
Université de Caen 1er semestre 2020–2021
UFR Sciences Portail MIM
L2 MIASHS Algorithmique

Corrigé du TD 1

Exercice 1. Suivi d’un traileur.

Question 1. Écrire une procédure qui prend en argument un tableau de distances, deux points de passage i et j, i <
j, et retourne la distance pour aller du point i au point j.

distancePartielle (Distance : tableau d’entiers, i : entier, j : entier) : entier
total : entier ; total = 0
pour k de i+1 à j faire

total = total + Distance[k]
retourner total

Distance[k] contient la distance du point k-1 au point k, donc en sommant de k=i+1 à k=j on mesure bien la distance
du point i au point j. On utilise une variable total pour enregistrer les sommes partielles au fur et à mesure qu’on
parcourt le tableau.

Question 2. Écrire une procédure qui prend en argument un tableau de temps de passage, deux points de passage i
et j, i < j, et retourne le temps mis pour aller du point de passage i au point de passage j.

tempsPartiel (Temps : tableau d’entiers, i : entier, j : entier) : entier
retourner Temps[j] - Temps[i]

Question 3. Utiliser les deux procédures précédentes pour écrire une procédure qui prend en argument les tableaux des
distances et temps de passage et deux points de passage i et j, i < j, et retourne la vitesse du coureur entre les points
i et j.

On calcule la vitesse en divisant la distance par le temps :

vitessePartielle (Distance : tableau d’entiers, Temps : tableau d’entiers,
i : entier, j : entier) : réel

retourner distancePartielle(Distance, i, j) / tempsPartiel(Temps, i, j)

Question 4. Écrire une procédure qui prend en argument le tableau des altitudes, sa longueur n, et retourne le dénivelé
positif total.

déniveléPositif (Altitude : tableau d’entiers, n : entier) : entier
total : entier ; total = 0
pour i de 1 à n-1 faire

si Altitude[i] > Altitude[i-1] alors
total = total + Altitude[i] - Altitude[i-1]

retourner total

Question 5. Écrire une procédure qui prend en argument le tableau des altitudes, sa longueur n, et retourne le dénivelé
de la plus grande montée continue.

On parcourt le tableau en entier. Au cours du parcours on tiens à jour deux variables temporaire : montée qui contient
le dénivelé de la montée en cours (si on est en train de monter), et max qui contient le dénivelé de la plus grande montée
jusqu’à ce point. Le test si ... alors regarde si on a monté depuis le dernier point de passage, si oui on ajoute le
dénivelé à montée, sinon on remet montée à 0. À chaque étape on s’assure que max reste égal à la plus grande montée.

grandeMontée (Altitude : tableau d’entiers, n : entier) : entier
max, montée : entier ; max = 0 ; montée = 0
pour i de 1 à n-1 faire

si Altitude[i] >= Altitude[i-1] alors
montée = montée + Altitude[i] - Altitude[i-1]

sinon
montée = 0

si montée > max alors
max = montée

retourner max

Exercice 2. On considère la procédure suivante.

mystere(n : entier) : entier
si n == 0 alors

retourner 2
sinon

retourner mystere(n-1)*mystere(n-1)

Question 1. Quelle fonction mathématique est calculée par mystere ?

Cette procédure calcule la suite (un)n qui vérifie u0 = 2, un = u2
n−1. La suite ln = ln(un) vérifie l0 = ln(2), ln = 2ln−1 :

c’est une suite géométrique de raison 2, donc ln = 2nl0. Ainsi un = exp(2n ln(2)) = 2(2
n).

Question 2. Calculer le coût C(n) de la procédure mystere, défini comme étant le nombre de multiplications effectuées.

On a C(0) = 0, C(n) = 2C(n− 1) + 1.
On a bien C(0) = 20 − 1 et, si C(n) = 2n − 1, alors C(n+ 1) = 2(2n − 1) + 1 = 2n+1 − 1.

Question 3. Proposez une procédure ayant un meilleur coût, donnez ce coût.

Il faut faire un seul appel récurent au lieu de 2, en stockant le résultat dans une variable tmp :

mystere2 (n : entier) : entier
tmp : entier
si n=0 alors

retourner 2
sinon

tmp = mystere2(n-1)
retourner tmp * tmp

Le nouveau coût D(n) vérifie D(0) = 0, D(n) = D(n− 1) + 1. C’est une suite arithmétique : on a D(n) = n.

Exercice 3.

