THE RADIAL MASA IN FREE ORTHOGONAL QUANTUM GROUPS

AMAURY FRESLON AND ROLAND VERGNIOUX

ABsTRACT. We prove that the radial subalgebra in free orthogonal quantum group factors is maximal abelian
and mixing, and we compute the associated bimodule. The proof relies on new properties of the Jones-Wenzl
projections and on an estimate of certain scalar products of coefficients of irreducible representations.

1. INTRODUCTION

Discrete groups have been an important part of the theory of von Neumann algebras since its very be-
ginning. Taking advantage of their algebraic or geometric properties, one can build interesting families of
examples and counter-examples of von Neumann algebras, and get some insight into crucial structural prop-
erties like property (T) or approximation properties. In the last ten years, there has been an increasing
number of results showing that discrete quantum groups can also produce interesting examples of von Neu-
mann algebras. In this work, we continue this program by initiating the study of abelian subalgebras in von
Neumann algebras of discrete quantum groups.

The importance of abelian subalgebras in the study of von Neumann algebras has been long known and, as
already mentioned, group von Neumann algebras have played an important role in that history. For instance,
the subalgebra generated by one of the generating copies of Z inside the von Neumann algebra of the free
group Fy was proved by J. Dixmier to be maximal abelian [8], and by S. Popa to be maximal injective [15],
thus answering a long-standing question of R.V. Kadison. The fact that the subalgebra comes from a group
inclusion was crucial there.

Another example of abelian subalgebra in free group factors is the so-called radial (or laplacian) subalgebra,
which is the one generated by the sum of the generators and their inverses. This subalgebra does not come
from a subgroup, hence the aforementioned techniques do not apply. S. Radulescu introduced in [17] tools
to prove that this subalgebra, which was already known to be maximal abelian by work of S. Pytlik [16], is
singular. His techniques were later used again to prove that the radial subalgebra is maximal amenable [7].
For more background on maximal abelian subalgebras we refer to the book [20].

In this paper, we study the analogue of the radial subalgebra in free quantum group factors. More
precisely, we consider the free orthogonal quantum group of Kac type O]'t, and, inside its von Neumann
algebra LOO(OX,), the subalgebra generated by the characters of irreducible representations. Recall that OX,
is a compact quantum group introduced in [24], whose discrete dual is a quantum analogue of a free group.
In particular L>(O7%;) plays the role of a free group factor £(Fx). This analogy, dating back to the seminal
works of T. Banica [I], [2], has been supported since then by further work of several authors who proved
that the von Neumann algebra LOO(O]'\F,), for N > 3, indeed shares many properties with free group factors:
it is a full factor with the Akemann-Ostrand property [21],
it has the Haagerup property [4] and the completely contractive approximation property [12],
it is strongly solid [13] and has property strong HH [10],
it satisfies the Connes embedding conjecture [5].

As far as the radial subalgebra is concerned, the techniques of S. Radulescu do not apply in the quantum
case, because there is no clear way to mimic the construction of the so-called Radulescu basis. However, the
properties of the radial algebra mentioned previously can all be proved using another tool which we briefly
explain. Consider, for n € N, the element w,, € L(Fy) which is the sum of all words of length n. Then, if
x,x’ are two words of length k and y, 1’ are two other words of length n, we have

{(z — 2w, wy(y — 7)) < 2min(k + 1,n + 1).
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This estimate can be proved by elementary counting arguments, similar to the ones in [19, Sec 4]. It can
then be used to prove maximal abelianness and singularity in one shot. We will use the same strategy here.

Elements of the form z — 2’ with z and 2’ of the same length k& form a basis of the orthogonal of
the radial subalgebra in £(Fy), in the quantum case their role will be played by the coefficients u]gn of an

irreducible representation u* with respect to vectors &, 1) such that ¢ is orthogonal to 7. As already mentioned,
the role of w; will be played by the character x; of the irreducible representation u! — note however that
wi||?> = 2N(2N — 1)'=1 in L?(Fy), whereas |x;||> = 1 in L?(O%;). The estimate analogous to that we
will prove and use in the present article is then stated as follows (see Theorem [4.3]):

(g s g xr) < Kqm>bh,

with g €]0, 1[. From this we will deduce all the results announced in the abstract.

Let us now outline the content of the paper. In Section [2] we recall some facts on compact quantum groups
and in particular on free orthogonal quantum groups. Since the geometry of their representation theory will
be crucial in the computations, we have to make some conventional choices and give the corresponding
explicit formulae for several related objects.

Section [3] and [4] form the core of the paper. There we prove the announced estimate for scalar products
of coefficients and characters. The proof, presented in Section [4] is quite technical and relies on properties
of the so-called Jones-Wenzl projections which are of independent interest and are established in Section [3]

Eventually, we prove in Section [5] all our structural results on the radial subalgebra, namely that it is
maximal abelian, mixing and has spectral measure equivalent to the Lebesgue measure. The proofs here are
very simple using the main estimate and the arguments are certainly well-known to experts in von Neumann
algebras. Since however people interested in discrete quantum groups may not be so familiar with it, we give
full proofs. The paper ends with some remarks on the results of this work.

Acknowledgments. We would like to thank Eric Ricard and Cyril Houdayer for interesting conversations.
The first author was partially supported by the ERC advanced grant "Noncommutative distributions in free
probability".

2. PRELIMINARIES

In this section we give the basic definitions and results needed in the paper. All scalar products will be
left-linear and we will denote by B(H) the algebra of all bounded operators on a Hilbert space H. When
considering an operator X € B(H; ® Hs), we will use the leg-numbering notations,

X19:=X®1,X93:=1® X and X3 := (E ® 1)(1 X® X)(E X® 1),
where ¥ : Hy ® Hy — Hy ® Hp is the flip map. For any two vectors &, € H, we define a linear form
wey : B(H) — C by wen(T) = (T'(€),n)-

2.1. Compact quantum groups. We briefly review the theory of compact quantum groups as introduced
by S.L. Woronowicz in [26]. In the sequel, all tensor products of C*-algebras are spatial and we denote ®
the tensor product of von Neumann algebras.

Definition 2.1. A compact quantum group G is a pair (C(G),A) where C(G) is a unital C*-algebra and
A:C(G) = C(G) ® C(G) is a unital x-homomorphism such that

(A®id)o A = (id®A)o A
and the spaces span{A(C(G))(1 ® C(G))} and span{A(C(G))(C(G) ® 1)} are both dense in C(G) @ C(G).
According to |26, Thm 1.3|, any compact quantum group G has a unique Haar state h € C(G)*, satisfying
(id ®h) o A(a) = h(a).1
(h®id) o A(a) = h(a).1

for alla € C(G). Let (L?(G), w4, ) be the associated GNS construction and let Cioq(G) be the image of C(G)
under the GNS representation 7. It is called the reduced C*-algebra of G and its bicommutant in B(L?(G))
is the von Neumann algebra of G, denoted by L°°(G). To study this object, we will use representations of
compact quantum groups.
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Definition 2.2. A representation of a compact quantum group G on a Hilbert space H is an operator
u € L>®(G)®B(H) such that (A ®id)(u) = uigugs. It is said to be unitary if the operator u is unitary.

Definition 2.3. Let G be a compact quantum group and let u and v be two representations of G on Hilbert
spaces H,, and H, respectively. An intertwiner (or morphism) between u and v is a map T € B(H,, H,)
such that v(id ®7T') = (id ®7T")u. The set of intertwiners between u and v will be denoted by Hom(u, v).

A representation wu is said to be irreducible if Hom(u,u) = C.id and it is said to be contained in v if
there is an injective intertwiner between u and v. We will say that two representations are equivalent (resp.
unitarily equivalent) if there is an intertwiner between them which is an isomorphism (resp. a unitary). Let
us define two fundamental operations on representations.

