UNIVERSITE DE CAEN 1* SEMESTRE 2020-2021
UFR SCIENCES PorraiL MIM
L2 MIASHS ALGORITHMIQUE

CORRIGE DES TD 5 ET 6

Exercice 1.

N
NN
I SN
/\ ANEVA
0 0 i j 00

A A
o0 0 0

Question 1. Donner l'ordre de visite des neuds de ’arbre binaire ci-dessus, suivant les différents types de parcours :

— parcours préfixe : a, b, d, f,c, e, g,4, 7, h
— parcours infixe : d, f, b, a, ¢, i, g, j, e, h

— parcours suffixe : f, d, b, 4, 7,9, h, e, ¢, a

— parcours en largeur : a, b, ¢, d, e, f, g, h, i, J

Question 3. Pour chacun des quatre ordres de parcours, écrire une procédure qui prend en argument un arbre binaire
A et affiche ses neuds dans cet ordre.

Algorithmes récursifs vus en cours :

affichagePrefixe(A : arbreBinaire)
si A <> None alors
afficher A->valeur
affichagePrefixe (A->gauche)
affichagePrefixe (A->droit)

affichageInfixe(A : arbreBinaire)
si A <> None alors
affichageInfixe(A->gauche)
afficher A->valeur
affichageInfixe(A->droit)

affichageSuffixe(A : arbreBinaire)
si A <> None alors
affichageSuffixe (A->gauche)
afficher A->valeur
affichageSuffixe (A->droit)

Voici une procédure d’affichage en largeur légérement différente de celle du cours. L’argument est une file (éventuel-
lement vide) d’arbres non vides. On affiche les valeurs des racines tout en enregistrant les enfants dans une nouvelle
file (noeuds du niveau suivant) puis on fait un appel récursif sur cette nouvelle file. Pour afficher en largeur un unique
arbre A on exécute F : File ; F = initFile() ; F = enfiler(F, A) ; affichagelargeur2(F, 0). Chaque appel
de la procédure affiche un niveau de l'arbre.

affichagelLargeur2(F : File, N : entier)
si fileVide(F) alors retourner
afficher ’Niveau : ’> + chaine(N)
G : file ; G = initFile()



tant que non fileVide(F) faire
A : pointeur sur noeud ; A = tete(F)
F = defiler(F)
afficher A->valeur
si A->gauche <> None alors
G = enfiler(G, A->gauche)
si A->droit <> Nomne alors
G = enfiler(G, A->droit)
affichagelargeur2(G, N+1)

Remarquons qu’en fait il n’y a pas besoin de séparer les files par niveau : on peut prendre G = F et se passer de I'appel
récursif, les noeuds seront enfilés niveau aprés niveau de la méme maniére. C’est ce que fait la procédure vue en cours.

Question 4. Donner une procédure récursive qui renvoie le nombre de neeuds d’un arbre binaire. Modifier cette
procédure pour retourner le nombre de neceuds internes.

nombreNoeuds (A : arbreBinaire) : entier
si A == None alors retourner O
sinon
retourner 1 + nombreNoeuds(A->gauche) + nombreNoeuds (A->gauche)

nombreInternes(A : arbreBinaire)
si A == None ou (A->gauche == None et A->droit == None) alors
retourner 0
sinon
retourner 1 + nombrelnternes(A->gauche) + nombrelnternes(A->gauche)

Question 5. On considére la procédure récursive suivante qui calcule le nombre de feuilles d’un arbre binaire. Calculer
le nombre d’appels récursifs de cette procédure en fonction du nombre de neuds internes.

nombreFeuilles1(A : arbreBinaire) : entier
si A = None alors
retourner O
sinon
si A->gauche = None et A->droit = None alors
retourner 1
sinon
retourner nombreFeuillesl(A->gauche) + nombreFeuillesl(A->droit)

On arrive aux appels récursifs exactement quand la racine de A est interne. Le nombre d’appels récursifs est donc le
double du nombre de noeuds internes.

Question 6. Ecrire une procédure récursive qui calcule le nombre de feuilles d’un arbre binaire supposé non vide, sans
faire d’appel récursif avec l’arbre vide.

nombreFeuilles2(A : arbreBinaire) : entier
N : entier ; N =0

si A->gauche == None et A->droit == None alors
retourner 1

si A->gauche != None alors
N = N + nombreFeuilles2(A->gauche)

si A->droit != None alors

N = N + nombreFeuilles2(A->droit)
retourner N

Question 7. Calculez le nombre d’appels récursifs de la procédure nombreFeuilles2 en fonction du nombre de neuds.

La procédure est appelée une fois pour chaque noeud interne. Pour un arbre dégénéré (filiforme) c’est deux fois mieux
que la premiére procédure, pour un arbre localement complet c’est (presque) pareil.

Question 8. Ecrire une procédure qui prend en argument un arbre binaire A et retourne une copie de celui-ci, c’est-
a-dire, un arbre identique a A mais qui n’a aucun neud commun avec A.



copieArbre(A : arbreBinaire) : arbreBinaire
si A == None alors retourner None
B : arbreBinaire ; B = Nouveau(noeud)
B->valeur = A->valeur
B->gauche = copieArbre(A->gauche)
B->droit = copieArbre(A->droit)
retourner B

Question 9. Fcrire une procédure itérative qui affiche les neeuds d’un arbre binaire dans l'ordre préfive, en utilisant
une pile.

affichagePrefixeIt(A : arbre binaire)
P : pile ; P = initPile()
P = empiler(P, A)
tant que non pileVide(P):
B = sommet (P)
afficher B->valeur
P = depiler(P)
si B->droit <> None alors
P = empiler (P, B->droit)
si B->gauche <> None alors
P = empiler(P, B->gauche)

Exercice 2.

