Calcul de l'intégrale de Gauss par Laplace
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On souhaite calculer I'intégrale « de Gauss » G = / e~ dx, qui est une intégrale impropre convergente.
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Un des premiers calculs connus de G est dit a Pierre-Simon de Laplace (né en 1749 a Beaumont-en-
Auge et mort en 1827) dans son mémoire La probabilité des causes par les événements (1774). 11 utilise
un calcul publié en 1768 par Leonhard Euler (1707-1783) dans le traité Institutionum calculi integralis
(Fondations du calcul intégral, 1768) et relié aux intégrales de Wallis (1616-1703). Une autre méthode qui
serait due & Siméon Denis Poisson (1781-1840) utilise un changement de coordonnées polaire. Enfin, c’est
Carl Friedrich Gauss (1777-1855) qui a donné son nom a la « loi normale ».

Euler commence par calculer les intégrales
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qui correspondent aux intégrales de Wallis W = 077/ 2(sin )kdf par le changement de variable 2 = sin 6.
Il utilise pour cela la méthode maintenant « classique » qui repose sur une relation de récurrence entre
Wi+1 et Wi_1 obtenue par IPP. Il déduit de son calcul la relation également classique :
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Wor W = —_.
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Puis il effectue le changement de variable z = t*, avec a = 1/(2k + 1) :
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On obtient ainsi
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Laplace part de ce calcul et fait tendre « vers 0. Le DL de lexponentielle (ou la valeur de la dérivée de
(v = t*) en a = 0) montre que
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Par ailleurs pour t €]0,1[ on a lim,_,o t* = 1. Sans justifier les interversions limite/intégrale, Laplace en

déduit que
/1 dt /1 dt
=T.
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Enfin en posant t = e‘x2, dt = —2ze~%"dz on obtient par parité

1 +oo too
/ dt = / l x 2ze~% dz = 2/ e dz = G.
o vV—1Int 0 £ 0

On a donc finalement

+o0 2
Gz/ e " da = /7.

L’interversion de l'intégrale généralisée fol dt avec la limite lim,_,o peut se justifier en utilisant les outils
modernes de U'intégration (convergence monotone ou dominée). On verra en TD une méthode plus élé-
mentaire mais pas si éloignée de I'approche de Laplace puisqu’elle repose aussi sur la comparaison avec
les intégrales de Wallis.

Pages suivantes :
— extrait du Mémoire sur la probabilité des causes par les événements (1774), (Buvres complétes de
Laplace, tome 8, pages 35-36;
— extrait du traité Institutionum calculi integralis (1768), premiére section, chapitre 8.
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le nombre p. peut ici recevoir tous les accroissements possibles depuis
o jusqu’a 1, et, en supposant l'intégrale commencer lorsque v. =1,
nous avons ici hesoin de sa valeur lorsque w = o. Vuici maintenant
comment on peut la délerminer; pourcela, nous ferons usage du héo-
reme suivant. (Voir le Caleul intégral de M. Euler.) En supposant que
intégrale commence lovsque i = o el finisse lorsque w =1, on a
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car le mmiél"llcur el le dénominateur de cette quanlité devenant nuls
par la ‘sll[)pO‘illlOl‘l de 7 = o, si I'on diflérentic I'un et 'autre cn regar-
dant ¢ seule comme¢ variable, on aura
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partant 1 — v?* = — 27lu; on aura donc dans ces suppositions
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en supposant 'intégrale commencer lorsque p.==o et finir lorsque
i = 1; mais comme, dans le cas précédent, eette intégrale commence

lorsque v =1 ct linit lorsque . =: 0, nous aurons
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posito scilicet @ == 1, quam veram esse patet, .etiamsi n non sit
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334. Quod tale productum Dbinorum integralium  exhiberi

queat, eo magis est notatu dignum, quod acqualitas haec subsistit,
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