Definition 2.4. Let G be a compact quantum group and let u and v be two representations of G on Hilbert
spaces H, and H, respectively. The direct sum of u and v is the diagonal sum of the operators v and v seen
as an element of L>*(G) ® B(H, ® H,). It is a representation denoted by u @ v. The tensor product of u and
v is the element ujov13 € L*°(G) ® B(H, ® H,). It is a representation denoted by u ® v.

The theory of representations of compact groups can be generalized to this setting (see |26, Section 6]).
If u is a representation of G on a Hilbert space H and if {,n € H, then ug,;, = (id ®wey,)(u) € C(G) is called
a coefficient of u.

Theorem 2.5 (Woronowicz). Every representation of a compact quantum group is equivalent to a unitary
one. FEwvery irreducible representation of a compact quantum group is finite-dimensional and every unitary
representation is unitarily equivalent to a sum of irreducible ones. Moreover, the linear span of the coefficients
of all irreducible representations is a dense Hopf x-subalgebra of C(G) denoted by Pol(G).

2.2. Irreducible representations. Let Irr(G) be the set of equivalence classes of irreducible unitary rep-
resentations of G. For a € Irr(G), we will denote by u® a representative of the class a and by H, the
finite-dimensional Hilbert space on which u® acts. The scalar product induced by the Haar state can be
easily computed on coefficients of irreducible representations by [26, Eq. 6.7]:

a £, Qa
<“£n7“§'n'>:5a,ﬁ< ><;7a )

where @, is a positive matrix determined by the representation o and do, = Tr(Q,) = Tr(Q5') > 0 is called
the quantum dimension of c. Note that in general, d, is greater than dim(H,). However, it is easy to see
that the two dimensions agree if and only if @, = id. When this is the case for all a € Irr(G) we say that
G is of Kac type.

Because the coefficients of irreducible representations are dense in C(G), it is enough to understand
products of those coefficients to describe the whole C*-algebra structure of C'(G). For simplicity, we will
assume from now on that for any two irreducible representations o and 3, every irreducible subrepresentation
appears with multiplicity one (this assumption will always be satisfied when considering free orthogonal

quantum groups). For such a subrepresentation v of a ® 3, let vy ¥ be an isometric intertwiner from H, to
H, ® Hg. Then,

1 u b, = u! .
(1) ten = D Uy ieaen @3- trom)
YCa®p
Note that even though vy B is only defined up to a complex number of modulus one, the sesquilinearity of the
scalar product ensures that the expression above is independent of this phase. We will also use the projection

a?ﬁ aﬂB*
v Uy

Py = B(H, ® Hg) onto the y-homogeneous component, Py ! , which is again independent of

the choice of vy B

For any «a € Irr(G), there is a unique (up to unitary equivalence) irreducible representation, called the
contragredient representation of o and denoted by @, such that Hom(e,a ® @) # {0} # Hom(s,@ ® «),
¢ denoting the trivial representation (i.e. the element 1 ® 1 € L*°(G) ® C). We choose morphisms ¢, €

Hom(e,a @ @) and s, € Hom(e,@ ® o) connected by the conjugate equation

(idy ®55) (ta ®1dy) = idq,
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and normalized so that ||s4|| = ||ta]l = V/da. Then, t, is unique up to a phase and s, is determined by t.
The morphism ¢, induces a conjugate-linear isomorphism j, : H, — Hg such that, setting j,(§) = &,
dim(Ho)
ta= Y €06
=1

for any orthonormal basis (e;); of H,. Note that j, need not be a multiple of a conjugate-linear isometry
in general — this is however the case if G is of Kac type. Let us also record the general fact that the map
757 . Hy — H5 ® Hz defined by

€= S(u37() @
is an isometric morphism from % to B ® a@. In particular, when there is no multiplicity in the fusion rules

—a, . . . ,Q
Uy # coincides with v up to a complex number of modulus one.

2.3. Free orthogonal quantum groups. We will be concerned in the sequel with the free orthogonal
quantum groups introduced by S. Wang and A. van Daele in [24] and [22]. This subsection is devoted to
briefly recalling their definition and main properties.

Definition 2.6. For N € N, we denote by C(OY;) the universal unital C*-algebra generated by N? self-
adjoint elements (u;j)1<ij<n such that the matrix v = (us) is unitary. For @ € GLN(C), we denote by
C(O"(Q)) the unital C*-algebra generated by N? elements (u;j)1<i j<n such that the matrix u = (u;;) is

unitary and QuQ ' = w, where T = (u;"j)

One can check that there is a unique *-homomorphism A : C(O(Q)) — C(O1(Q)) ® C(OT(Q)) such
that for all 4, 7,

N
A(UU) = Z Uik @ Uy -
i,j=0
Definition 2.7. The pair O} = (C(O}),A) is called the free orthogonal quantum group of size N.The pair
O1(Q) = (C(OT(Q)),A) is called the free orthogonal quantum group of parameter Q.

One can show that the compact quantum group O™ (Q) is of Kac type if and only if @ is a scalar multiple
of a unitary matrix. Although all results of this article apply to general free orthogonal quantum groups of
Kac type with N > 3, we will restrict for simplicity to the case of O]J\r[ — see Section [5| for comments about the
non-Kac type. The representation theory of free orthogonal quantum groups was computed by T. Banica in

|1
Theorem 2.8 (Banica). The equivalence classes of irreducible representations of O]J\r, are indezxed by the set

of integers (u® being the trivial representation and u' = u the fundamental one), each one is isomorphic to
its contragredient and the tensor product is given inductively by

'LLl ® u’t = un-l—l @ un—1.

If N =2, then d, = n+ 1. Otherwise,
qn—i-l _ q—n—l
dp = ——5—,
q—4q
where ¢ +¢ ' = N and 0 < g < 1. Moreover, O]"\', is of Kac type, hence d,, = dim(H,,).
Remark 2.9. There is an elementary estimate on d,, given by ¢~ "(1 — ¢*) < d,, < ¢ /(1 —¢*) . We will use

it several times in the sequel without refering to it explicitly.

To be able to do computations, we will use a particular set of representatives of the irreducible represen-
tations. More precisely, let H; = CV be the carrier space of the fundamental representation v = u'. Then,
for each n € N, we let H,, be the unique subspace of H ?’” on which the restriction of u®" is equivalent to
u"™. We denote by id,, the identity of H,.

It is easy to check that the map ¢t; = Zfil e; ®e; satisfies the requirements for the distinguished morphism
t, € Hom(e,u ® u) as defined in the previous subsection, with 4 = u and s; = ;. We fix this choice in the
rest of the article and we set

tn = (Pn ® Pn)(t1)1,2n(t1)2,2n-1 - - - (t1)nnt1 € Hy @ Hy,.
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We then have s, = t,, j, © jn = idy,, and j, is a conjugate linear unitary. The standard trace on B(H,) is
given by
Trn(f) = 6,(f @ id)tn
and the normalized trace by tr,(f) = d,; ! Tr,(f). Moreover, writing again ¢ = j,(¢) for ¢ € H,, we have
th(¢®id,) = ¢ and ¢, (id, ®C) = s} (id, ®¢) = .

We will denote by P, the orthogonal projection from Hl®" onto H,,, sometimes called the Jones-Wenzl
projection. Note that if a + b = n, then P,(P, ® P,) = P,, so that we may also see P, as an element of
B(H, ® Hp). In other words we have, with the notation of the previous subsection, P, = P& for any a, b

such that a4+ b = n. The sequence of projections (P, ),cn satisfies the so-called Wenzl recursion relation (see
for instance [11, Eq 3.8] or |21, Eq 7.4]):

n—1
d - - n—i— * .
2) Py = (Poo1 ®idy) + Y (—1)" 1S (id;@(l ot @ 1d?rD ®t1) (Po_1 @ idy).
=1 dnfl

We also record the following obvious fact, which will be used frequently in the sequel without explicit
reference: for any a, b we have (id, ®t; ®idp)* P, yp+2 = 0. Indeed the image of (id, ®t; ® idp)* is contained
in H, ® Hp which has no component equivalent to H,,p10. A first application is the following reduced form
of the Wenzl relation above, which is actually the original relation presented in [25]:

dp—
(3) Py = (Poy ®idy) —

(Pn,1 X ldl) (ld?(nil) ®t1t>{) (Pn,1 ® ldl)

n—1

We also have a reflected version as follows:

o
(4) Py = (id1 ®Py1) — 2
n—1

(id; ®P,_1) (tlt; ® id?(”_l)) (id; ®Py_1).

