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Espaces de Banach

Exercice 1. Soit X un espace métrique complet et (fn)n une suite de fonctions continues de X dans R qui converge
simplement vers une fonction f : X → R. On sait qu’en général f n’est pas continue. On va montrer cependant que les
points x ∈ X où f est continue forment une partie dense de X. Pour ce faire on considère les sous-ensembles Fε,n ⊂ X
definis, pour tout ε > 0 et tout n ∈ N, par :

Fε,n = {x ∈ X | ∀p ≥ n |fp(x)− fn(x)| ≤ ε}.

a. Montrer que les parties Fε,n sont fermées dans X.
b. On fixe ε > 0.

(i) Montrer que la réunion des Fε,n, lorsque n parcourt N, est égale à X.
(ii) Montrer que Uε =

⋃
n F
◦
ε,n est un ouvert dense de X.

c. On considère C =
⋂
ε>0 Uε.

(i) Écrire l’assertion « x ∈ C » avec des quantificateurs, sans utiliser les sous-ensembles Fε,n. Qu’obtient-on en
faisant tendre p vers +∞ dans cette assertion ?

(ii) Écrire la définition de la continuité de fn en x. Montrer que f est continue en x.
d. Conclure.
e. Application. Soit I un intervalle de R non vide et non réduit à un point. Soit f : I → R une fonction dérivable.

Montrer que les points où f ′ est continue forment une partie dense de I.

Exercice 2. On munit E = C([0, 1]) de la norme de la convergence uniforme et pour tout n ∈ N on considère le
sous-ensemble suivant de E :

Un = {f ∈ E | ∀x ∈ [0, 1] ∃y ∈ [0, 1] |f(x)− f(y)| > n|x− y|}.

a. Montrer que Un est un ouvert dense de E. On admettra que toute fonction continue sur [0, 1] est limite uniforme
de fonctions affines par morceaux dont les pentes sont plus grandes que n en valeur absolue.

b. Montrer qu’il existe une partie dense de C([0, 1]) dont les éléments ne sont dérivables en aucun point de [0, 1].

Exercice 3. Soit E un espace de Banach.
a. Soit F ⊂ E un sous-espace vectoriel de E distinct de E. Montrer que F ne contient aucune des boules B(0, r),

pour r > 0. Montrer que F est d’intérieur vide.
b. On suppose que E est réunion de sous-espaces fermés Fn. Montrer qu’il existe n tel que E = Fn.
c. Montrer qu’un espace de Banach de dimension infinie n’admet pas de base (algébrique) dénombrable.

Exercice 4. Soit E un espace de Banach, décomposé sous la forme E = F ⊕ G. On note p la projection sur F
parallèlement à G.

a. Exprimer F et G à l’aide de p. En déduire que si p est continue, F et G sont fermés.
b. À l’aide du théorème du graphe fermé, montrer que si F et G sont fermés alors p est continue.

Exercice 5. (Examen 2017) Soit E, F des espaces de Banach non nuls, S ∈ L(E,F ). On pose E0 = Ker(S) ⊂ E.
a. On suppose qu’il existe T ∈ L(F,E) tel que S ◦ T = Id.

(i) Montrer qu’il existe ε > 0 tel qu’on ait ‖T (y)‖ ≥ ε‖y‖ pour tout y ∈ F .
En déduire que Im(T ) est fermée.

(ii) Question d’algèbre. Montrer que S est surjective et que Im(T ) est un supplémentaire de Ker(S).
b. On ne suppose plus l’existence d’un inverse à droite T .

On suppose que S est surjective et que E0 = Ker(S) admet un supplémentaire fermé E1 ⊂ E.
On note S1 : E1 → F la restriction de S à E1.
(i) Montrer que S1 est une bijection et que la bijection réciproque est continue.
(ii) Montrer qu’il existe T ∈ L(F,E) telle que S ◦ T = Id.



Exercice 6. On cherche à estimer la norme dans L1([0, 2π]) du noyau de Dirichlet

Dn(t) =

n∑
k=−n

eikt =
sin((2n+ 1)t/2)

sin(t/2)
.

