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ESPACES DE BANACH

Exercice 1. Soit X un espace métrique complet et (f,,), une suite de fonctions continues de X dans R qui converge
simplement vers une fonction f : X — R. On sait qu’en général f n’est pas continue. On va montrer cependant que les
points z € X ou f est continue forment une partie dense de X. Pour ce faire on considére les sous-ensembles F¢ ,, C X
definis, pour tout € > 0 et tout n € N, par :

Fon={z€ X |Vp=n |fp(z) - fu(z)] < €}.

a. Montrer que les parties F, , sont fermées dans X.

b. On fixe € > 0.
(i) Montrer que la réunion des F ,,, lorsque n parcourt N, est égale a X.
(ii) Montrer que U = |J,, F,, est un ouvert dense de X.

c. On considére C = (), Ue.

(i) Ecrire I’assertion « o € C' » avec des quantificateurs, sans utiliser les sous-ensembles F ,,. Qu’obtient-on en
faisant tendre p vers +oo dans cette assertion ?

(i) Ecrire la définition de la continuité de f,, en z. Montrer que f est continue en .
d. Conclure.

e. Application. Soit I un intervalle de R non vide et non réduit a un point. Soit f : I — R une fonction dérivable.
Montrer que les points ol f’ est continue forment une partie dense de I.

Exercice 2. On munit E = C([0,1]) de la norme de la convergence uniforme et pour tout n € N on considére le
sous-ensemble suivant de E :

Up={feE|vVeel0,1] Jyel0,1] |f(z)-fy)l>nlz—yl}

a. Montrer que U,, est un ouvert dense de E. On admettra que toute fonction continue sur [0,1] est limite uniforme
de fonctions affines par morceaux dont les pentes sont plus grandes que n en valeur absolue.

b. Montrer qu’il existe une partie dense de C([0, 1]) dont les éléments ne sont dérivables en aucun point de [0, 1].

Exercice 3. Soit F un espace de Banach.

a. Soit F' C E un sous-espace vectoriel de E distinct de E. Montrer que F' ne contient aucune des boules B(0,r),
pour 7 > 0. Montrer que F' est d’intérieur vide.

b. On suppose que E est réunion de sous-espaces fermés F,. Montrer qu’il existe n tel que E = F,,.

c. Montrer qu'un espace de Banach de dimension infinie n’admet pas de base (algébrique) dénombrable.

Exercice 4. Soit E un espace de Banach, décomposé sous la forme F = F @& G. On note p la projection sur F
parallélement a G.

a. Exprimer F et G a 'aide de p. En déduire que si p est continue, F' et GG sont fermés.

b. A T'aide du théoréme du graphe fermé, montrer que si F' et G sont fermés alors p est continue.

Exercice 5. (Ezamen 2017) Soit E, F des espaces de Banach non nuls, S € L(E, F). On pose Ey = Ker(S) C E.
a. On suppose qu’il existe T' € L(F, E) tel que SoT = Id.

(i) Montrer qu'il existe € > 0 tel qu’on ait || T'(y)|| > €||ly|| pour tout y € F'.
En déduire que Im(T") est fermée.

(ii) Question d’algébre. Montrer que S est surjective et que Im(T") est un supplémentaire de Ker(.S).

b. On ne suppose plus lexistence d’un inverse a droite 7T'.
On suppose que S est surjective et que Ey = Ker(S) admet un supplémentaire fermé F; C E.
On note Sy : E; — F la restriction de S a E5.
(i) Montrer que S; est une bijection et que la bijection réciproque est continue.

(ii) Montrer qu’il existe T' € L(F, E) telle que S o T = Id.



Exercice 6. On cherche a estimer la norme dans L([0, 27]) du noyau de Dirichlet

D, (t) = Z ikt — W

k=—n

Pour cela on découpe 'intégrale aux points ot D,, change de signe :

n—1
IDa(O)ldt, avee I — / D, (8)]dt.
2k

1Dl :2/0 |Dn(t)\dt:221n,k+2/m i

k=0 2n+1 2n+1

a. En utilisant I'inégalité sin x < z valable sur R, montrer que I,, , > 4/((k + 1)).

b. En déduire que ||D,||1 tend vers +oo lorsque n tend vers +oo.

Exercice 7. Soit F ’espace des fonctions f : R — C continues et 27-périodiques, muni de la norme de la convergence
uniforme. On note ¢ (f) = fO% ekt f(t)dt le ke coefficient de Fourier de f € E et S, (f) :t— Y o cu(f)e € E
les sommes partielles symétriques de la série de Fourier associée & f. On fixe t € [0, 27] et on consideére la forme linéaire
Ly : f = Sp(f)(®).

a. Montrer que L, (f) = fo% f(8)Dy(t — s)ds, o D, est le noyau de Dirichlet introduit a ’exercice 6.

b. Montrer que || L,|| = ||Dynll1- On pourra utiliser la densité de C([0,1]) dans L([0,1]).

c. A Paide du théoréme de Banach-Steinhaus, montrer qu’il existe une fonction f € E telle que la série de Fourier
de f ne converge pas au point ¢.

Exercice 8. On considére le R-espace vectoriel E = C([0, 1], R) et on note || - ||« la norme de la convergence uniforme
sur E. Pour ¢ € [0,1] on note ¢; application linéaire ¢; : E — R, f — f(¢).
On se donne de plus une autre norme N : E — R qui vérifie les deux propriétés suivantes :

— (E,N) est complet ;

— si f,, converge vers [ relativement a N alors f, converge simplement vers f.

a. Montrer que pour tout t € [0, 1] Papplication ¢; est continue relativement a N.

b. On fixe f € E. Montrer que la famille de nombres réels ¢,(f), avec ¢ € [0, 1], est bornée.

c. Montrer qu’il existe une constante K > 0 telle que || f]lcc < KN(f) pour toute f € E.
On pourra utiliser le théoréme de Banach-Steinhaus.

d. Montrer que N est équivalente a || - || co-
On pourra appliquer un théoréme du cours a l'application Id : E — E.

Exercice 9. (Ecrz't agreg 2013, partie 1V, extrait)

Pour tout segment S = [a,b] C [0, 1] on considére l'espace de fonctions continues Fg = C(S,R) muni de la norme de
la convergence uniforme sur S notée || f||s = sup,eg |f(t)].

On considére un sous-espace fermé F C Eg tel que toutes les fonctions f € F sont de classe O sur S.

Pour x # y dans S et f € Eg on pose v, 4(f) = (f(z) — f(y))/(x —y).
a. Montrer que ¢, , est une forme linéaire continue sur Eg.

b. Montrer que pour f € F' fixée 'ensemble {¢, ,(f) | 2,y € S,z # y} est borné dans R.

¢. Montrer qu’il existe une constante C' > 0 telle que pour toute f € F' et tous x # y dans S on ait

|f (@) = f(y)l < Cle =yl | f]ls-

d. On fixe des points a = tg < t; < --- < t; = b tels que [tx;1 — tx| < C~! pour tout k.
Montrer que pour toute f € F on a sup,cg | f(t)| < maxy, [ f(tx)| + 3| f]ls-

e. Montrer que F' est de dimension finie.