3. MANIPULATING THE JONES-WENZL PROJECTIONS

In this section we establish two results concerning the sequence of projections P, in the representation
category of O]J\r[. The first one studies partial traces of these projections, while the second one is a kind of
generalization of Wenzl’s recursion relation.

3.1. Partial traces of projections. The first result we need concerns projections onto irreducible repre-
sentations that are cut down by a trace. To explain what is going on, let us first consider two integers
a,b € N. Then, the operator

Top = (idg @ tp) (Payp) = dy *(idg @) (Payp @ idy) (id, ®tp) € B(Ha)

is a scalar multiple of the identity because it is an intertwiner and u® is irreducible. Of course, the same
holds for (tr, ®id.)(Pptc) € B(H:). However in general z4p,. = (idg ® trp ® ide)(Patptc) is not a scalar
multiple of the identity. In fact, an easy explicit computation already shows that z111 € B(H1 ® Hp) is a
non-trivial linear combination of the identity and the flip map, in particular it is not even an intertwiner.
Proposition [3.2], which is the main result of this subsection, shows that when b tends to +oo, the partially
traced projection x4 . becomes asymptotically scalar.

To prove this, we need a lemma concerning the following construction: for a linear map f € B(Hy), we
define its rotated version p(f) by

p(f) = (P @t))(id1 ®f ®@idy)(t1 ® Pr) € B(Hy,).

Diagrammatically, this transformation is represented as follows:

In the sequel, |.|lus will denote the non-normalized Hilbert-Schmidt norm, i.e. || f||%¢ = Tr(f*f).
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Lemma 3.1. For any f € B(Hy), Tr(p(f)) = (=)L Tr(f)/dix_1. Moreover, we have ||p(f)||lus = || f|lus-
Proof. For k =1 we have

Tr(p(f)) = £;(1dF? @) (1dF? @ f @ id; ) (id; ®t @ idy)t
t1(f @idy) (4 @1d9?)(id; ®t; ® id;)t
t(f @id)ty = Tr(f).

On diagrams, computing the trace correspond to connecting upper and lower points pairwise by non-crossing
lines on the left or on the right. Representing this by dotted lines for clarity, the computation above can be

pictured as follows:

When k& > 2, we first perform the transformation
Tr(p(f)) = Tr((Pe @ 1) (id) ©f @ idy) (t1 ®@ idF))
= Tr((IdPF ! @) (P @ idy)(idy @ f) (1 ® 1dPF))

which can be diagrammatically represented as follows:

-
|
|
\

Then, we use the adjoint of Wenzl’s formula . The term with P, ® idy yields

o (7Y o) (Pes @ 17 (s @) @174 Y)) = Tr (P @ 1)y @) (11 @ 17" 7Y))
This vanishes because the range of f is contained in Hj and id?(kfz) ®t] is an intertwiner to H1®(k72),
which contains no subrepresentation equivalent to Hy. The terms from with [ > 1 also vanish because

(id?(l_l) T ® id?(k_l_l) ®t1 ®1idy)(id; ® f) = 0 for the same reason as before. Hence, we are left with

_1)\k—1
T(p() = ¢ di)l Tr (P @ 41)(t @ 1d7 " ot @ idy) (s @) (1 @17 )
-~ _1)k-1
= di)l Tr (P (t @ a7 iy @) (0 @ iaP 7)) = (di)lTr(f)'

Here is the diagrammatic computation:

For the Hilbert-Schmidt norm, we have
Te(p(f)*p(f)) = Tr (] @ Pp)(idi @ f* @ id1) (P @ t117) (id1 @ f @ id1) (1 @ Py)
< Tr ((t; @ idP%)(id; @ f* @ idy ) (idPF @t1t7) (id) @ f @ idy) (¢ @ id‘%’f))
=Tr <(t’{ ®idP 1 @t1)(id) @ f* @ id9?) (1dFF @1t} @ idy) (idy @ f ® 1dF?) (4 @ idPF! ®t1)>
- ((t; ® 1d 1) (id, @) (idy @ f)(t ® idi@k’l))
=Tr(f*f).
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Proposition 3.2. Assume that N > 2. Let a,b,c € N and consider the operator
Zape = (idg @ try ®ide) (Patpte) : Ho ® He — H, ® H,.
Then, there exist two constants Aq,c > 0 and D, . > 0 depending only on N, a and ¢ such that
[Zape — Aaclide ®ide) || < Dacq”.
In particular xqpe — Aac(ide ®ide) as b — oco.

Proof. For convenience, the proof will be done with the non-normalized trace, and hence we consider the
non-normalized operator X, ;. = (idq ® Trp ® ide) (Patptc) = dpZa,pe. We first observe that

(Tra X Trc)(Xa,b,c) = Tr(Pa+b+c) = da+b+c = dbq_a_c + O(qb)

and accordingly set

Aae=q “7¢/dade and Xpp, . = Xope — dpAa,c(ida @1de).
With this notation, we have Tr(X[ , ) = O(q%) and we want to show that || X/ ibell S Dae. We will prove
that

|(Trg @ Tre)( abcf)| < Da,CHfHHS

for any f € B(H, ® H.). Moreover any such f can be decomposed into a multiple of the identity and a
map with zero trace, and since the estimate is satisfied for f = id by our choice of A\, . we can assume
(Tr, ® Trc)(f) = 0. Eventually, we note that in this case (Trq ® Tre) (X[, .f) = (Tra @ Tre)(Xap,ef)-

Now we observe that (Trq ® Tre)(Xgpcef) = Tr(Payprcfiz) where Tr is the trace of Hy @(a+bte) , and we use
Wenzl’s formula (2)) to write

( abcf) (( a+b+c— 1®1d1)f13)

atbre=l ! bte—1—1
- Y S (GaPY et @idf T @) (Pagge @) fis)
' datbic

Moreover, one can factor P, ® P, ® P, out of the right side of (P,1p+c—1 ®id1)f13. Since Py (id ®t; ®id) =0

on H1®( ), we see that (P, ® P, ® P.)(i d?(l Vet d?(ﬁbﬂ = 1)) =0ifl # a and [ # a+b. Hence there
are only three terms to bound in the expression above.
The first term is equal to

Tr((Paspres ®id1) f13) = Tr(Xape1f),

where f* = (id, ®id._1 @ Try)(f) satisfies Tr(f?) = 0 and || f°||gs < V/d1 || f|lus. For I = a, we use the trivial
bound

i ) P4
———— X || fllas x [[t1]I" X | Pagpre—1 ®id1 [lus = 7||fHHS
da+b+c— ¢ ‘ V da+b+c 1

For | = a+b, if we denote the term we are interested in by V', we have, with f = 3 f1y® f(2) € B(Ha)®B(H.),

T (i}
_Tr<
—Tr(

—Tr ( A2 oy ((Pospre—t ® 1) (f1s @ idy) (1d "7 @t ® id99)] @ idy ) (id @02 ®t1)>
=> Tr ( wtbre—t ® ) (f1) ® idyo1 @ (o) @ 1d1) (id] TV oty © id?c))

= Tr(Pa+(b_1)+cf13) = TI"<Xa,b71,cfﬁ)