Question 1. Classer les neeuds de 'arbre binaire de l’exercice 1 par niveau.

niv. 0 : a
niv.1: b, ¢
niv. 2 : d, e
niv.3: f, 9, h
niv.4:1¢, j

Question 2. Ecrire une procédure récursive qui affiche tous les neuds de niveau k d’un arbre binaire A.

Si k > 0, les nceuds de niveau k dans A sont exactement les noeuds de longueur k-1 dans les sous-arbres gauche et
droit de A.

afficheNiveau(A : arbreBinaire, k : entier)
si A == None alors retourner
si k == 0 alors
afficher A->valeur
sinon
afficheNiveau(A->gauche, k-1)
afficheNiveau(A->droit, k-1)

Question 3. Calculer la longueur de cheminement de l’arbre binaire de l’exercice 1, c’est-a-dire la somme des pro-
fondeurs de ses neuds.

La longueur de cheminement de cet arbre vaut 23.

Question 4. Ecrire une procédure LC qui calcule la longueur de cheminement d’un arbre. On utilisera une procédure
auziliaire récursive LCaux (B,p) qui calcule la somme des profondeurs dans A des neuds d’un sous-arbre B dont la
racine est de niveau p.

LCaux(B : arbreBinaire, p : entier) : entier
si B == None alors retourner O
retourner p + LCaux(B->gauche, p+1) + LCaux(B->droit, p+1)

LC(A : arbreBinaire) : entier
retourner LCaux(A, 0)



Question 5. Calculer la longueur de cheminement externe de 'arbre binaire de exercice 1, c¢’est-a-dire la sommes
des profondeurs de ses feuilles.

La longueur de cheminement externe de cet arbre vaut 14.

Question 6. Ecrire une procédure récursive qui calcule la longueur de cheminement externe d’un arbre binaire. Comme
précédemment on pourra utiliser une procédure auziliaire.

LCEaux(B : arbreBinaire, p : entier) : entier
si B == None alors retourner O
si B.gauche == None et B.droit == None: retourner p
retourner LCEaux(B->gauche, p+1) + LCEaux(B->droit, p+1)

LCE(A : arbreBinaire) : entier
retourner LCEaux(A, 0)

Question 7. FEcrire une procédure itérative qui calcule la longueur de cheminement externe d’un arbre binaire, en
effectuant un parcours en largeur de l'arbre a U'aide d’une file. On enfilera chaque neud avec sa profondeur.

Rappelons la procédure d’affichage en largeur d’un arbre binaire :

affichagelargeur (A : arbreBinaire)
F : file ; F = initFile() ; F = enfiler(F, A)
tant que non fileVide(F) faire
B : pointeur sur noeud ; B = tete(F)
F = defiler(F)
afficher B->valeur
si B->gauche <> None alors
F = enfiler(F, B->gauche)
si B->droit <> None alors
F = enfiler(F, B->droit)

On adapte cette procédure pour calculer la profondeur de cheminement externe de maniére itérative :

LCEIt(A : arbreBinaire) : entier
total : entier ; total = 0
p : entier ; p =0
F : file ; F = initFile()
F = enfiler(F, A) ; F = enfiler(F, p)
tant que non fileVide(F) faire
B = tete(F) ; F = defiler(F)
p = tete(F) ; F = defiler(F)
si B->gauche == None et B->droit == None alors
total = total + p
si B->gauche <> None alors
F = enfiler(F, B->gauche)
F = enfiler(F, p+1)
si B->droit <> None alors
F = enfiler(F, B->droit)
F = enfiler(F, p+1)
retourner total



Exercice 3. On représente une expression arithmétique par un arbre binaire localement complet, ot les neeuds internes
portent la valeur + ou * et ou les feuilles portent une lettre d’un alphabet A.

Question 1. Représenter Uarbre de lexpression (((a * ¢) 4+ (d x b)) = (b + a)).

A

AL

Question 2. Ecrire une procédure récursive qui prend en argument un arbre binaire E représentant une expression
arithmétique et une fonction de valuation V(a : A) : entier et qui retourne la valeur de ’expression arithmétique
pour V.

valeurExp(E : arbreBinaire, V : fonction) : entier

si E->gauche == None et E->droit == None alors

retourner V(E->valeur)
si E->valeur == ’+’ alors

retourner valeurExp(E->gauche, V) + valeurExp(E->droit, V)
si E->valeur == ’*’ alors

retourner valeurExp(E->gauche, V) * valeurExp(E->droit, V)

Question 3. FEcrire une procédure récursive, a partir d’une expression arithmétique lue au clavier, caractére par
caractére, retourne l’arbre de [’expression.

On indique juste en commentaire quel devrait étre le controle d’erreur :

arbreExp() : arbreBinaire
c : caractére ; c¢ = lire(l) # 1lit un caractére
A : arbreBinaire ; A = Nouveau(noeud)
si ¢ == > alors
A->gauche = arbreExp()
A->valeur = lire() # doit &tre ’+’ ou ’*’
A->droit = arbreExp()
lire() # doit &tre ’)’

sinon
A->valeur = c # ne doit pas &tre ’+7, x’, ?)’
A->gauche = None

A->droit = None
retourner A



