. De même, g2(y) = f(y, 0) = 0 pour tout y donc f admet
une dérivée partielle par rapport à y en (0, 0), égale à g′2(0) = 0.

4. (a) On dérive le quotient par rapport à x, en tenant compte de l’égalité |y| = y pour y > 0 :

∂f

∂x
(x, y) =

(2xy + 3x)(x2 + y)− (x2y + x3)(2x)

(x2 + y)2
=
x4 + 3x2y + 2xy2

(x2 + y)2
.

(b) On observe grâce aux questions 3 et 4a que

lim
y→0+

∂f

∂x
(0, y) = lim

y→0+

0

y2
= 0 6= ∂f

∂x
(0, 0).

Donc la fonction ∂f
∂x n’est pas continue en (0, 0) et f n’est pas de classe C1.

Erreurs communes :
— faire comme si |y| était un polynôme en x, y ;
— manipulation hasardeuses ou non justifiées d’inégalités dans la quesion 2a : comme pour les égalités, il y a des règles

de calcul à respecter ;
— utilisation de la règle de dérivation des quotients en (0, 0) où le quotient n’est pas défini.