St o) @ 1d7C ™ @) (Pagpre ®id1)f13>

AP oty (P et ® idy) f13(idT TV ot @ id?(H)))

(id]
(
(D 91 (P © (1 @ 1) (i1 ©01)) s (] w11 @17 )
(
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where f* = (id, ®p)(f) satisfies Tr(f*) = 0 and || f*||us < ||f|lus by Lemma (3.1, Here is the diagrammatic

version of the previous computation,

We recognize indeed p(f(2)) in the last diagram. The projections P included in the definition of p(f(2)) do
not appear on the diagram since they are absorbed by P, pi.—1 (through the trace for one of them), but
they must be taken into account. Summing up, we have

Aoy B,
L Te( Xy oft)] + — A=t

da+b+c—1 ’ ’ \/ da+b+c71

We will now proceed by induction on ¢ with the following induction hypothesis

() | Tr(Xap e )| < I Tr(Xapem1 )] + 1/ |-

H(c): "for all a € N there exists a constant D, . such that for all b € N and all f € B(H, ® H,) satisfying
TI‘(f) = 0 we have ‘Tr(Xa,b,cf)‘ < Da,c”fHHS”~

Recall that H(0) holds with D, . = 0 because X, is an intertwiner, hence a multiple of the identity.
Now we take ¢ > 0, we assume that H(c—1) holds and we apply it to the first term in the right-hand side

of Equation (). Since || f*[lus < v/di fllus and do—1 < daspre—1, this yields

Ao
| Tl“ abcf \/ Dac 1+ d3/2 \Y dafl)HfHHS + %’ Tr(Xa,b—l,cfﬁ)‘-

a+b+c—1

We set D' = max(\/ 1Dac—1 +d3/ 2\/ do—1,/da+tc) and we iterate the inequality above over b. Noticing that
| Tr(Xo0.ef)| < v/ a+c\|fﬁb||Hs D'||f*||us this yields, with the convention that the product equals 1 for

[ =0:
| Te(Xapef) D’ZHf’”H( 11 d*)

t—b 111 da+t+c—1

Using the inequality ||f*|lus < ||f|lus , as well as the estimate d,/d, < ¢~ for < y and the fact that
lg| < 1if N > 2, we see that H(c) holds :

b 00
| Tr(Xape§)) < D' fllus > 6 < D'l fllus S
=0 1=0

O

It is clear from the beginning of the proof that the Proposition[3.2]has the following equivalent formulation,
which we will use for the proof of Theorem [£.3}

Corollary 3.3. Assume that N > 2. For any a, b € N and any f € B(H, ® H.) such that Tr(f) =0, there
exists a constant D . such that we have, for any b € N:

| Tr(Patprefi3)] <
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3.2. A variation on Wenzl’s recursion formula. The second result can be called a "higher weight"
version of Wenzl’s recursion formula . As a matter of fact, let { =) C(1)®C(2) be a vector in Hy, C Hi1®H].

Then, the map f = C(Q)Z(l)* € B(Hp) has trace 0, so that applying Tri(f-) ® id,—1 to both sides of
Equation yields

Z(Z?l)@idn—l)Pn(C( )y @idp—1) (- QZPn 1( C(z ® idp—2)Pn-1.

What we are going to prove is a similar equality but Wlth ¢ being any highest weight vector, i.e. ( € Hpyq C
H, ® H, for arbitrary p and q.

Lemma 3.4. Let ¢ € Hpiq be decomposed as ¢ = S (M @@ ¢ Hy,® Hy and ¢ =) (1) ®((2) € Hy ® Hy.
For all m € N, there exist oy , € C such that

—(1)* .

(6) ST @Y @ idny) Pa(C® @ idug) = aly 3 PapC)Clay @ idnpg) Pag
. 2

(7) 3 (idn—p ©CD*) Py (idg ©C7) = a3 P p(idip q®< 1l Pacg.

Moreover, there exist constants Cp 4 > 0 such that for alln € N, Cp 4 < |ag | <

Proof. Let us first note that the second equality follows from the first one by conjugation, hence we will only
focus on the first one. If p = 0, then

Pn(C(2)®idn—q):P (C( )®1dn q) —q=PFn (C( )®1dn q) n—q

and the result is proved with af , = 1 for all n. Similarly, the result holds for ¢ = 0 with a;; = 1. We will
proceed by induction on p and ¢ with the induction hypothesis

Hpy : "For any p,q with p 4 ¢ < N, there exists a constant C), ; > 0 such that for all n € N, there is a

constant ay) . such that Equations @ and ( . hold and Cp 4 < |ag | < 1."

As we have seen, Hy and Hj hold, so let us assume Hpy and consider p,q > 1 such that p+¢= N+ 1. In
order to use the induction hypothesis, we refine the decompositions of ¢ in the following way:

D=>"¢WWececn, o,

V=D G @G € Hi @ Hp

2) _ 24(21) ®¢® e H ® H, 1,
=Y ¢ @) € Hya @ Hy.

Applying the map Z(Z(l)* ®idp—p)(+) (¢ @idn—g) to Wenzl's formula (@), the first term on the right-hand
side reads

Z(Z(l?)* ® Z(ll)* ® idn_p)(idl ®Pn—1)(<(21) ® C(22) ® idn—q)

— Z g(l? 11) ® idn—p)Pn—l(C(22) ® idn—q)~

Consider the linear map T': Hp,—1®Hq—1 —>B( n—q» Hn—p) defined by T'(x®y) = (T*®idp—p) Pr—1(y®idp—g).
Then, the term above equals

—=(12)* . * .
T (3TN @) = T ((idy-1 @8 @ idng)())
The argument of T in the right-hand side vanishes because ( is a highest weight vector, so that the whole
term vanishes. Coming back to and setting L = Z(Z(l)* ®idy_p) P (¢ ®@id,,_,), we thus have

dp— =% _ . . * o . .
L= =72 30 @iday) i1 @) (12t} @ idnon) i @) ((P) © i)
dp— —(11)x £ o o . .
=7 X @i ) P @ @i (101} © i) (€D © i) Paca (CP @ i)
dn 2

= —1 Z(Z(n)* ®idn,p)Pn71(C(12)Z(21)* @ idp_2)Pa1(C® @ idy_y).
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Now we apply Hy to ¢V (with p’ =p—1, ¢’ =1) and to () (with p' =1, ¢ = ¢ —1) to get

dp— n— n =(1)* _ . 2)% _ .
L= _dnj O‘pflllal q11 (Pn—p(f((i))dz; ® 1dn—p—1)Pn—2> ( n— 2(C(1)C( e 1dn—q—1)Pn—q> :

The last step is to apply again the induction hypothesis. To do this, we need to refine once more our
decomposition by setting

D=3 @) € Hyy © H,
77(2) — an)) ® 7’]8)) S Hq—l &® Hp—l-

Note that in the above computations we can replace everywhere C((ll)) ) C((Ql)) ) C((f)) and C((QQ)) respectively by "),
7Y, 722 and 5®). Thus, applying Hy to ) (with p’ =p —1, ¢ = ¢ — 1) yields
dn—? n—
2)_(2)* . —(3)% .

Pn—p—l(n((l))ﬁg2; ®1dn—q—1)Pn—q—1(’7(3) ® idp—q-1) Po-

dn—2 n— n— n— 2 _(2)% .
T d _1ap—11,10‘1,q£10‘p—127q—1 ZP”_p <(77(1) ®© 778)(77( " 77&2; )@ 1d”_p_q) Fng

dn*Z n—1_.n
- _dnflapfll,l 1 qllap 1,g-1 ZP" —( 2) ® idn—p—q) P—q-

This proves Equation @ for p and ¢ and as mentioned in the beginning of the proof, Equation follows
by conjugation. Moreover, we see that

dp—_2 1
|O‘ q| = dni Cp-11C1,4-1Cp-1,4-1 2 d;

hence Hy 41 holds and the proof is complete. O

L=

—=Cp-11C1,4-1Cp-14-1>0

4. THE KEY ESTIMATE

We now turn to the main technical result of this article, Theorem [.3] which concerns the behaviour of
the scalar product <Xlu'§,n,, Uanl’> as [, I’ tend to +oo. Its proof will span the whole of this section.

