
Université de Caen 1er semestre 2020–2021
UFR Sciences Portail MIM
L2 MIASHS Algorithmique

Corrigé des TD 5 et 6

Exercice 1.

a

c

e

h

∅∅

g

j

∅∅

i

∅∅

∅

b

∅d

f

∅∅

∅

Question 1. Donner l’ordre de visite des nœuds de l’arbre binaire ci-dessus, suivant les différents types de parcours :

— parcours préfixe : a, b, d, f , c, e, g, i, j, h
— parcours infixe : d, f , b, a, c, i, g, j, e, h
— parcours suffixe : f , d, b, i, j, g, h, e, c, a
— parcours en largeur : a, b, c, d, e, f , g, h, i, j

Question 3. Pour chacun des quatre ordres de parcours, écrire une procédure qui prend en argument un arbre binaire
A et affiche ses nœuds dans cet ordre.

Algorithmes récursifs vus en cours :

affichagePrefixe(A : arbreBinaire)
si A <> None alors

afficher A->valeur
affichagePrefixe(A->gauche)
affichagePrefixe(A->droit)

affichageInfixe(A : arbreBinaire)
si A <> None alors

affichageInfixe(A->gauche)
afficher A->valeur
affichageInfixe(A->droit)

affichageSuffixe(A : arbreBinaire)
si A <> None alors

affichageSuffixe(A->gauche)
afficher A->valeur
affichageSuffixe(A->droit)

Voici une procédure d’affichage en largeur légèrement différente de celle du cours. L’argument est une file (éventuel-
lement vide) d’arbres non vides. On affiche les valeurs des racines tout en enregistrant les enfants dans une nouvelle
file (noeuds du niveau suivant) puis on fait un appel récursif sur cette nouvelle file. Pour afficher en largeur un unique
arbre A on exécute F : File ; F = initFile() ; F = enfiler(F, A) ; affichageLargeur2(F, 0). Chaque appel
de la procédure affiche un niveau de l’arbre.

affichageLargeur2(F : File, N : entier)
si fileVide(F) alors retourner
afficher ’Niveau : ’ + chaîne(N)
G : file ; G = initFile()



tant que non fileVide(F) faire
A : pointeur sur noeud ; A = tete(F)
F = defiler(F)
afficher A->valeur
si A->gauche <> None alors

G = enfiler(G, A->gauche)
si A->droit <> None alors

G = enfiler(G, A->droit)
affichageLargeur2(G, N+1)

Remarquons qu’en fait il n’y a pas besoin de séparer les files par niveau : on peut prendre G = F et se passer de l’appel
récursif, les nœuds seront enfilés niveau après niveau de la même manière. C’est ce que fait la procédure vue en cours.

Question 4. Donner une procédure récursive qui renvoie le nombre de nœuds d’un arbre binaire. Modifier cette
procédure pour retourner le nombre de nœuds internes.

nombreNoeuds(A : arbreBinaire) : entier
si A == None alors retourner 0
sinon

retourner 1 + nombreNoeuds(A->gauche) + nombreNoeuds(A->gauche)

nombreInternes(A : arbreBinaire)
si A == None ou (A->gauche == None et A->droit == None) alors

retourner 0
sinon

retourner 1 + nombreInternes(A->gauche) + nombreInternes(A->gauche)

Question 5. On considère la procédure récursive suivante qui calcule le nombre de feuilles d’un arbre binaire. Calculer
le nombre d’appels récursifs de cette procédure en fonction du nombre de nœuds internes.

nombreFeuilles1(A : arbreBinaire) : entier
si A = None alors

retourner 0
sinon

si A->gauche = None et A->droit = None alors
retourner 1

sinon
retourner nombreFeuilles1(A->gauche) + nombreFeuilles1(A->droit)

On arrive aux appels récursifs exactement quand la racine de A est interne. Le nombre d’appels récursifs est donc le
double du nombre de nœuds internes.

Question 6. Écrire une procédure récursive qui calcule le nombre de feuilles d’un arbre binaire supposé non vide, sans
faire d’appel récursif avec l’arbre vide.

nombreFeuilles2(A : arbreBinaire) : entier
N : entier ; N = 0
si A->gauche == None et A->droit == None alors

retourner 1
si A->gauche != None alors

N = N + nombreFeuilles2(A->gauche)
si A->droit != None alors

N = N + nombreFeuilles2(A->droit)
retourner N

Question 7. Calculez le nombre d’appels récursifs de la procédure nombreFeuilles2 en fonction du nombre de nœuds.

La procédure est appelée une fois pour chaque nœud interne. Pour un arbre dégénéré (filiforme) c’est deux fois mieux
que la première procédure, pour un arbre localement complet c’est (presque) pareil.

Question 8. Écrire une procédure qui prend en argument un arbre binaire A et retourne une copie de celui-ci, c’est-
à-dire, un arbre identique à A mais qui n’a aucun nœud commun avec A.



copieArbre(A : arbreBinaire) : arbreBinaire
si A == None alors retourner None
B : arbreBinaire ; B = Nouveau(noeud)
B->valeur = A->valeur
B->gauche = copieArbre(A->gauche)
B->droit = copieArbre(A->droit)
retourner B

Question 9. Écrire une procédure itérative qui affiche les nœuds d’un arbre binaire dans l’ordre préfixe, en utilisant
une pile.

affichagePrefixeIt(A : arbre binaire)
P : pile ; P = initPile()
P = empiler(P, A)
tant que non pileVide(P):

B = sommet(P)
afficher B->valeur
P = depiler(P)
si B->droit <> None alors

P = empiler(P, B->droit)
si B->gauche <> None alors

P = empiler(P, B->gauche)

Exercice 2.

