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Compacité

Exercice 1. Soit (Fn)n une suite de fermés emboîtés non vides dans un espace topologique compact X. On note
F =

⋂
n Fn. Soit O un ouvert tel que F ⊂ O. Montrer qu’il existe n tel que Fn ⊂ O.

Indication : on pourra poser On = O ∪ cFn.

Exercice 2. On munit Mn(R) de la norme ‖(mij)ij‖ = maxij |mij |. On note On ⊂ Mn(R) l’ensemble des matrices
orthogonales. Montrer que On est compact.

Exercice 3. Soit E un EVN. On note B la boule unité fermée de E et S la sphère unité de E. Montrer que B est
compacte si et seulement si S est compacte. Pour quels espaces E la sphère S est-elle compacte ?

Exercice 4. On fixe un R-EVN de dimension finie E, et des normes sur E et L(E).
a. On fixe λ ∈ R et v ∈ E. Montrer que F = {f ∈ L(E) | f(v) = λv} est fermé.
b. On fixe λ ∈ R. Montrer que G = {f ∈ L(E) | ∃v 6= 0 f(v) = λv} est fermé.

Exercice 5. On définit une suite de fonctions fn : [0, 1]→ R par récurrence en posant, pour tout t ∈ [0, 1] : f0(t) = 0
et fn+1(t) = fn(t) + 1

2 (t− fn(t)2).

a. On fixe t ∈ [0, 1]. Étudier la suite récurrente (fn(t))n.
On montrera notamment qu’elle est croissante et converge vers un réel g(t) que l’on calculera.

b. Montrer que la suite de fonctions (fn)n converge uniformément vers g.

Exercice 6. Pour tout n ∈ N∗ on considère la fonction fn : [0, 1]→ R, t 7→ 1− (1− t)n.
a. Montrer que la suite (fn)n est croissante est converge simplement.
b. Montrer que chaque fonction fn est croissante et continue.
c. La suite (fn)n converge-t-elle uniformément sur [0, 1] ?
d. Soit g : [0, 1]→ R continue, nulle en 0 et positive. Montrer que la suite (gfn)n converge uniformément sur [0, 1].
e. Soit g : [0, 1]→ R continue et nulle en 0. Montrer que le résultat précédent reste vrai.

On pourra considérer max(g, 0) et min(g, 0).
f. Soit g : [0, 1]→ R bornée telle que g(0) = lim0 g = 0. Montrer que le résultat précédent reste vrai.

Exercice 7.
a. Soit X, Y des espaces métriques compacts et h : X × Y → R une fonction continue. Soit ε > 0. Montrer qu’il

existe n ∈ N et des fonctions continues f1, . . . , fn : X → R, g1, . . . , gn : Y → R telles qu’on ait |h(x, y) −∑n
i=1 fi(x)gi(y)| ≤ ε pour tout (x, y) ∈ X × Y .

b. Montrer que toute fonction continue h : [0, 1]× [0, 1]→ R est limite uniforme de fonctions polynomiales.

Exercice 8. Soit D = {z ∈ C | |z| ≤ 1} le disque unité fermé dans C. On note A ⊂ C(D,C) le sous-espace des
fonctions polynômiales f(z) =

∑n
k=0 akz

k (avec ak ∈ C) et on munit C(D,C) de la norme du sup.
a. Montrer que A est une sous-algèbre unifère de C(D,C) qui sépare les points.

b. Montrer que l’application ϕ : f 7→ (2π)−1
∫ 2π

0
f(eit)dt est continue sur C(D,C).

c. Montrer que pour tout f ∈ A on a ϕ(f) = f(0).
d. Montrer que A n’est pas dense dans C(D,C).
e. Quelle hypothèse faut-il rajouter au théorème de Stone-Weierstraß dans le cas de fonctions à valeurs complexes ?

Exercice 9. Soit X un espace métrique et fn ∈ C(X,R) une suite décroissante de fonctions qui converge simplement
vers la fonction nulle.

a. (i) On fixe x ∈ X et ε > 0. On suppose que fn(x) ≤ ε/2.
Montrer qu’il existe α > 0 tel que fp(y) ≤ ε pour tout p ≥ n et tout y ∈ X tel que d(x, y) ≤ α.

(ii) Montrer que la suite (fn)n est équicontinue.
b. On suppose de plus que X est compact.

À l’aide d’un lemme du cours, montrer que la suite (fn)n converge uniformément.