We start by recalling two technical lemmata from the literature on free orthogonal quantum groups. The
first one gives a norm estimate for some explicit intertwiners in tensor products of irreducible representations.
For any four integers I, k, m and a such that k + 1 = m + 2a, the map

(Vl ’f) P (idi_q @t ® idj_q)

is an intertwiner from H; ® Hj to H,,, hence there is a scalar /{i,f such that v,lnk = /{m Vm is an isometric

intertwiner. The scalar /ﬁif can be explicitly computed, see [23]. However, we will only need the following
consequence of this computation.

Lemma 4.1. There exists a constant B,, depending only on a and N, such that for all k, | and m = k+1—2a

we have ‘/{ink < B,.

Proof. This is a consequence of the estimates given in [23, Lem 4.8|, see also [10]. The sequence (Bg)a
diverges exponentially as ¢~%/2. ([l
We will also need the following estimates which were already used in [2I] and [10].

Lemma 4.2. Let z, y and z be integers and let i # x +y + z be a subrepresentation of both x @ (y + z) and
(x +y) ® z. Then, there exists a constant A > 0 depending only on N such that

[[(ide @Py12)(Poty ®id2) = Peyyiz|| < Ag” and || B y+2P$+y’ < AgY.
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Proof. The first inequation is [21, Lem A.4|. For the second one, note that P; ’y+zP$+y+Z =0= Ppiy+. P Yz
because p is not the highest weight. Thus, we have

||P;f’y+zplf+y’z” = ||P,f’y+z ((ide ®Pyt2)(Poyy @ idz) = Pryysz) Px+y7z||
< ‘|P;f’y+z||H(idm ®Pyyz)(Prty ®id;) — w+y+Z”HPx+y7ZH
< [[(ide @Py42) (Prty ®idz) — Pogy-|
< AV

O

We now state and prove an estimate, as [, I’ tend to +o00, about the scalar product between products of
the characters x;, x with coefficients of fixed representations. Since X;, xy have norm 1 in the GNS space
L?(G), it is clear that these scalar products are bounded when I, I’ tend to 4+o0o. However one can do much
better:

Theorem 4.3. Assume that N > 2. Let k, n be integers, let £, € H, be orthogonal unit vectors and let
&' n' € Hy be arbitrary unit vectors. Then, there exists K > 0 such that we have, for all integers 1, I:

() < e,

In particular ‘<Xlu’§,n,,u?nxl/>‘ — 0 when | or 1’ tends to +oco.

Proof. The proof will consist in the following steps:

1. computation of the scalar product as a sum S = > .S, in the category of representations,
simplification of S,, into T,

expression of T, as a trace,

application of Lemma [3.4] to reduce the trace,

application of Proposition [3.2] to estimate the trace,

backtracking of all approximations.

SOk LN

Step 1. We compute the products and the scalar product using the formule given in Subsection

d, dy
k I
S = <Xlu§/nlyug77x1’> ZZ< eezué’n’uén 8J6]>
i=1 j=1
dl dl’ “+o0
=335 (e cerstiom i compait e )
i=1 j=1 m=0 vl (es@n') (€®ej)om” " (n©e;)
dl dl/ +OO
_ZZZ < lk:* €Z®§) nl*(§®e])>< nl*(n®€j)’ ink*(el®77/)>
i=1 j=1m= 0
dl dl/ —+o00
_ZZZ < lk:* ez®§) nl*(§®6])>< kl*(n ®€Z) U'n *(é]®ﬁ)>
i=1 j=1m= 0
+o0o

®) (reu) o men) @ ouem), (b o) Eouen).

dm

m=0

Let us denote by S™ the m-th term in brackets in and note that it can only be non-zero if 4™ is a
subrepresentation of both ¥ @ u! and «" ® u!. This means that there are integers a and b such that

l+k=m+2aand n+1 =m+ 2b.
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Note that | —n+b—a =1"—k+ a—b and let us denote by ¢ this number. To estimate S™, we will use the
explicit formula for the intertwiners given in Subsection [2.3}

(vf;f) = KM P (i) @) @ id_y), (vfn’l) = KM P (idy_q B ® id)_y),

(vf;;n) = k" Py (idy_y O @ idn_y), (vgj’) = K" Py (idp_y @] @ idy_y).
so that becomes:

2 N
5™ = (5) " (5) (P @ P) (1o @15 @103, @85 @ idi) (S @ D)(E @ h 0 7).,
(P ® Pry) (1dp—p ®t; ®1d5;2, @5 @ id,—p) (@t @ 7)) -

Step 2. Let us set, for 0 < p, i/ < m,

S = <(P/’[“v’“*“ ® Py ) (idi—g 0t @idF?, @t ®id1_,) (2@ X)(§ @ 1 ®7)
(P;z—b,l/_b 2 PPlL’/—b,nfb) (idn—b Rt ® idf?fb ®ty ® idn_b) Rty ® ﬁ)>

so that S™ = S, . If uor w' is strictly less than m, then we know by Lemma that there is a constant
A depending only on N such that either

)‘PZL—a,k—aPE—b,l/—bH < Aql—a—(n—b) or lelflfa,lfaplll’/fb,nfbu < Aql—a—(n—b)'

This gives the bound |S} | < Allti[[tr]l¢® = AV/div/dyq® which will be used in the end to estimate S™. Let
us expand back the vectors t; = Y el ® € and ty = > €l ® €., and we introduce

4 dy
T =303 (o ot @172, 0 @idi) (6 08 07 @),
t=1 s=1

(i, 015 @142, 013 @ id, ) (€@ el B2 @)

m _ (,kIN2( nl'\2(m m /
so that S™ = (k)" (kp, )*(T™ — 322 5),/), where the sum rune over all (k, ') # (m,m).

m

Step 3. The problem is now to estimate T™, using the following tensor decomposition of the vectors &,
7, ¢ and 7’ in Sweedler’s notation:

£= Zf(l) ® (o) € Hp—p @ Hy,
n= Z N1y @ Ne2) € Hp—p @ Hp,
&= &) @&y € Ha® Hyq,
W= ) ®niy € Ho @ Hy_q.
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Because t}(z @ §) = y*(x), we get
d; dl/

S (i) 05 o 50

=1 s—1
£n) ® (5?2) ® idl’—b) ()@ (idl'—b ®Uf2)> () ®ﬁ(1)>

l dl/
=333 (g @ idia oy €0
s=1

t=1

( M) @ idi—a(n-t) ®77(1))( )

dy

N

t=1 s=1
< { () @ ide 07y ) (@), () @ ide @y, ) (@)
The properties of conjugate vectors imply that
((nts) @ idewmty ) @), () @ ide @y ) @) = (A @ idenfy) ) (e, () @ ide @7y ) (€h)) -

Making this change in the last expression of 7™ and using the fact that > (z, Sel;)(Teé/, y) = {x, SPy/T*y)
enables to simplify the sum over s, yielding

ZZ<( ® ide ®EG )( t); (Z}"z) ® id, ®§E§)) Py (ﬁ@) ® id, ®77(2)) (na) ® id, ®ﬁ’(*1)) (e§)>

=32 [P (Saoly @ e ity ) P (T @ e Sty )|

where Trg; denotes the non-normalized trace on H 1®l.