Pour cela on découpe l’intégrale aux points où Dn change de signe :

‖Dn‖1 = 2

∫ π

0

|Dn(t)|dt = 2

n−1∑
k=0

In,k + 2

∫ π

2nπ
2n+1

|Dn(t)|dt, avec In,k =

∫ 2(k+1)π
2n+1

2kπ
2n+1

|Dn(t)|dt.

a. En utilisant l’inégalité sinx ≤ x valable sur R+, montrer que In,k ≥ 4/((k + 1)π).
b. En déduire que ‖Dn‖1 tend vers +∞ lorsque n tend vers +∞.

Exercice 7. Soit E l’espace des fonctions f : R→ C continues et 2π-périodiques, muni de la norme de la convergence
uniforme. On note ck(f) =

∫ 2π

0
e−iktf(t)dt le ke coefficient de Fourier de f ∈ E et Sn(f) : t 7→

∑n
k=−n ck(f)e

ikt ∈ E
les sommes partielles symétriques de la série de Fourier associée à f . On fixe t ∈ [0, 2π] et on considère la forme linéaire
Ln : f 7→ Sn(f)(t).

a. Montrer que Ln(f) =
∫ 2π

0
f(s)Dn(t− s)ds, où Dn est le noyau de Dirichlet introduit à l’exercice 6.

b. Montrer que ‖Ln‖ = ‖Dn‖1. On pourra utiliser la densité de C([0, 1]) dans L1([0, 1]).
c. À l’aide du théorème de Banach-Steinhaus, montrer qu’il existe une fonction f ∈ E telle que la série de Fourier

de f ne converge pas au point t.

Exercice 8. On considère le R-espace vectoriel E = C([0, 1] ,R) et on note ‖·‖∞ la norme de la convergence uniforme
sur E. Pour t ∈ [0, 1] on note ϕt l’application linéaire ϕt : E → R, f 7→ f(t).
On se donne de plus une autre norme N : E → R qui vérifie les deux propriétés suivantes :

— (E,N) est complet ;
— si fn converge vers f relativement à N alors fn converge simplement vers f .

a. Montrer que pour tout t ∈ [0, 1] l’application ϕt est continue relativement à N .
b. On fixe f ∈ E. Montrer que la famille de nombres réels ϕt(f), avec t ∈ [0, 1], est bornée.
c. Montrer qu’il existe une constante K > 0 telle que ‖f‖∞ ≤ KN(f) pour toute f ∈ E.

On pourra utiliser le théorème de Banach-Steinhaus.
d. Montrer que N est équivalente à ‖ · ‖∞.

On pourra appliquer un théorème du cours à l’application Id : E → E.

Exercice 9. (Écrit agreg 2013, partie IV, extrait)
Pour tout segment S = [a, b] ⊂ [0, 1] on considère l’espace de fonctions continues ES = C(S,R) muni de la norme de
la convergence uniforme sur S notée ‖f‖S = supt∈S |f(t)|.
On considère un sous-espace fermé F ⊂ ES tel que toutes les fonctions f ∈ F sont de classe C1 sur S.
Pour x 6= y dans S et f ∈ ES on pose ϕx,y(f) = (f(x)− f(y))/(x− y).

a. Montrer que ϕx,y est une forme linéaire continue sur ES .
b. Montrer que pour f ∈ F fixée l’ensemble {ϕx,y(f) | x, y ∈ S, x 6= y} est borné dans R.
c. Montrer qu’il existe une constante C > 0 telle que pour toute f ∈ F et tous x 6= y dans S on ait

|f(x)− f(y)| ≤ C|x− y| ‖f‖S .

d. On fixe des points a = t0 < t1 < · · · < tl = b tels que |tk+1 − tk| ≤ C−1 pour tout k.
Montrer que pour toute f ∈ F on a supt∈S |f(t)| ≤ maxk |f(tk)|+ 1

2‖f‖S .
e. Montrer que F est de dimension finie.