Question 1. Classer les nœuds de l’arbre binaire de l’exercice 1 par niveau.

— niv. 0 : a
— niv. 1 : b, c
— niv. 2 : d, e
— niv. 3 : f , g, h
— niv. 4 : i, j

Question 2. Écrire une procédure récursive qui affiche tous les nœuds de niveau k d’un arbre binaire A.

Si k > 0, les nœuds de niveau k dans A sont exactement les nœuds de longueur k-1 dans les sous-arbres gauche et
droit de A.

afficheNiveau(A : arbreBinaire, k : entier)
si A == None alors retourner
si k == 0 alors

afficher A->valeur
sinon

afficheNiveau(A->gauche, k-1)
afficheNiveau(A->droit, k-1)

Question 3. Calculer la longueur de cheminement de l’arbre binaire de l’exercice 1, c’est-à-dire la somme des pro-
fondeurs de ses nœuds.

La longueur de cheminement de cet arbre vaut 23.

Question 4. Écrire une procédure LC qui calcule la longueur de cheminement d’un arbre. On utilisera une procédure
auxiliaire récursive LCaux(B,p) qui calcule la somme des profondeurs dans A des nœuds d’un sous-arbre B dont la
racine est de niveau p.

LCaux(B : arbreBinaire, p : entier) : entier
si B == None alors retourner 0
retourner p + LCaux(B->gauche, p+1) + LCaux(B->droit, p+1)

LC(A : arbreBinaire) : entier
retourner LCaux(A, 0)



Question 5. Calculer la longueur de cheminement externe de l’arbre binaire de l’exercice 1, c’est-à-dire la sommes
des profondeurs de ses feuilles.

La longueur de cheminement externe de cet arbre vaut 14.

Question 6. Écrire une procédure récursive qui calcule la longueur de cheminement externe d’un arbre binaire. Comme
précédemment on pourra utiliser une procédure auxiliaire.

LCEaux(B : arbreBinaire, p : entier) : entier
si B == None alors retourner 0
si B.gauche == None et B.droit == None: retourner p
retourner LCEaux(B->gauche, p+1) + LCEaux(B->droit, p+1)

LCE(A : arbreBinaire) : entier
retourner LCEaux(A, 0)

Question 7. Écrire une procédure itérative qui calcule la longueur de cheminement externe d’un arbre binaire, en
effectuant un parcours en largeur de l’arbre à l’aide d’une file. On enfilera chaque nœud avec sa profondeur.

Rappelons la procédure d’affichage en largeur d’un arbre binaire :

affichageLargeur(A : arbreBinaire)
F : file ; F = initFile() ; F = enfiler(F, A)
tant que non fileVide(F) faire

B : pointeur sur noeud ; B = tete(F)
F = defiler(F)
afficher B->valeur
si B->gauche <> None alors

F = enfiler(F, B->gauche)
si B->droit <> None alors

F = enfiler(F, B->droit)

On adapte cette procédure pour calculer la profondeur de cheminement externe de manière itérative :

LCEIt(A : arbreBinaire) : entier
total : entier ; total = 0
p : entier ; p = 0
F : file ; F = initFile()
F = enfiler(F, A) ; F = enfiler(F, p)
tant que non fileVide(F) faire

B = tete(F) ; F = defiler(F)
p = tete(F) ; F = defiler(F)
si B->gauche == None et B->droit == None alors

total = total + p
si B->gauche <> None alors

F = enfiler(F, B->gauche)
F = enfiler(F, p+1)

si B->droit <> None alors
F = enfiler(F, B->droit)
F = enfiler(F, p+1)

retourner total



Exercice 3. On représente une expression arithmétique par un arbre binaire localement complet, où les nœuds internes
portent la valeur + ou * et où les feuilles portent une lettre d’un alphabet A.

Question 1. Représenter l’arbre de l’expression (((a ∗ c) + (d ∗ b)) ∗ (b+ a)).

∗

+

ab

+

∗

bd

∗

ca

Question 2. Écrire une procédure récursive qui prend en argument un arbre binaire E représentant une expression
arithmétique et une fonction de valuation V(a : A) : entier et qui retourne la valeur de l’expression arithmétique
pour V.

valeurExp(E : arbreBinaire, V : fonction) : entier
si E->gauche == None et E->droit == None alors

retourner V(E->valeur)
si E->valeur == ’+’ alors

retourner valeurExp(E->gauche, V) + valeurExp(E->droit, V)
si E->valeur == ’*’ alors

retourner valeurExp(E->gauche, V) * valeurExp(E->droit, V)

Question 3. Écrire une procédure récursive, à partir d’une expression arithmétique lue au clavier, caractère par
caractère, retourne l’arbre de l’expression.

On indique juste en commentaire quel devrait être le contrôle d’erreur :

arbreExp() : arbreBinaire
c : caractère ; c = lire(1) # lit un caractère
A : arbreBinaire ; A = Nouveau(noeud)
si c == ’(’ alors

A->gauche = arbreExp()
A->valeur = lire() # doit être ’+’ ou ’*’
A->droit = arbreExp()
lire() # doit être ’)’

sinon
A->valeur = c # ne doit pas être ’+’, ’*’, ’)’
A->gauche = None
A->droit = None

retourner A