( ) e
< () @ 1dp b (r—a) ®ES ) (77(2) ® idy_p—(k—a) ®77(2)> (e l/)>
(6

@ideall) (), (€ @ .56 ) ()

Step 4. We cannot apply Corollary [3.3] to 7™ because there are two highest weight projections instead of
one. We will therefore use Lemma [3.4] to reduce the problem to a case where Corollary [3.3] applies. Let us
first simplify the notation by setting

=Y ¢nép : Ho— Hus,
9= Zﬁ(z)ﬁa) D Hyp — Hy,
F=> €05  Hia — Ha,
g = ZU(Q)fl* :Hq — Hy—q.

By Lemma 12} ||(idy ®Pr ) (Pr s @ idg_a) — Pol| < Ag® and [[(Pr_q @ ida)(idp_p @P_nss) — Bl < A
so that it is enough to study

Y™ =Trg [(P—q ®ida)
idy ®Py_yp)
= Tray [(P—q ® ida) (f ® id1—p4p) (idp @ P i) (idi—nt25—a @)

( n—b @P_nip)(f ®idc® )

(

(

(idy @ Py—p) (idyr —pta @9") (Pr—kta @ ida) (9 @ id1_p1s)]
(

(

(

(id
(Pr—jta ® idj—q) (9 ® ide ®g')]

= Trgy [(idy @P—ppp) (idi—pt2p—a @ F) (idp @ Py _p) (idy_ 10 ®9)
Py —kta @ id )(g ® ldl—n—l—b)(Pl—a ®id )(f ® idl—n-i—b)] :
We now apply Lemmato /' (withp=Fk —aand ¢=a) and g (with p=n —b and ¢ = b):
. a . 2)
Prpip(ide @) Py = (g e 0) 7 (i @) Pryap(idi o)
Py pya(g @ide)Pg = D (a5t (0 @idy pra) P oY @ idia)
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where ¢ =3 ¢W @ ¢® e H,_, ® Hy and n = > 71" @ n® e Hy, ® H,_;. This yields
=B T [(idl—n+2b 2 D) (idy @ Py y o) (idy 9 ) (idy_p 1o 09
(®* @ idy_py20) (Pryp—a @ ide) (@Y @id))(f @ i dlin%)}
=B Tra |( [ * @ idy 20 @ D) (idy @ Py q_p)
(Prapo ®idp) 0V @ f @ idi_nip ¢ @ E/(Q))]
= BTre [(idn ®@Pr1a—b)(Prb—a ®idg)(§® f ®@id. ®¢' ® f/)}
e = (a7l 538) " ond
J?/ _ Zg’@)f/(l)*  Hy o — H,,

g=>> 0" Hy - H,

To conclude the computation, we use again Lemma [4.2] to get the following bound:

||(idn @ Py 4—b)(Pryp—q @ idg) — Piypgtv—all < Ag,

enabling us to eventually reduce the problem to the study of

2" = BTreu [Poksn-a(§ @ f @ ide2g @ )]

Step 5. We are now in the setting of Corollary Note that
Tr(Po(§® f)) =t [Pu((idy @1*) (tp @ idy—p) @ (idy—p @) (€ @ idp)) @ idp)

so that the map n* ® & — Tr(P,(§ ® f)) is an intertwiner from H, ® H,, ~ H} ® H, to C. Since the only
intertwiners between these spaces are multiples of the scalar product and since we have assumed & and 7 to
be orthogonal, we see that the trace vanishes. Besides, we have

1Pn(g @ f)Pullns < [lg © fllus = [I€]llInl] = 1

and similarly || Py(¢’ ® f/)Py|lus < 1. Thus, Corollaryn 3.3 applied to F = P, (§® f)P, ® Pp(g’ @ f') Py yields
‘Zm| < BDn,k-

Step 6. Now we can rewind the successive approximations to bound S™. In the remainder of this proof, the
symbols K; will denote numbers possibly depending on n and k, but not on m, [ and I’. Recall that a, b, ¢
are defined in terms of m, [ and I’. To bound T™ — Z™, we use the rough estimate | Try (X)| < dim(H)| X||
which holds for any Hilbert space H and any X € B(H). Let us note that the operator norms of f, g, f,
¢’ are dominated by their Hilbert-Schmidt norms, which are equal to 1. However, the space over which we
take the trace is H 1®l, which is too big. We therefore take advantage of the projections inside the trace to
restrict to Hy ® Hy_p and H;_, ® H, when passing from 7™ to Y™ and to H,, ® Hy 1, when passing from
Y™ to Z™. This yields:

‘Tm‘ < ‘Tm — Ym’ + D/m — Zm‘ + ‘Zm’ < A(dbdl’fb + dodi—g + dndl’+a7b)qc + BDn,k
By the second part of Lemma BDy, 1 is bounded by C’,;_l c! D, j. Because a < k and b < n take

a,a ~“n—>bb
only a finite number of values when n and k are fixed, all these constants can be bounded by a constant K.

We can also bound the coefficient of ¢¢ by
A(dpdy + dipdy + dpdyyy) < K1q™ max(Ll')

Secondly, we have to consider the sum of the \Sﬂw\’s for (u, 1') # (m,m). Note that this term is non-zero
only if © and u are subrepresentations respectively of (I —a) ® (k —a) and (n —b) ® (I’ —b). Thus, there are
at most min(k — a,n — b) < min(k,n) such terms and each of them is bounded by A+v/d;\/d;¢¢, as explained
in the beginning of the proof. Also recall from Lemma that x*! and Iﬂ%/ are respectively bounded by B,
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and By, and since a, b take only a finite number of values (determined by k and n), they are bounded by a
constant Ky. Summing up, we have

1S™| < K3|T™| 4 min(k, n) A\/dj/dyq°
< KélKlqc—max(l,l’) + K;lKO + K3qc—max(l,l’)'

Let t = min(n+a — b,k +b—a). Then, ¢ > max(l,!') — t and thus we have proved that |S™] is bounded by
a constant K4 independent of m, [ and [’.

To obtain our estimate for S, we now have to sum the S™’s. Note that for S™ to be non-zero, m =
k+1—2a=mn+1 —2bmust be a subrepresentation of both | ® k and n ® I’. There are at most min(k,n)
such m’s and they moreover satisfy m > max(l — k,I’ —n), so that d,, > Ksq~ ™) and we can write

= 1 m : max(l,l")
|S] < Z d—]S | < min(k, n)Ksq K.

m=0 "

5. THE RADIAL SUBALGEBRA

We are now ready to prove the announced results on the radial subalgebra. Before going into the proofs,
we recall the definition of this subalgebra as well as some of its basic properties.

Definition 5.1. For any representation v of a compact quantum group G, the character of v is the element
Xv = (id® Tr)(v) € C(G). This element depends only on the equivalence class of v.

The radial subalgebra A C LOO(O]J(,) is the von Neumann subalgebra generated by the fundamental char-
acter x1 = xu, Where u is the matrix of generators.

Note that the radial subalgebra was also used as a sub-C*-algebra Ay of the full C*-algebra C(O}) by
M. Brannan in [4]. The spectrum of x; in C(O}) is [-N, N], whereas it is [—2,2] in Creqa(OF) and L>®(O0%,).
In the full case, the evaluation functionals ev; : Ay — C at t € [-N, N| induce completely positive maps
T, : L>(0}%) — L>°(O}) which approximate the identity as ¢t — N. This allowed M. Brannan to prove that
LOO(OX,) has the Haagerup approximation property.

The terminology is justified by the following analogy with the "classical case" of the free group factors
L(Fy). More precisely, denote the standard generators of Fy by a; and consider

u = diag(ai,...,an,a; ', ..., ay') € L(Fy) @ B(CH).

This is indeed a representation of the compact quantum group dual to F, we put x1 = xu = Eé\il(ai—&—a;l) €
L(Fy) and we define the radial subalgebra A C L(Fy) as the von Neumann subalgebra generated by y;. If
we consider, for x € L(Fy) and g € Fy, the coefficient z, = (z,g) = 7(¢g*z) with respect to the standard
trace 7, then = belongs to A if and only if the function (g — z4) is radial, i.e. x4, only depends on the word
length of g.

