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Compacité

Exercice 1. On munit Mn(R) de la norme ‖(mij)ij‖ = maxij |mij |. On note On ⊂ Mn(R) l’ensemble des matrices
orthogonales. Montrer que On est compact.

Exercice 2. Soit E un EVN. On note B la boule unité fermée de E et S la sphère unité de E. Montrer que B est
compacte si et seulement si S est compacte. Pour quels espaces E la sphère S est-elle compacte ?

Exercice 3. On fixe un R-EVN de dimension finie E, et des normes sur E et L(E).
a. On fixe λ ∈ R et v ∈ E. Montrer que F = {f ∈ L(E) | f(v) = λv} est fermé.
b. On fixe λ ∈ R. Montrer que G = {f ∈ L(E) | ∃v 6= 0 f(v) = λv} est fermé.

Exercice 4. Soit (Fn)n une suite de fermés emboîtés non vides dans un espace topologique compact X. On note
F =

⋂
n Fn. Soit O un ouvert tel que F ⊂ O. Montrer qu’il existe n tel que Fn ⊂ O.

Indication : on pourra poser On = O ∪ cFn.

Exercice 5. Soit E un R-EVN et K ⊂ E une partie compacte, convexe, non vide. Soit T ∈ L(E) une application
linéaire (ou affine) continue telle que T (K) ⊂ K. On veut montrer qu’il existe x ∈ K tel que T (x) = x. Pour cela on
note Tn = 1

n

∑n
k=1 T

k.
a. Montrer que Tn(K) est un fermé contenu dans K pour tout n.
b. Montrer que TnTm = TmTn.

En déduire que Tn1(K) ∩ · · · ∩ Tnp(K) est non vide pour toute famille finie d’indices n1, . . . , np.
c. Montrer que L =

⋂
n Tn(K) est non vide. On fixe x ∈ L.

d. On fixe n ∈ N∗ et on choisit y ∈ K tel que x = Tn(y). Calculer T (x)− x en fonction de y. Conclure.

Exercice 6. On définit une suite de fonctions fn : [0, 1]→ R par récurrence en posant, pour tout t ∈ [0, 1] : f0(t) = 0
et fn+1(t) = fn(t) + 1

2 (t− fn(t)2).

a. On fixe t ∈ [0, 1]. Étudier la suite récurrente (fn(t))n.
On montrera notamment qu’elle est croissante et converge vers un réel g(t) que l’on calculera.

b. Montrer que la suite de fonctions (fn)n converge uniformément vers g.

Exercice 7. (Partiel 2018)
Pour tout x ∈ R et n ∈ N∗ on pose fn(x) =

(
1 + x

n

)n.
a. Montrer que la suite de fonctions (fn)n converge simplement vers une fonction qu’on calculera.
b. On pose gn(x) = ln(fn+1(x))− ln(fn(x)) pour x ∈ ]−n,+∞[. Étudier les variations, puis le signe de gn.
c. Montrer que la suite de fonctions (fn)n converge uniformément sur tout compact de R.

Exercice 8.
a. Soit X, Y des espaces métriques compacts et h : X × Y → R une fonction continue. Soit ε > 0. Montrer qu’il

existe n ∈ N et des fonctions continues f1, . . . , fn : X → R, g1, . . . , gn : Y → R telles qu’on ait |h(x, y) −∑n
i=1 fi(x)gi(y)| ≤ ε pour tout (x, y) ∈ X × Y .

b. Montrer que toute fonction continue h : [0, 1]× [0, 1]→ R est limite uniforme de fonctions polynomiales.

Exercice 9. Soit D = {z ∈ C | |z| ≤ 1} le disque unité fermé dans C. On note A ⊂ C(D,C) le sous-espace des
fonctions polynômiales f(z) =

∑n
k=0 akz

k (avec ak ∈ C) et on munit C(D,C) de la norme du sup.
a. Montrer que A est une sous-algèbre unifère de C(D,C) qui sépare les points.

b. Montrer que l’application ϕ : f 7→ (2π)−1
∫ 2π

0
f(eit)dt est continue sur C(D,C).

c. Montrer que pour tout f ∈ A on a ϕ(f) = f(0).
d. Montrer que A n’est pas dense dans C(D,C).
e. Quelle hypothèse faut-il rajouter au théorème de Stone-Weierstraß dans le cas de fonctions à valeurs complexes ?



Exercice 10. On considère l’espace E = C([0, 1] ,R) muni de la norme de la convergence uniforme ‖ · ‖∞, et l’espace
F = C1([0, 1] ,R) de muni de la norme N : f 7→ ‖f‖∞ + ‖f ′‖∞. On fixe un sous-espace V ⊂ E ∩ F fermé dans E.

a. Montrer que V est fermé dans F . Montrer que Id : (V,N)→ (V, ‖ · ‖∞) est continue.
D’après le théorème des isomorphismes de Banach, l’application réciproque est également continue.

b. Montrer que les normes ‖ · ‖∞ et N sont équivalentes sur le sous-espace V .
c. On note B̄ la boule unité fermée de V relativement à la norme ‖ · ‖∞.