Exercice 10. On considère l’espace E = C([0, 1] ,R) muni de la norme de la convergence uniforme ‖ · ‖∞, et l’espace
F = C1([0, 1] ,R) de muni de la norme N : f 7→ ‖f‖∞ + ‖f ′‖∞. On fixe un sous-espace V ⊂ E ∩ F fermé dans E.

a. Montrer que V est fermé dans F . Montrer que Id : (V,N)→ (V, ‖ · ‖∞) est continue.
D’après le théorème des isomorphismes de Banach, l’application réciproque est également continue.

b. Montrer que les normes ‖ · ‖∞ et N sont équivalentes sur le sous-espace V .
c. On note B̄ la boule unité fermée de V relativement à la norme ‖ · ‖∞.

Montrer qu’il existe une constante C > 0 telle que toutes les fonctions f ∈ B̄ sont lipschitziennes de rapport C.
d. Montrer que B̄ est équicontinue.
e. Montrer que V est nécessairement de dimension finie.

Exercice 11. Soit E un R-EVN et K ⊂ E une partie compacte, convexe, non vide. Soit T ∈ L′(E) une application
linéaire (ou affine) continue telle que T (K) ⊂ K. On veut montrer qu’il existe x ∈ K tel que T (x) = x. Pour cela on
note Tn = 1

n

∑n
k=1 T

k.
a. Montrer que Tn(K) est un fermé contenu dans K pour tout n.
b. Montrer que TnTm = TmTn.

En déduire que Tn1(K) ∩ · · · ∩ Tnp(K) est non vide pour toute famille finie d’indices n1, . . . , np.
c. Montrer que L =

⋂
n Tn(K) est non vide. On fixe x ∈ L.

d. On fixe n ∈ N∗ et on choisit y ∈ K tel que x = Tn(y). Calculer T (x)− x en fonction de y. Conclure.

Exercice 12. (Partiel 2017)
On considère une série de fonctions (

∑
k∈N∗ fk) avec fk ∈ C([0, 1] ,R) pour tout k. On suppose que la série converge

simplement sur [0, 1]. On note Sn : x 7→
∑n
k=1 fk(x) les sommes partielles et S : x 7→

∑∞
k=1 fk(x) la somme de la série.

a. On suppose que les fonctions fk sont à valeurs positives et que S est continue sur [0, 1].
Montrer que (Sn)n converge uniformément sur [0, 1].

b. On considère le cas où fk(t) = 1
k (tk − tk+1).

Calculer S et montrer que la série de fonctions (
∑
fk) converge uniformément sur [0, 1].

c. On considère le cas où fk(t) = −tk ln(t), f(0) = 0.
La série (

∑
fk) converge-t-elle uniformément sur [0, 1] ?

Exercice 13. (Partiel 2017)
Soit E un espace vectoriel normé et T ∈ L′(E) une application linéaire continue.
Pour tout nombre complexe λ on note Eλ(T ) = {x ∈ E | T (x) = λx}.
On note B = {x ∈ E | ‖x‖ ≤ 1} la boule unité fermée de E et λB = {λx | x ∈ B} = {x ∈ E | ‖x‖ ≤ |λ|}.

On suppose que l’adhérence de T (B) dans E est compacte et on fixe λ ∈ C \ {0}.
a. Montrer que λB ∩ Eλ(T ) ⊂ T (B).
b. Montrer que B ∩ Eλ(T ) est compact.
c. Montrer que le sous-espace propre Eλ(T ) est de dimension finie.

Exercice 14. (Partiel 2017)
Soit K ∈ C([0, 1]

2
,R). On considère l’opérateur à noyau T : C([0, 1] ,R)→ C([0, 1] ,R) associé à K, c’est-à-dire donné

par la formule

T (f)(s) =

∫ 1

0

K(s, t)f(t)dt,

pour f ∈ C([0, 1] ,R) et s ∈ [0, 1]. On admet que T (f) est bien un élément de C([0, 1] ,R).
On munit [0, 1] de la distance usuelle et [0, 1]

2 de la distance d((s, t), (s′, t′)) = max(|s− s′|, |t− t′|).
On munit C([0, 1] ,R) et C([0, 1]

2
,R) de la norme du sup, notée ‖ · ‖∞.

a. Rappeler les théorèmes (et notamment leurs hypothèses) qui permettent d’affirmer :
— que K est bornée sur [0, 1]

2,
— que K est uniformément continue sur [0, 1]

2.
b. Montrer que l’application linéaire T est continue.
c. On fixe ε > 0. Montrer qu’il existe α > 0 tel qu’on ait |T (f)(s)−T (f)(s′)| ≤ ε‖f‖∞ pour toute f ∈ C([0, 1] ,R)

et tous s, s′ ∈ [0, 1] tels que |s− s′| ≤ α.
d. On note B = {f ∈ C([0, 1] ,R) | ‖f‖∞ ≤ 1} la boule unité fermée de C([0, 1] ,R).

Montrer que l’adhérence de T (B) dans C([0, 1] ,R) est compacte.
On pourra appliquer le théorème d’Ascoli.


