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Convexité et Dualité

Exercice 1. Soit E un EVN, F ⊂ E un sous-espace vectoriel, et G un EVN de dimension finie.
a. Montrer que toute application linéaire continue S ∈ L(F,G) peut se prolonger en un application linéaire continue
T ∈ L(E,G).

b. On suppose F de dimension finie.
(i) Montrer que F est fermé.
(ii) Montrer qu’il existe T ∈ L(E,F ) telle que T (x) = x pour tout x ∈ F .
(iii) Monter que F admet un supplémentaire fermé.

Exercice 2. On considère E = `∞(N,R) et l’opérateur borné S : E → E donné par S(x) = (xk+1)k si x = (xk)k ∈ E.
On note I = Im(S− Id) ⊂ E, e la suite constante égale à 1, et C = Re le sous-espace des suites constantes. On définit
une forme linéaire L0 : I + C → R en posant L0((S − Id)(x) + λe) = λ.

a. Montrer que I et C sont en somme directe. Ainsi L0 est bien définie.
b. On considère la forme linéaire cn ∈ E′ donnée par cn(x) = 1

n+1

∑n
k=0 xk si x = (xk)k.

(i) Montrer que pour z ∈ I + C on a L0(z) = lim cn(z).
(ii) En déduire que L0 est continue.

c. Montrer qu’il existe une forme linéaire L ∈ E′ telle que ‖L‖ = 1, L(e) = 1 et L ◦ S = L.
Dans la suite on fixe une telle forme linéaire L.
Remarque : on peut montrer qu’il existe une infinité de formes linéaires L convenables.

d. (i) Soit x = (xk)k, y = (yk)k deux suites dans E.
On suppose qu’il existe n ∈ N tel que xk = yk pour tout k ≥ n.
Montrer que L(x) = L(y).

(ii) Montrer que L(x) = 0 pour toute suite x ∈ c0(N,R) qui tend vers 0.
En déduire que si la suite x = (xk)k ∈ E converge, on a L(x) = limk∞ xk.

e. On considère x = (1, 0, 1, 0, 1, . . .) ∈ E. Calculer L(x). On pourra utiliser S(x).
A-t-on L(xy) = L(x)L(y) pour toutes les suites x, y ∈ E ?

f. Questions subsidiaires.
Soit x = (xk)k ∈ E telle que xk ≥ 0 pour tout x. En considérant ‖x‖e− x, montrer que L(x) ≥ 0.
Montrer que pour toute suite x = (xk)k ∈ E on a lim inf xk ≤ L(x) ≤ lim supxk.

Exercice 3. Soit E un EVN et C ⊂ E une partie convexe fermée. On considère

A = {(ϕ,m) ∈ E′ × R | m ≤ inf ϕ(C)}.

Montrer que C =
⋂

(ϕ,m)∈A{x ∈ E | ϕ(x) ≥ m}.
Ainsi tout convexe fermé est une intersection de demi-espaces fermés.

Exercice 4. On considère E = L2([0, 1] ,R) et les sous-ensembles

Cα = {f ∈ C([0, 1] ,R) | f(0) = α}.

a. Montrer que pour tout α ∈ R, Cα est convexe.
b. On fixe α ∈ R. Montrer que toute fonction f ∈ C([0, 1] ,R) est limite dans E de fonctions g ∈ Cα.

On pourra approcher f par une fonction g ∈ Cα égale à f sur un intervalle du type [ε, 1].
c. Montrer que Cα est dense dans E.
d. Montrer que, pour α 6= β, il n’existe pas d’hyperplan fermé qui sépare Cα de la fonction constante β.



Exercice 5. (Examen 2017)
Soit E un R-espace vectoriel normé. On munit E × E de la norme ‖(x, y)‖ = ‖x‖+ ‖y‖.
Soit K ⊂ E un compact convexe non vide.
Soit f : K → K une application continue. On suppose de plus que f est affine, c’est-à-dire que pour tous x, x′ ∈ K
et λ ∈ [0, 1] on a λf(x) + (1− λ)f(x′) = f(λx+ (1− λ)x′).
On note G(f) ⊂ K ×K le graphe de f , et on considère également D = {(x, x) | x ∈ K} ⊂ K ×K.
Le but de l’exercice est de montrer que f admet un point fixe, et on procède par l’absurde. On suppose donc que f
n’admet pas de point fixe.

a. Montrer que G(f) et D sont des convexes compacts de E × E.
On notera que E n’est pas nécessairement de dimension finie.

b. Montrer qu’il existe une forme linéaire continue ϕ : E × E → R et α, β ∈ R tels que
ϕ(x, x) ≤ α < β ≤ ϕ(x′, f(x′)) pour tous x, x′ ∈ K.

c. Montrer qu’il existe deux formes linéaires continues ϕ1, ϕ2 : E → R telles que
ϕ(x1, x2) = ϕ1(x1) + ϕ2(x2) pour tous x1, x2 ∈ E.

d. Montrer que pour tout x ∈ K on a ϕ2(f(x))− ϕ2(x) ≥ β − α.
Montrer que pour tout x ∈ K et pour tout n ∈ N∗ on a ϕ2(f

n(x))− ϕ2(x) ≥ n(β − α).
e. Conclure.

Exercice 6. Soit E un espace vectoriel normé et ϕ ∈ E → K une forme linéaire.
a. On suppose que ϕ n’est pas continue.

(i) Montrer qu’il existe une suite de vecteurs vn ∈ E tels que ‖vn‖ ≤ 1
n et ϕ(vn) = 1.

(ii) Soit v ∈ E quelconque. Construire à l’aide de (vn)n une suite de vecteurs wn ∈ Kerϕ tels que limwn = v.
b. Montrer que ϕ est continue ssi son noyau est fermé.

Ce résultat reste-t-il vrai pour une application linéaire f : E → F ?

Exercice 7.
On va démontrer l’équivalence des normes en dimension finie en utilisant l’exercice précédent et la complétude.
On remarque que Kn est complet pour les normes usuelles, et donc n’importe quel K-evn E de dimension finie

admet une norme qui le rend complet. En particulier, si toutes les normes sont équivalentes sur E, alors E est complet
pour n’importe quelle norme.

On procède par récurrence sur n = dimE. Pour n = 0 il y a une seule norme sur E donc le résultat est vrai. On
suppose maintenant le résultat vrai en dimension n ≥ 0 et on fixe un K-evn E de dimension n+ 1.

On fixe une norme ‖ · ‖ sur E, une décomposition E = H ⊕D avec dimD = 1 et on note p : E → D la projection
sur D parallèlement à H. Pour h ∈ H, d ∈ D on note ‖h+ d‖1 = ‖h‖+ ‖d‖.

a. Montrer que ‖ · ‖1 est une norme sur E et que pour tout v ∈ E on a ‖v‖ ≤ ‖v‖1.
b. Montrer que p est continue. On note |||p||| sa norme subordonnée à la norme ‖ · ‖.
c. Montrer que pour tout v ∈ E on a ‖v1‖ ≤ (1 + 2|||p|||)‖v‖.
d. Conclure.