Question 1. Écrivez une procédure qui renvoie la position du premier élément x dans un tableau d’entiers si x est
présent et −1 sinon.

Voici une possibilité parmi d’autres. On utilise une boucle tant que, ce qui permet de s’arêter dès qu’on a trouvé x.
La condition r==-1 signifie « on n’a pas encore trouvé x ».

rechercheElement (tab : tableau d’entiers, taille : entier, x : entier) : entier
i : entier ; i = 0 # compteur de boucle
r : entier ; r = -1 # résultat à retourner
tant que i < taille et r == -1 faire

si tab[i] == x alors
r = i

i = i + 1
retourner r

Question 2. Déterminer, en fonction de la taille du tableau, le coût maximum de la procédure, définie comme étant
le nombre d’éléments examinés.

On a C(taille) = taille.

Question 3. On suppose maintenant que le tableau est trié. Proposez un algorithme dichotomique pour rechercher un
élément x.

Voici une procédure qu’on appelle sous la forme rechercheDicho(T,n,0,n,x) pour chercher x dans un tableau de
taille n. Les arguments a et b servent lors des appels récursifs.

rechercheDicho (tab : tableau d’entiers, taille : entier,
a : entier, b : entier, x : entier) : entier

on vérifie (lors du premier appel) si x est au début ou à la fin du tableau :
si a == 0 alors

si tab[a] == x alors
retourner a

si b == taille - 1 alors
si tab[b] == x alors

retourner b
sinon on cherche x au milieu m du tableau :
m : entier ; m = (a+b) div 2
si m == a alors

on est dans ce cas si b=a ou b=a+1
il n’y a rien entre les deux, donc x ne figure pas dans le tableau
retourner -1

y = tab[m]
si y == x alors

retourner m
comme le tableau est rangé par ordre croissant, on sait en comparant tab[m] et x
s’il faut continuer à chercher à gauche ou à droite de m :
si y < x alors

retourner recherche(tab, taille, m, b, x)
sinon

retourner recherche(tab, taille, a, m, x)

Si D(taille) est le coût maximal de cette fonction, alors D(2k + 1) = k + 2.

Exercice 4. Drapeau hollandais (exercice non traité en TD).
On veut trier un tableau contenant des boules de trois couleurs : bleues ’B’, jaunes ’J’ et rouges ’R’, afin d’avoir

d’abord toutes les boules bleues, puis toutes les boules jaunes et finalement toutes les boules rouges. Le coût de l’algo-
rithme est le nombre de fois que l’algorithme accède à un élément du tableau. Notre objectif est de ne regarder qu’une
seule fois la couleur de chaque boule.

La méthode consiste à conserver à chaque étape la configuration suivante : on met au début toutes les boules bleues
déjà rencontrées, ensuite toutes les boules jaunes déjà rencontrées, puis toutes les boules non traitées et, en dernier,
toutes les boules rouges déjà rencontrées.

tri (boules : tableau de chaînes de caractères, n : entier) : tableau de chaînes de caractères
B, J, R : entier ; B = 0 ; J = 0 ; R = 0
tant que B + J + R < n faire

si boules[B + J] == ’bleu’ alors
boules[B], boules[B + J] = boules[B + J], boules[B]
B = B + 1

sinon si boules[B + J] == ’rouge’ alors
boules[B + J], boules[n - R - 1] = boules[n - R - 1], boules[B + J]
R = R + 1

sinon
J = J + 1

retourner boules

Le coût est n — si on admet qu’on réalise les échanges (dans les cas bleu et rouge) sans lire les valeurs échangées. En
fait quand on réalise les échanges, il y a une seule valeur qu’il est nécessaire de lire car on ne la connait pas encore,
c’est boules[n - R - 1], dans le cas rouge. Si on compte cette lecture, le pire coût est 2n − 1 (cas où toutes les
boules sont rouges). On peut faire mieux en mettant toutes les boules de couleurs connues à gauche :

tri2 (boules : tableau de chaînes de caractères, n : entier) : tableau de chaînes de caractères
B, J, R : entier ; B = 0 ; J = 0 ; R = 0
tant que B + J + R < n faire

si boules[B + J + R] == ’bleu’ alors
boules[B + J + R] = ’rouge’
boules[B + J] = ’jaune’
boules[B] = ’bleu’
B = B + 1

sinon si boules[B + J + R] == ’jaune’ alors
boules[B + J + R] = ’rouge’
boules[B + J] = ’jaune’
J = J + 1

sinon
R = R + 1

retourner boules