The fusion rules of OX, imply that x1Xn = XnX1 = Xn+1 + On>0Xn—1, SO that the radial subalgebra is
abelian and generated as a weakly closed subspace by the characters (x,)nen. Moreover, it was proved in [I]
that the spectrum of x; in LOO(O]J{,) is [—2, 2] and that the restriction of the Haar state is the semi-circle law.
More precisely, one can identify A with L°°([—2,2]) via the functional calculus f +— f(x1) and the scalar
product induced by the Haar state is computed via

2 -
(f(xa),9(x1)) = 217r/_2 f(s)g(s)\/m(is.

In particular, the radial subalgebra is diffuse. The characters x,, correspond to dilated Chebyshev polynomials
of the second kind: x,(X) = T,(X) = Un(X/2) where Tp = 1, T1 = X and T1T), = Tp1 + T if
n > 1. It is known from the classical theory of Chebyshev polynomials that when restricted to [—2,2],

|Twlloo = |Unlls = n+ 1. Since L>(O3%;) is a finite von Neumann algebra, there is a unique h-preserving
conditional expectation E : M — A, which is explicitly given by
(€,m)

) E(ug) = =X,
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We shall denote by At = {z € M,E(z) = 0}, which by Equation (J) is the weak closure of the linear span
of coefficients ug, with (£, n) = 0.

As mentioned in the preliminaries, all the results of this article apply in fact to general free orthogonal
quantum groups O (Q) of Kac type, i.e. such that @ is a scalar multiple of a unitary matrix. The situation
for non-Kac type free orthogonal quantum groups is however quite different. First recall that L>(O1(Q)) is
in that case a type III factor, at least for some values of the parameter @ (see [2I]). More precisely the Haar
state has then a non-trivial modular group, which is given on the generating matrix u € L>(G) ® B(CV) by

(0r ®id)(u) = ([d@"(Q"Q) " )u(id ®"(Q*Q) ™),

where we assume @ to be normalized so that Tr(Q*Q) = Tr((Q*Q)~!). In particular, it is clear that oy(x1)
does not belong to A for all ¢ unless Q*Q) € CIy, and this implies that there exists no hA-invariant conditional
expectation onto A in the non-Kac case. It might even be that there exist no normal conditional expectation
onto A at all. On the other hand, as far as we know all the available tools for the study of abelian subalgebras
require the presence of a conditional expectation. Let us also comment on the N = 2 case, where the tools
developed in the previous section break down. If we restrict to Kac type free orthogonal quantum groups,
there are only two examples at N = 2 up to isomorphism, namely SU(2) and SU_1(2). In the first case
C(SU(2)) is commutative so that A is clearly not maximal abelian, and in fact A is not maximal abelian
either in the second case — this is easily seen by embedding C(SU_1(2)) into C(S3, M3(C)) by [27].

With the estimate of Theorem we can investigate the structure of the radial subalgebra. In fact,
all the proofs are quite straightforward using techniques which are well-known to experts in von Neumann
algebras. We however chose to give detailed proof both for convenience of the reader and for the sake of
completeness. From now on, we will write M = L>°(0}) and A = {x1}".

5.1. Maximal abelianness. We first prove that A is maximal abelian. This will follow from the following
lemma concerning unitary sequences in A, which relies itself on Theorem [£.3] In fact here we only use the
fact that ](Xlulgln,, U?nXl'>| —0asl, I'! — oo if £ is orthogonal to 7.

Lemma 5.2. Let N > 3. Let (u;); be a sequence of unitaries in A weakly converging to 0 and let z € A*.
Then, u;zu; converges x-weakly to 0.
Proof. For any i, let us decompose u; as u; = Y ;o aix; and note that by unitarity, ||(af);|l2 = 1. Assume
for the moment that z is of the form u?n for some integer n and two orthogonal unit vectors £,n € H,.
Considering another integer k and two arbitrary unit vectors £, n' € Hy, we will first prove that
+00
- k I N i—i /k n
SZ = |<U£/n/, uluf?]ui” = llZ:O a;ay <U€/n/, XlUEnXl/> Z_:)OO 0.
Let € > 0 and note that <u’§,n,, Xiug,Xr) = <XZU§/77/’U?17XI’>- By Theorem there exists L € N such that
\(Xlulg,n,, ug, Xr)| < €/2 as soon as I,1' > L. Thus,

L ¢ 400
i < Y lafa (g i)l +5 Y lajaj]
1,I'=0 LI'=L+1
L €
<D lajay g x| + 5l @Dill3
L,I'=0

Now, because u; — 0 in the weak topology, af = h(xyu;) — 0 for all fixed | € N as ¢ — +o00. In particular,
there exists ig € N such that for all 7 > ig and all [,I’ < L,

-1
L

afb] < & {3 (b o)
LI'=0
Thus, for i > i, |<u’§,n,, uiug,ui)| < € and S; — 0.
Making finite linear combinations in the left-hand side, we see that (¢, u;ug,u;) tends to 0 as ¢ — oo for
any t € Pol(O},). Since Pol(O}) is dense in L?(O};) and (uiug,u;y)i is bounded L%*(O%), this is also true for
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any t € L>®(0}) C L?(0%;). Then, we can write (Z, uiug,u;) = (ujtui, ug,) and use similarly the density of
At NPol(0F) in AL for the norm of L2(0O%;). This shows that (¢, u;zu}) = (uftu;, z) — 0 as i — oo for any
t € M and z € AL, Since h is a faithful trace and (u;zu}); is bounded in L*°(0O};), this shows the stated
x-weak convergence. O

Theorem 5.3. Let N > 3. Then, the radial subalgebra A is maximal abelian in M.
Proof. Let € A’ M and consider the decomposition z = y + z with y € A and z € A+. Note that

T = uiul = uyu; 4 uizu; =y + uizu;,
so that Lemma [5.2] yields x = y + lim; u;zuf = y. O

The argument above also proves that the C*-algebra generated by yi is maximal abelian in the reduced
C*-algebra Creq(OF;). From the theorem, following the strategy of [18], one can also recover the factoriality
of L®(0};) established in [2I] and also in [I0] (as a byproduct of non-inner amenability).

Corollary 5.4. For N > 2, the von Neumann algebra L°°(O]J\r,) s a factor.

Proof. We exploit the natural action of the classical group Ox on M given by the following formula, for
g€ Opn and x € C’red(O;{I):
g (@) = (ev,m @ id)A'(a),

where 7 : C(O3;) = C(Oy) is the canonical quotient map, ev, : C(On) — C is the evaluation map at g, and
A1 Crea(O%) = C(O%) ® Crea(OF;) is induced from the coproduct of C(O%;) thanks to Fell’s absorption
principle. The %-automorphism of Cred(OX[) defined in this way leaves the Haar state h invariant, and thus
it extends to M. The action of a; on coefficients of an irreducible representation u™ of OX[ is given by the
following expression, where v = (7 ® id)(u™) is the restriction of u™ to On:

(ag @ id) (1) = (ev, @ id @ id) (Vi) = (1® v"(g))u"
In particular we have ay(xn) = >, , 0" (9)rsuy, where 7, s are indices corresponding to an orthonormal basis
of H,. Note that oy, leaves the subspace of coefficients of any fixed representation of O]J\r, invariant.

