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Convexité et Dualité

Exercice 1. Soit E un EVN, F ⊂ E un sous-espace vectoriel, et G un EVN de dimension finie.
a. Montrer que toute application linéaire continue S ∈ L(F,G) peut se prolonger en un application linéaire continue
T ∈ L(E,G).

b. On suppose F de dimension finie.
(i) Montrer que F est fermé.
(ii) Montrer qu’il existe T ∈ L(E,F ) telle que T (x) = x pour tout x ∈ F .
(iii) Monter que F admet un supplémentaire fermé.

Exercice 2. On considère l’espace E = `∞(N,R) et on note ‖ · ‖∞ la norme du sup sur E.
On définit un opérateur S : E → E en posant S(x) = (xk+1)k si x = (xk)k ∈ E. Autrement dit

S(x0, x1, x2, . . .) = (x1, x2, x3, . . .).

On note I = Im(S− Id) ⊂ E. On considère également la suite constante e = (1, 1, 1, . . .), et C = Vect{e} le sous-espace
des suites constantes.

a. Montrer que I et C sont en somme directe.
On peut donc définir une forme linéaire L0 : I + C → R en posant L0((S − Id)(x) + λe) = λ pour tous x ∈ E, λ ∈ R.

b. On considère la forme linéaire cn ∈ E∗ donnée par cn(x) = 1
n+1

∑n
k=0 xk si x = (xk)k.

(i) Montrer que pour z ∈ I + C on a limn→∞ cn(z) = L0(z).
(ii) En déduire que la forme linéaire L0 est continue.

c. Montrer qu’il existe une forme linéaire continue L ∈ E∗ telle que ‖L‖ = 1, L(e) = 1 et L ◦ S = L.
Dans la suite on fixe une forme linéaire L vérifiant ces 3 propriétés.
Remarque : on peut montrer qu’il existe une infinité de formes linéaires L convenables.

d. (i) Soit x = (xk)k, y = (yk)k deux suites dans E.
On suppose qu’il existe n ∈ N tel que xk = yk pour tout k ≥ n.
Montrer que L(x) = L(y). Quel résultat obtient-on dans le cas où y est la suite nulle ?

(ii) Montrer que L(x) = 0 pour toute suite x ∈ E qui converge vers 0.
En déduire que si la suite x = (xk)k ∈ E converge, on a L(x) = limk→∞ xk.

e. On considère x = (1, 0, 1, 0, 1, . . .) ∈ E. Calculer L(x). On pourra utiliser S(x).
A-t-on L(xy) = L(x)L(y) pour toutes les suites x, y ∈ E ?

f. Soit x = (xk)k ∈ E telle que xk ≥ 0 pour tout x. Montrer qu’on a L(x) ≥ 0.
Indication. On pourra observer que le vecteur y = ‖x‖∞e− x vérifie alors ‖y‖∞ ≤ ‖x‖∞.

g. Pour toute partie A ⊂ N on pose m(A) = L(χA), où χA : N → {0, 1} est la fonction caractéristique de A
(considérée comme une suite).
(i) Montrer qu’on a m(A) ≥ 0 pour toute partie A ⊂ N, et m(A ∪B) = m(A) +m(B) si A ∩B = ∅. Combien

valent m(∅) et m(N) ?
(ii) On note A+ k = {a+ k | a ∈ A}, pour A ⊂ N et k ∈ N. Montrer que m(A+ k) = m(A).
(iii) L’application m : P(N)→ R est-elle une mesure ?

h. Question subsidiaire. Montrer que pour toute suite x = (xk)k ∈ E on a lim inf xk ≤ L(x) ≤ lim supxk.

Exercice 3. Soit E un EVN et C ⊂ E une partie convexe fermée. On considère

A = {(ϕ,m) ∈ E∗ × R | m ≤ inf ϕ(C)}.

Montrer que C =
⋂

(ϕ,m)∈A{x ∈ E | ϕ(x) ≥ m}.
Ainsi tout convexe fermé est une intersection de demi-espaces fermés.



Exercice 4. (Examen 2017)
Soit E un R-espace vectoriel normé. On munit E × E de la norme ‖(x, y)‖ = ‖x‖+ ‖y‖.
Soit K ⊂ E un compact convexe non vide.
Soit f : K → K une application continue. On suppose de plus que f est affine, c’est-à-dire que pour tous x, x′ ∈ K
et λ ∈ [0, 1] on a λf(x) + (1− λ)f(x′) = f(λx+ (1− λ)x′).
On note G(f) ⊂ K ×K le graphe de f , et on considère également D = {(x, x) | x ∈ K} ⊂ K ×K.
Le but de l’exercice est de montrer que f admet un point fixe, et on procède par l’absurde. On suppose donc que f
n’admet pas de point fixe.

a. Montrer que G(f) et D sont des convexes compacts de E × E.
On notera que E n’est pas nécessairement de dimension finie.

b. Montrer qu’il existe une forme linéaire continue ϕ : E × E → R et α, β ∈ R tels que
ϕ(x, x) ≤ α < β ≤ ϕ(x′, f(x′)) pour tous x, x′ ∈ K.

c. Montrer qu’il existe deux formes linéaires continues ϕ1, ϕ2 : E → R telles que
ϕ(x1, x2) = ϕ1(x1) + ϕ2(x2) pour tous x1, x2 ∈ E.

d. Montrer que pour tout x ∈ K on a ϕ2(f(x))− ϕ2(x) ≥ β − α.
Montrer que pour tout x ∈ K et pour tout n ∈ N∗ on a ϕ2(f

n(x))− ϕ2(x) ≥ n(β − α).
e. Conclure.