Montrer qu’il existe une constante C > 0 telle que toutes les fonctions f ∈ B̄ sont lipschitziennes de rapport C.
d. Montrer que B̄ est équicontinue.
e. Montrer que V est nécessairement de dimension finie.

Exercice 11. (Partiel 2017)
Soit E un espace vectoriel normé et T ∈ L(E) une application linéaire continue.
Pour tout nombre complexe λ on note Eλ(T ) = {x ∈ E | T (x) = λx}.
On note B = {x ∈ E | ‖x‖ ≤ 1} la boule unité fermée de E et λB = {λx | x ∈ B} = {x ∈ E | ‖x‖ ≤ |λ|}.

On suppose que l’adhérence de T (B) dans E est compacte et on fixe λ ∈ C \ {0}.
a. Montrer que λB ∩ Eλ(T ) ⊂ T (B).
b. Montrer que B ∩ Eλ(T ) est compact.
c. Montrer que le sous-espace propre Eλ(T ) est de dimension finie.

Exercice 12. (Partiel 2018)
On considère l’espace H = L2([0, 1] ,R) muni de la norme ‖ · ‖2. On note L(H) l’espace des applications linéaires
continues de H dans H, muni de la norme d’opérateur.
Pour toute fonction K ∈ C([0, 1]

2
,R), on considère l’opérateur à noyau associé T : H → H, donné par la formule

suivante :

T (f)(s) =

∫ 1

0

K(s, t)f(t)dt.

On admet la convergence de l’intégrale ci-dessus, ainsi que la linéarité de l’application T .
On note Pol ⊂ C([0, 1]

2
,R) le sous-espace des fonctions polynomiales.

a. Montrer que pour f ∈ H on a bien T (f) ∈ H, puis que T : H → H est continue avec ‖T‖ ≤ ‖K‖∞.

b. On considère le cas où le noyau K est polynomial : K(s, t) =
∑N
k=0

∑N
l=0 ak,ls

ktl.
(i) Montrer que T (f) est alors un polynôme, dont on calculera les coefficients en fonctions des coefficients ak,l

et des moments de f donnés par la formule ml(f) =
∫ 1

0
tlf(t)dt.

(ii) Montrer que dans ce cas T est une application linéaire de rang fini, i.e. dim=T < +∞.
c. Montrer que toute fonction continue K ∈ C([0, 1]

2
,R) est limite uniforme de polynômes P ∈ Pol.

On appliquera le théorème de Stone-Weierstraß après avoir soigneusement vérifié ses hypothèses.
d. Montrer que tout opérateur à noyau T associé à un noyau K continu sur [0, 1]

2 est limite dans L(H) d’appli-
cations linéaires de rang fini.

Exercice 13. (Partiel 2018)
On considère l’espace E = {f : [−π, π]→ C | f continue et f(−π) = f(π)}, muni de la norme ‖ · ‖∞. On note B ⊂ E
le sous-ensemble formé des fonctions f : t 7→

∑
k∈Z cke

ikt avec
∑
k∈Z(1 + k2)|ck|2 ≤ 1.

a. Soit (ck)k∈Z telle que
∑
k∈Z(1 + k2)|ck|2 ≤ 1. Montrer que

∑
k∈Z |ck| ≤

(∑
k∈Z

1
1+k2

)1/2
.

On pourra utiliser l’inégalité de Cauchy-Schwartz pour les séries.
Le résultat de la question 1 montre en particulier que pour f ∈ B la série de fonction f(t) =

∑
k∈Z cke

ikt converge
normalement, donc f est bien continue.

b. On fixe t ∈ [−π, π]. Montrer que lim
s→t

∑
k∈Z

1
1+k2 |e

iks − eikt|2 = 0.

c. On fixe f ∈ B. Montrer qu’on a |f(s)− f(t)| ≤
(∑

k∈Z
1

1+k2 |e
iks − eikt|2

)1/2
pour tous s, t ∈ [−π, π].

d. On fixe t ∈ [−π, π] et ε > 0. À l’aide des questions 2 et 3, montrer qu’il existe α > 0 tel que |f(s) − f(t)| ≤ ε
pour tout s tel que |s− t| ≤ α et pour toute f ∈ B.

e. Montrer que l’adhérence de B dans E est compacte.
f. Soit (fn)n ∈ E une suite de fonctions.

On suppose que chaque fn est de classe C1 et vérifie
∫ π
−π |fn(t)|2dt ≤ π et

∫ π
−π |f

′
n(t)|2dt ≤ π.

Montrer que (fn)n admet une sous-suite qui converge uniformément.
La question 6 utilise des résultats de la théorie des séries de Fourier. On rappelle notamment l’identité de Parseval :∑
k∈Z |ck|2 = 1

2π

∫ π
−π |f(t)|2dt, pour f : t 7→

∑
k∈Z cke

ikt.