Since A is maximal abelian in M, a4(A) is maximal abelian in M for every g € Oy, and so the center of
M is contained in ay(A) for every g € On. Hence it suffices to show that the intersection of the subalgebras
ag(A) reduces to C1. Equivalently, we take ¢ € A such that a4(c) € A for all ¢ € Oy, and we want to prove
that ¢ = A1. For this we write ¢ = Y ¢, x» in L?(O%). The orthogonal projection of a,y(c) onto the subspace
generated by the coefficients of u™ is c,a4(xn), whereas the projection of A is Cx,,. Hence, if ¢, # 0 then
we must have ay(xn) € Cxy, for all g € Oy. By the computation above and the fact that the coefficients
uy, are linearly independent, this happens if and only if v"(g) is scalar for all g, i.e. v" is a multiple of a
one-dimensional representation. But then v?" C v" ® v" would be trivial, and if n > 0 this would imply that
On has only finitely many irreducible representations up to equivalence, since any of them is contained in
one of the v* and v¥+1 c v* @ v!. Hence ¢, = 0 for all n > 0. U

5.2. Singularity and the mixing property. Now that we know that the radial subalgebra is a MASA,
we can investigate further properties. By [13], we now that A cannot be a regular MASA (also called Cartan
subalgebra) because M is strongly solid. In view of this result and of the case of the radial MASA in free
group factors treated in [I7], it is natural to conjecture that A is singular. Recall that for a von Neumann
algebra N, we denote by U(N) the group of unitary elements of N.

Definition 5.5. A MASA A C M is said to be singular if {u € U(M),uAu* C A} =U(A).

There are several ways of proving that a MASA is singular. One way goes through a von Neumann
algebraic analogue of the mixing property for group actions, called weak mixing, which eventually turns out
to be equivalent to singularity. In our case, we can prove a stronger statement than singularity, namely that
A is mizing in the following sense:

Definition 5.6. A subalgebra A of a von Neumann algebra M is said to be mixing if for any sequence (),
of unitaries in A converging weakly to 0 and any elements x,y € AL,

[Ea(zuny)l2 — 0.
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Again, the proof is an easy application of Theorem [£.3]
Theorem 5.7. The radial MASA is mizing.
Proof. Let k,n € N and consider two pairs of orthogonal unit vectors £, € H, and &, € Hy. We first
estimate, for [ € N,
. k 2
X k(1) = [[E(ugyuivgy )2
To compute the square norm, we can use the orthonormal basis given by the characters to get

+o0
Xoo(i) = Y WE(ugmuiugny), i)l
1'=0
“+oo
= > k)P
'=0
+o0
= ZKUz‘u’g/n/,u?an'HQ-
I'=0
We can now decompose the unitaries u; according to the basis of characters: w; = :FOS’ al xi- We have
||(al)l||2 = 1 for all i, and in particular |af| < 1 for all i and . Moreover since u; — 0 weakly we have

al = h(xqu;) — 0 as i — oo for each I. Then, Theorem |4.3 . yields

+0o0 +00
ZZ \al\ ( qugfn ,Uanl'H
=0 1=0
“+0o0 400
< KZZmz’Z max(l,l")
~
=0 1=0

We have >, q max(Ll') < 400, hence the dominated convergence theorem applies and we have X, k(i) =0
as i — 00. Since elements of the form ué/n/ (resp. u§n> with & L 7/ (resp. & L n) span a dense subspace of
At c L*(0%;), the proof is complete. O

Corollary 5.8. The radial MASA is singular.
Proof. This is a direct consequence of |6, Thm 4.1]. O

5.3. The spectral measure. Another very natural problem for a given MASA is to study the A-A-bimodule
structure of H = L?(M) © L?(A). This can be done through the associated spectral measure. Because the
representations of A on H on the left and on the right commute, their images generate an abelian von
Neumann subalgebra of B(H) isomorphic to L>([—2,2] x [-2,2]). Thus, disintegrating H with respect to
this subalgebra yields a measure class [v] on [—2,2] x [—2,2] which encapsulates some properties of the
bimodule.

Theorem 5.9. The measure v is Lebesgue equivalent to A @ A, where \ denotes the Lebesque measure on
[—2,2].

Proof. We will follow the strategy of [9]. Let us look at some "projections" of v in the following sense: for
two integers k and n and two pairs of orthogonal unit vectors &,n € H, and & ,n' € Hj, there exists a
measure g on [—2,2] x [—2,2] such that for any a,b € A,

(aulg/n/b,ugn> = // a(s)b(t)du(s,t).
[—2,2]x[—2,2]

We will compute the Radon-Nikodym derivative of p with respect to A ® A. To do this, let us set
Dy = (XtUgry Xt U )

+o0o
= Z Ty (t)Dyy.
I'=0
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Recall that if k, n and [ are fixed, then there are at most max(k, n) integers I’ such that D; s is non-zero and
that they are all smaller than [ 4+ k£ + n. Thus, by Theorem and the fact that || x| = [Ty ]|ec =1 + 1 we
have

| 4loe < max(k,n)(l + k4 n + 1) Kgmaxbitktn)  g/]gl

for some constant K’ depending only on N, k and n. This implies that the series of functions

+oo
fls.t) = Tus)Au(t)
=0

is normally convergent and since all summands are polynomials, f is analytic in s and ¢. This function is
linked to the measure p by the following computation:

“+oo —+00

<a’ulg’n’b7 u?,'r]) = Z <a7 Xl> <b7 Xl'> <Xlu’§’n’Xl’7 u?,n> = Z <CL, Xl> <b7 Xl’>Dl,l’
L,I'=0 1,I'=0

= # l;ioo Dy </22 a(s)]}(s)ﬂds) (/22 b(t)ﬂ(t)ﬂdt)

! / / a(s)b(t) f(5,)v/2 — s2/4 — 2d(A & \)(s, 1).
[~2,2]x[~2,2]

~ ar?

Hence, f(s,t)V4 — s2v/4 — t? is the Radon-Nikodym derivative of ;1 with respect to A® \. Since f is analytic
and obviously not 0, its zeros are contained in a set of Lebesgue measure 0, hence p is equivalent to A ® .

Consider now an arbitrary element ¢ in Pol(O%) N AL. It can be written as a finite linear combination of
coefficients corresponding to orthogonal vectors, hence the measure y¢ defined by

wcr.0) = [ a(s)b(t)dyc (5.1,
[—2,2]x[-2,2]
is equivalent to A® A. Because Pol(O%) N At is dense in L?(M) & L?(A), this implies that [v] = A® . O

Note that as a consequence, the A — A-bimodule L?(M) © L?(A) is contained in a multiple of the coarse
bimodule, see [14], Section 2|. Since the coarse bimodule is mixing, we can also recover Theorem in this
way.

5.4. Concluding remarks. We would like to briefly discuss some possible extensions of this work. First
consider the quantum automorphism group G(My(C),tr) of My (C) endowed with the canonical trace. It
is known that the von Neumann algebra L>(G(My(C),tr)) of this quantum group embeds into L>(O%;)
as the subalgebra generated by all u?}? for n € N and &, € Hy,. Let us set v = u?". Then, the v™’s
form a complete family of representatives of irreducible representations of G(My(C), tr) with corresponding
characters v, = x2,. In particular, for any orthogonal unit vectors £, € Ha, and &', 7' € Hyy,

(el o) < g 2H20)

by Theorem From this we see that the radial subalgebra in L>°(G(My(C),tr)) is maximal abelian and
mixing and that its associated bimodule is a direct sum of coarse bimodules. This is an interesting example
because G(My(C), tr) has SO(3)-type fusion rules, like another important family of discrete quantum groups
called the quantum permutation groups S]J\r,. This of course suggests that our result extends to S]J(,. One way
to prove this may be through monoidal equivalence [3].

Another possible extension of our work would be to the non-Kac case. It is possible that the estimate
of Theorem [£.3] still holds with appropriate modification for an arbitrary free orthogonal quantum group.
However, the proofs of Section [f] all break down if the von Neumann algebra is type III, because the radial
MASA has no h-invariant conditional expectation in that case. There is therefore an additional von Neumann
algebraic problem to solve in that case, but this could yield very explicit examples of singular MASAs in
type III factors.
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